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ABSTRACT

STATISTICAL METHODS FOR COMPOSITIONAL AND TREE-STRUCTURED COUNT DATA IN

HUMAN MICROBIOME STUDIES

Pixu Shi

Hongzhe Li, PhD

In human microbiome studies, sequencing reads data are often summarized as counts of bacterial

taxa at various taxonomic levels. In this thesis, we develop statistical methods for analyzing such

counts data. We first consider regression analysis with bacterial counts normalized into composi-

tions as covariates. In order to satisfy the subcompositional coherence of the resulting model, linear

models with a set of linear constraints on the regression coefficients are introduced. A penalized

estimation procedure for estimating the regression coefficients and for selecting variables under

the linear constraints is developed. A method is also proposed to obtain de-biased estimates of the

regression coefficients that are asymptotically unbiased and have a joint asymptotic multivariate

normal distribution. This provides valid confidence intervals of the regression coefficients and can

be used to obtain the p-values. Simulation results have shown the validity of the confidence in-

tervals and smaller variances of the de-biased estimates when the linear constraints are imposed.

The proposed methods are applied to a gut microbiome data set and identify four bacterial genera

that are associated with the body mass index after adjusting for the total fat and caloric intakes.

We then consider the problem of testing difference between two repeated measurements of mi-

crobiome from the same subjects. Multiple microbiome measurements are often obtained from the

same subject to assess the difference in microbial composition across body sites or time points. Ex-

isting models for analyzing such data are limited in modeling the covariance structure of the counts

and in handling paired multinomial data. We propose a new probability distribution for paired multi-

nomial count data, which allows flexible covariance structure of the counts and can be used to

model repeatedly measured multivariate counts. Based on this new distribution, a test statistic is

developed to test the difference in compositions of paired multinomial count data. The proposed

test can be applied to count data observed on taxonomic trees in order to test difference in mi-

crobiome compositions and to identify subtrees with different subcompositions. Simulation results
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shown that the proposed test has correct type 1 errors and increased power compared to some

commonly used methods. An analysis of an upper respiratory tract microbiome data set is used to

illustrate the proposed methods.
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CHAPTER 1

INTRODUCTION

1.1. Human microbiome and human health

A typical human body is inhabited by at least 10-100 trillion microbes, outnumbering the human

cells by an estimated 10-fold (Turnbaugh et al., 2007). The community formed by microbes, mi-

crobiota, includes bacteria, fungi, archaea and viruses, and can be found at various human body

sites such as gut, skin, oral cavity, vagina, respiratory tract, etc.. The collective genome of human

microbiota, also known as the human microbiome, is estimated to contain ∼150 times more genes

than the human genome (Qin et al., 2010). Compared with the human genome, the human micro-

biome has much more diversity. The microbiota found at different body sites of the same individual

can differ remarkably, and even at the same body site, human microbiome can display substantial

inter-individual variation (Consortium et al., 2012) and temporal variation within the same individual

(Flores et al., 2014; Grice et al., 2009).

Many recenyt studies have been investigating the role of microbiome in human health. For exam-

ple, the gut microbiome has been shown to be associated with many human diseases such as

obesity, diabetes and inflammatory bowel disease (Ley et al., 2005, 2006; Manichanh et al., 2012;

Qin et al., 2012; Turnbaugh et al., 2006); the skin microbiome has been postulated to have contri-

bution to several skin disorders (Grice et al., 2009; Kong et al., 2012). The health and lifestyles of

host have also been shown to affect the composition of microbiome. Studies have found that long-

term dietary habits affect the composition of gut microbiota (Wu et al., 2011, 2014). The microbial

communities in the upper respiratory tract of cigarette smokers differ between smokers and non-

smokers (Charlson et al., 2010; Morris et al., 2013). The host genotypes also have influence on the

microbiota compositions (Spor, Koren, and Ley, 2011; Turnbaugh et al., 2006). These links between

human microbiome and human health indicate the possibility of designing therapeutic strategies for

treatment of complex diseases and conditions by modulating the microbial composition (Cani and

Delzenne, 2011; Hsiao et al., 2013; Smits et al., 2013; Virgin and Todd, 2011), and the potential of

using microbiome as biomarkers for disease prevention and early diagnostics (Gevers et al., 2014;

Kostic et al., 2012; Segata et al., 2011). Several large-scale human microbiome studies such as
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the Human Microbiome Project (HMP) (Peterson et al., 2009) and The European Union Project

on metagenomics of the human intestinal tract (MetaHIT) (Ehrlich, Consortium, et al., 2011) have

provided important data on human microbiome.

1.2. Investigating human microbiome through sequencing

To understand the impact of the human microbiome on human health, it is necessary to character-

ize and decipher the content of human microbiome. Prior to the invention of Sanger sequencing

technology in 1977 (Sanger, Nicklen, and Coulson, 1977), microbiota characterization largely relied

on culture-based methods, which are highly biased and time-consuming. The advent of Sanger se-

quencing allowed for some more thorough view of microbial communities, but is still limited in use

by its high cost and low throughput. With the development of next-generation sequencing tech-

nology such as Roche (454) pyrosequencing, Illumina Solexa sequencing and Applied Biosystems

SOLiD sequencing, researchers are now able to study the human microbiome with much lower cost

compared to older Sanger method, yet still achieve a coverage of microbial genes thorough enough

to characterize the true microbial population.

Two high-throughput sequencing based approaches have been used for interrogating complex mi-

crobial communities. The first approach is based on sequencing the 16S ribosomal RNA (rRNA)

amplicons. The 16S rRNA is a structural component of the prokaryotic ribosomes, and thus is p-

resented in all bacteria and archaea cells. The 16S rRNA gene contains highly conserved regions

that can be used as primer binding sites in PCR amplification, while its hypervariable regions can

be used to identify different bacterial lineages. After sequencing, the 16S sequences are clustered

into sequence clusters called Operational Taxonomic Units (OTUs) using software pipelines such

as Qiime (Caporaso et al., 2010). The representative sequences of each OTU are then compared

to the existing 16S databases such as Greengenes (DeSantis et al., 2006), RDP (Cole et al., 2007)

and EzTaxon-e (Kim et al., 2012) to obtain taxonomic assignments. The ubiquitous presence of

16S rRNA enables lineage assignments at the levels of kingdom, phylum, class, order, family and

genus simultaneously.

Another approach is based on shotgun metagenomic sequencing, which sequences all the micro-

bial genomes presented in the sample, rather than just one marker gene. This approach enables

evaluation of both gene abundance and microbial abundance, and can be used to study other
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microorganisms such as viruses. The accuracy of this approach in quantifying gene/microbe abun-

dance is highly dependent on the DNA preparation protocols, which demands special cautions for

comparative metagenomic studies (Morgan, Darling, and Eisen, 2010). The massive amount of

short reads produced also requires efficient computational tools to perform read mapping and as-

sembly, which imposes more challenges in the applications of this approach. Several databases

and software tools have been developed to analyze the shotgun metagenomic data (Huson et al.,

2007; Meyer et al., 2008; Segata et al., 2012; Seshadri et al., 2007).

1.3. Data structure

1.3.1. Tree-structured count data on taxonomic tree

The taxonomic tree is a tree-structured diagram that illustrates the taxonomic classifications of bi-

ological organisms, with each tree node representing a taxon from the taxonomic rank of kingdom

to species. For 16S rRNA sequencing, since the same marker gene is used in taxonomic assign-

ments at all ranks, each read compared to the reference database can be subsequently aligned to

a node of the taxonomic tree depending on its taxonomic assignment. The resulting data is a set

of tree-structured count data with each count number representing the number of reads aligned to

the corresponding node on the taxonomic tree.

This data format has several features: (1). The total number of reads varies greatly from sample to

sample. This can be attributed to the difference in sequencing depth and the amount of DNA yield-

ing materials. (2). The number of reads at each internal node is larger or equal to the sum of read

numbers at all its child nodes. This comes from the fact that if a read is assigned a certain taxon,

then all the higher ranked taxa along this lineage can also be assigned to this read. (3). There may

be a lot of zero counts, which can be caused by the rarity or absence of the corresponding bacteria.

The analysis of tree-structured count data is difficult due to high dimensionality, non-normality and

the tree structure underlying the data. Many of the current methods applied to this type of data have

been distance-based (Turnbaugh et al., 2006; Wu et al., 2011; Yatsunenko et al., 2012), where a

distance measure is defined and computed between each pair of the microbiome samples. One

commonly used distance measure is the UniFrac distance (Lozupone and Knight, 2005), upon

which many other distance measures are defined, such as the generalized Unifrac distance (Chen
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et al., 2012) and the phylogenetic Kantorovich–Rubinstein metric (Evans and Matsen, 2012). The

statistical methods based on these distance measures, such as Permutational multivariate analysis

of variance (PERMANOVA) (Anderson, 2001) and Principal Coordinate Anlaysis (PCoA) (Gower,

1966; Torgerson, 1958) are widely applied, their results are very dependent on the specific choice

of distance measure (Chen et al., 2012).

1.3.2. High-dimensional compositional data

Due to the varying number of reads across samples, the read counts from 16S rRNA sequencing

and shotgun metagenomic sequencing are often normalized into vectors of proportions at a given

taxonomic level. The resulting data are also referred to as compositional data (Aitchison, 1982).

The unique feature that the components of a composition must sum to one renders many stan-

dard multivariate statistical methods inappropriate or inapplicable. Methodological developments

for compositional data analysis have resulted in a fruitful line of research, as thoroughly surveyed

by Aitchison (2003). While the dimensionality of compositional data from culture based microbial

analysis is often very small due to the limited number of cultivable bacteria, high-throughput se-

quencing technologies make it possible to identify hundreds of genera and species of bacteria

within one microbiome sample set. These large compositional data sets, whose dimensionality is

comparable to or much larger than the sample size, pose new challenges to existing methodol-

ogy. However, little formal attempt has been made to develop principled analysis tools for such

high-dimensional compositional data.

1.4. Organization of this thesis

My thesis focuses on the analysis of both high-dimensional compositional data and tree-structured

count data on taxonomic tree. In Chapter 21, we aim to address the variable selection problem in

regression analysis with high-dimensional compositional covariates. We propose an `1 regulariza-

tion method for the estimation and variable selection in high-dimensional linear log-contrast model

that considers the unique features of the compositional data. We formulate the proposed proce-

dure as a constrained convex optimization problem and introduce a coordinate descent method

of multipliers for efficient computation. In the high-dimensional setting where the dimensionality

grows at most exponentially with the sample size, model selection consistency and `∞ bounds for
1This part of the thesis is based on the published paper Lin et al. (2014).
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the resulting estimator are established under conditions that are mild and interpretable for compo-

sitional data. The numerical performance of our method is then evaluated by simulation studies

and its usefulness is illustrated by an application to a microbiome study relating body mass index

to human gut microbiome composition.

In Chapter 32, we consider the inference problem of high-dimensional regression analysis with

compositional data, where the goal is to identify the bacterial taxa that are associated with a con-

tinuous response such as the body mass index (BMI). In order to satisfy the subcompositional

coherence of the results, we propose to use linear models with a set of linear constraints on the

regression coefficients. Such models allow regression analysis for subcompositions and include

the log-contrast model for compositional covariates as a special case. An `1 penalized estimation

procedure for estimating the regression coefficients and for selecting variables under the linear con-

straints is developed. To provide valid confidence intervals of the regression coefficients and obtain

the corresponding p-values, a method is proposed to obtain de-biased estimates of the regression

coefficients that are asymptotically unbiased and have a joint asymptotic multivariate normal distri-

bution. Simulation results show the validity of the confidence intervals and smaller variances of the

de-biased estimates when the linear constraints are imposed. The proposed methods are applied

to the same gut microbiome dataset as Chapter 2 and results are compared.

In Chapter 43, we consider the problem of testing difference between repeatedly measured micro-

biome data quantified as counts on taxonomic tree. Such repeated data often occur when multiple

samples are taken from the same subject to assess the difference in microbial composition across

body sites or time points. To model the covariance structure of the count data with flexibility, we

propose a general class of probability distributions for paired multinomial count data, which allows

us to model repeatedly measured multivariate counts. Based on this new distribution, we develop a

test statistic to evaluate the difference in the mean parameters of paired multivariate count data. We

then provide a procedure that applies the proposed test to count data observed on an taxonomic

tree in order to assess difference in microbiome compositions and to identify subtrees with different

sub-compositions. Our simulation results indicate that proposed test has correct type 1 errors and

increased power compared to some commonly used methods. The proposed methods are illus-

trated by an analysis of the human pharynx microbiome data, where nasopharynx microbiome is
2This part of the thesis is based on the published paper Shi, Zhang, and Li (2016).
3This part of the thesis is based on the peer reviewed manuscript Shi and Li (2016)
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compared with oropharynx microbiome, and smokers microbiome is compared with non-smokers.

Some related future topics are discussed in Chapter 5.
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CHAPTER 2

VARIABLE SELECTION IN REGRESSION WITH COMPOSITIONAL COVARIATES

2.1. Introduction

Compositional data, which consist of the proportions or percentages of a composition, appear

frequently in a wide range of applications; examples include geochemical compositions of rocks

in geology, household patterns of expenditures in economics, species compositions of biological

communities in ecology, and topic compositions of documents in machine learning. The unique

feature that the components of a composition must sum to one renders many standard multivari-

ate statistical methods inappropriate or inapplicable. Since the seminal work of Aitchison (1982),

methodological developments for compositional data analysis have resulted in a fruitful line of re-

search, as thoroughly surveyed by Aitchison (2003). The recently increasing availability of large

compositional data sets, whose dimensionality is comparable to or much larger than the sample

size, poses new challenges to existing methodology. However, little formal attempt has been made

to develop principled analysis tools for such data. A typical example arises in metagenomic studies

of microbial communities based on 16S rRNA gene sequencing, where the relative abundances of

hundreds to thousands of bacterial taxa on a few tens to hundreds of individuals are available for

analysis; see, for example, Chen and Li (2013).

The aim of this chapter is to address the variable selection problem in high-dimensional regres-

sion with compositional covariates. To mitigate the difficulty with high dimensionality, it is crucial to

select parsimonious models that tend to improve the performance of statistical procedures and in-

terpretability of the resulting inferences. Regularization methods for simultaneous variable selection

and estimation in linear regression and more general contexts have received intense recent inter-

est. In particular, the `1 regularization or lasso approach (Tibshirani, 1996) has enjoyed widespread

popularity, and its theoretical properties in high-dimensional regression are now well understood;

see, for example, Bühlmann and Van De Geer (2011) for an overview. Owing to the special nature

of compositional data, however, the usual linear regression model is inappropriate for our purpos-

es. In this chapter we consider the linear log-contrast model of Aitchison and Bacon-shone (1984),

which is particularly useful for regression analysis with compositional covariates. Under this model
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the expected response does not depend on the basis counts from which a composition is obtained.

This is the case in our microbiome data example, where the number of sequencing reads varies

drastically across samples and should not play a role in predicting the response of interest.

We propose an `1 regularization methodology for variable selection and estimation in high-dimensional

linear log-contrast models. We formulate the proposed procedure as a constrained convex opti-

mization problem, develop efficient algorithms for computation, and provide strong theoretical guar-

antees. Since the constraint in the problem couples the parameters, coordinate descent methods

for solving `1-regularized least squares problems (Friedman et al., 2007) are not directly applicable.

We therefore combine coordinate descent with the method of multipliers to introduce an efficient

algorithm for solving the optimization problem. To establish model selection consistency and `∞

bounds for the resulting estimator, we impose conditions analogous to the irrepresentability condi-

tion for linear regression in Zhao and Yu (2006). Our conditions, however, differ from those for linear

regression models in important ways, which account for the compositional effect and adapt well to

the dependence structure of compositional data.

2.2. Variable selection in the linear log-contrast model

Log-contrast models were originally introduced by Aitchison and Bacon-shone (1984) for modeling

experiments with mixtures, and have proved to be useful for a wide variety of regression problems

with a composition playing the role of covariate. Suppose that we observe an n-vector y of respons-

es and an n× p matrix X = (xi j) of covariates, with each row of X lying in the (p− 1)-dimensional

positive simplex Sp−1 = {(x1, . . . ,xp) : x j > 0, j = 1, . . . , p,∑p
j=1 x j = 1}. Because of the unit-sum con-

straint, the p components of a composition cannot vary freely, traditional methodology often requires

the omission of certain components to ensure identifiability and encounters intrinsic difficulties in

providing sensible interpretations for the regression parameters. To resolve the difficulties with the

compositional constraint, Aitchison and Bacon-shone (1984) proposed to apply the log-ratio trans-

formation (Aitchison, 1982) to compositional covariates, resulting in the linear log-contrast model

y = Zp
β
∗
\p + ε, (2.1)

where Zp = {log(xi j/xip)} is the n× (p− 1) log-ratio matrix, whose pth component is the reference

component, β ∗\p = (β ∗1 , . . . ,β
∗
p−1)

> is the corresponding (p−1)-vector of regression coefficients, and

8



ε is an n-vector of independent noise distributed as N(0,σ2). By introducing a new coefficient

β ∗p =−∑
p−1
j=1 β ∗j , model (2.1) can be more conveniently expressed in the symmetric form

y = Zβ
∗+ ε,

p

∑
j=1

β
∗
j = 0, (2.2)

where Z = (z1, . . . ,zp) = (logxi j) is the n× p design matrix and β ∗ = (β ∗1 , . . . ,β
∗
p )
> is the p-vector of

regression coefficients. We do not include an intercept in the model, since it can be eliminated

by centering the response and predictor variables. We are concerned with the high-dimensional

sparse setting, where the dimensionality p is comparable to or much larger than the sample size n,

while only a small portion of the regression coefficients are nonzero.

Applying the `1 regularization approach to model (2.2), we consider the constrained convex opti-

mization problem

β̂ = argmin
β

(
1

2n
‖y−Zβ‖2

2 +λ‖β‖1

)
subject to

p

∑
j=1

β j = 0, (2.3)

where β = (β1, . . . ,βp)
>, λ > 0 is a regularization parameter, and ‖·‖2 and ‖·‖1 denote the `2 and `1

norms, respectively. The zero-sum constraint in problem (2.3) is crucial for the resulting estimator to

enjoy interpretive advantages over a standard lasso estimator. Specifically, the proposed estimator

possesses the following desirable properties:

(i) Scale invariance: the estimator is unchanged under the transformation X 7→ T X for an arbitrary

diagonal matrix T = diag(t1, . . . , tn) with all ti > 0;

(ii) Permutation invariance: the estimator is invariant under any permutation π of the p compo-

nents, meaning that it is unchanged if π is applied to both the columns of X and the compo-

nents of β̂ ;

(iii) Selection invariance: the estimator is unchanged if one knew in advance which components

would be estimated as zero and applied the procedure to the subcomposition formed by the

remaining components.

Properties (i) and (iii) are due to the zero-sum constraint; they ensure that the inferences are in-

dependent of an arbitrary scaling of the basis from which a composition is obtained, and remain
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unaffected by correctly excluding some or all of the zero components. Property (ii) is immediately

seen from the symmetric formulation of problem (2.3), but would not be guaranteed by first trans-

forming the p components into a (p− 1)-dimensional feature space and then applying a standard

variable selection procedure.

By eliminating the constraint with βp =−∑
p−1
j=1 β j, we can rewrite problem (2.3) as the unconstrained

problem

β̂\p = argmin
β\p

(
1

2n
‖y−Zp

β\p‖2
2 +λ‖Dβ\p‖1

)
,

where β\p = (β1, . . . ,βp−1)
>, D = (Ip−1,−1p)

> ∈ Rp×(p−1), and Ir and 1r denote the r× r identity

matrix and the r-vector of 1s, respectively. This asymmetric form can be recognized as an instance

of the generalized lasso problem considered by Tibshirani et al. (2011), but existing developments

do not specialize in our case to give an appropriate algorithm or theory for several reasons. First,

eliminating one arbitrary component and applying a generic algorithm to the (p− 1)-dimensional

problem generally does not yield numerical solutions that are permutation invariant. Second, a

coordinate descent algorithm that is fast and applicable to a prespecified set of λ values is not

yet available. Third, theory for the generalized lasso problem does not provide useful insights into

the compositional constraint and its effect on variable selection. All these limitations call for the

development of computational methods and theoretical results that are relevant to the analysis of

compositional data.

2.3. Computation

2.3.1. Optimization algorithm

Coordinate descent algorithms have been shown to be very efficient for solving large-scale `1 reg-

ularization problems (Friedman et al., 2007). They are not directly applicable to problem (2.3),

however, because the nondifferentiable `1 terms are inseparable under the zero-sum constraint.

Here we propose an efficient, easily implemented algorithm based on an iterative modification of

coordinate descent by combining it with the method of multipliers or the augmented Lagrangian

method (Bertsekas, 2014) to deal with the constraint.
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To derive the algorithm, we first form the augmented Lagrangian for problem (2.3) as

Lµ(β ,γ) =
1

2n
‖y−Zβ‖2

2 +λ‖β‖1 + γ

p

∑
j=1

β j +
µ

2

( p

∑
j=1

β j

)2

,

where γ is the Lagrange multiplier and µ > 0 is a penalty parameter. The method of multipliers for

problem (2.3) consists of the iterations

β
k+1← argmin

β

Lµ(β ,γ
k), γ

k+1← γ
k +µ

p

∑
j=1

β
k+1
j .

Define by α = γ/µ the scaled Lagrange multiplier. The above iterations can be more conveniently

expressed as

β
k+1← argmin

β

{
1

2n
‖y−Zβ‖2

2 +λ‖β‖1 +
µ

2

( p

∑
j=1

β j +α
k
)2}

, (2.4)

α
k+1← α

k +
p

∑
j=1

β
k+1
j . (2.5)

Now the `1 terms in (2.4) are separable and the subproblem can be solved by coordinate descent.

With the other components held fixed, the jth component of β is updated by

β
k+1
j ← 1

v j +µ
Sλ

{
1
n

z>j

(
y−∑

i6= j
β

k+1
i zi

)
−µ

(
∑
i 6= j

β
k+1
i +α

k
)}

, (2.6)

where v j = ‖z j‖2
2/n and Sλ (t) = sgn(t)(|t|−λ )+ is the soft thresholding operator. Combining (2.4)–

(2.6) yields the following coordinate descent method of multipliers for solving problem (2.3).

Input: y, Z, and λ .
Output: β̂

1: Initialize β 0 with 0 or a warm start, α0 = 0, µ > 0, and k = 0.
2: For j = 1, . . . , p,1, . . . , p, . . . , update β

k+1
j by (2.6) until convergence.

3: Update αk+1 by (2.5).
4: k← k+1 and repeat Steps 2 and 3 until convergence. Output β̂ = β k+1.

Algorithm 1: Coordinate descent method of multipliers.

Minimization of subproblem (2.4), which is carried out in Step 2 of Algorithm 1, need not be exact; it

suffices to adopt a stopping criterion such that the minimization is asymptotically exact. This results

in a more efficient algorithm for which convergence is still ensured. We have the following result

11



regarding the convergence of Algorithm 1 with inexact minimization.

Proposition 1. Assume that Step 2 of Algorithm 1 finds at iteration k an approximate minimizer

β k+1 such that Lµ(β
k+1,γk)≤minβ Lµ(β ,γ

k)+δk for all k, where δk ≥ 0 and ∑
∞
k=0
√

δk < ∞. Then the

sequence {β k} generated by Algorithm 1 is bounded. Moreover, every cluster point of {β k} is an

optimal solution of problem (2.3).

2.3.2. Tuning parameter selection

The regularization parameter λ can be selected by the generalized information criterion for high-

dimensional penalized likelihood proposed by Fan and Tang (2013). They showed that the criterion

with a uniform choice of the model complexity penalty identifies the true model with probability

tending to 1 when the dimensionality p grows at most exponentially with the sample size n. For

model (2.2) and our regularization method, we define

GIC(λ ) = log σ̂
2
λ
+(sλ −1)

log logn
n

log(p∨n),

where σ̂2
λ
= ‖y−Zβ̂λ‖2

2/n, β̂λ is the regularized estimator, p∨n=max(p,n), and sλ is the number of

nonzero coefficients in β̂λ . Because of the zero-sum constraint, the effective number of free param-

eters is sλ −1 for sλ ≥ 2. We then select the optimal λ by minimizing GIC(λ ). Alternatively, one can

apply K-fold crossvalidation with K = 5 or 10 to choose λ , which tends to select a larger model and

trades off between model selection consistency and prediction accuracy. Although crossvalidation

is computationally more expensive, it is less parsimonious and can often yield a more satisfactory

performance in practice.

The penalty parameter µ that is needed to enforce the zero-sum constraint does not affect the

convergence of Algorithm 1 as long as µ > 0, and we take µ = 1 in all computations.

2.4. Theoretical properties

We establish model selection consistency and `∞ bounds for the proposed estimator under deter-

ministic designs. We first introduce some notation. Let Zr denote the log-ratio matrix with the rth

component taken as the reference component, and Cr = n−1(Zr)>Zr the corresponding sample log-

ratio covariance matrix. Let S = { j : β ∗j 6= 0} denote the support of β ∗, and s = |S| the cardinality

of S. For any subset J ⊂ {1, . . . , p} and j ∈ J, denote by Jc the complement of J, and J\ j = J \ { j}.

12



We will use subsets to index a vector or matrix; for example, Cr
ScS\r

is the submatrix formed by the

(i, j)th entries of Cr with i∈ Sc and j ∈ S\r. Define by βmin = min j∈S |β ∗j | the minimum signal. Let ‖·‖∞

denote the `∞ or matrix ∞-norm, i.e., ‖A‖∞ = maxi ∑ j |ai j| for a matrix A = (ai j).

We assume without loss of generality that p ∈ S. Central to guaranteed support recovery through

our `1 regularization method is the following condition.

Condition 1. There exists some ξ ∈ (0,1] such that

‖Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β ∗S\p
)− sgn(β ∗p )1s−1}+ sgn(β ∗p )1p−s‖∞ ≤ 1−ξ . (2.7)

Also, our assumption for the minimum signal threshold involves the quantity ϕ defined by

ϕ = ‖DSS\p(C
p
S\pS\p

)−1(DSS\p)
>‖∞. (2.8)

Although the definitions of ξ and ϕ seem to depend on the choice of the reference component, we

show that this is not the case. Let Dr denote the matrix formed by interchanging the rth and pth

rows of D. The following proposition states the permutation invariance of ξ and ϕ.

Proposition 2. For every r ∈ S\p, we have

Cr
ScS\r(C

r
S\rS\r)

−1{sgn(β ∗S\r)− sgn(β ∗r )1s−1}+ sgn(β ∗r )1p−s

=Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β ∗S\p
)− sgn(β ∗p )1s−1}+ sgn(β ∗p )1p−s,

(2.9)

and

Dr
SS\r(C

r
S\rS\r)

−1(Dr
SS\p

)> = DSS\p(C
p
S\pS\p

)−1(DSS\p)
>. (2.10)

Condition 1 is in the spirit of the irrepresentability condition for linear regression in Zhao and Yu

(2006), though important differences exist. It is worthwhile to compare Condition 1 with its counter-

parts for two usual lasso estimators:

(i) the condition

‖Cp
ScS\p

(Cp
S\pS\p

)−1 sgn(β ∗S\p
)‖∞ ≤ 1−ξ (2.11)
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for the lasso problem

β̂
(i)
\p = argmin

β\p

(
1

2n
‖y−Zp

β\p‖2
2 +λ‖β\p‖1

)
, (2.12)

which is a direct application of lasso to model (2.1);

(ii) the condition

‖CScS(CSS)
−1 sgn(β ∗S )‖∞ ≤ 1−ξ , (2.13)

where C = n−1Z>Z, for the lasso problem

β̂
(ii) = argmin

β

(
1
2n
‖y−Zβ‖2

2 +λ‖β‖1

)
, (2.14)

which simply ignores the zero-sum constraint in problem (2.3).

Expression (2.11) lacks the permutation invariance of Condition 1, reflecting the fact that the pth

component is not regularized in problem (2.12) and hence no recovery guarantees can be provided.

Condition (2.13) is ideally suited to nearly orthogonal designs, but would be problematic for designs

with generally negative correlations such as those common in compositional data analysis. In

contrast, the extra term sgn(β ∗p )1p−s in Condition 1 allows it to adapt well to the negative correlations

resulting from the compositional constraint.

To develop further intuition for Condition 1, we consider the illustrative example where the covariate

matrix X is generated from an orthogonal design W = (wi j) with W>W = nI by the transformation

xi j = ewi j/∑
p
k=1 ewik . This represents an extreme case where the dependence among the com-

ponents is purely due to the unit-sum constraint. In this example, we have Cp = n−1(Zp)>Zp =

n−1D>W>WD = D>D = Ip−1 +1p−11>p−1, and then

Cp
ScS\p

= 1p−s1>s−1, (Cp
S\pS\p

)−1 = (Is−1 +1s−11>s−1)
−1 = Is−1− s−11s−11>s−1.

Some straightforward calculation yields that the left-hand side of (2.7) equals

s−1|1>s sgn(β ∗S )| ≤ (s−2)/s < 1,

where the first inequality is due to the constraint 1>s β ∗S = 0. This implies that Condition 1 holds, and
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ξ can be taken close to 1 provided that the signals are nearly evenly divided between positive and

negative signs.

We are now ready to state our main result regarding the model selection consistency of the pro-

posed estimator. We assume without loss of generality that the columns of Z are normalized such

that max j ‖z j‖2 ≤
√

n.

Theorem 1. Assume that Condition 1 holds, the regularization parameter λ satisfies λ ≥ c1σ{(log p)/n}1/2/ξ

for some constant c1 > 2
√

2, and the minimum signal satisfies βmin > 3ϕλ/2. Then, with probability

at least 1− p−c2 for some constant c2 > 0, problem (2.3) has an optimal solution β̂ that satisfies the

following properties:

(i) sign consistency: sgn(β̂ ) = sgn(β ∗);

(ii) `∞ loss: ‖β̂S−β ∗S ‖∞ ≤ 3ϕλ/2.

To understand the asymptotic implications of Theorem 1, assume for simplicity that ξ and ϕ are

constants. Then Theorem 1 implies that the proposed estimator is model selection consistent and

uniformly estimation consistent as long as log p = o(n). Taking the smallest possible λ , we have

the convergence rate ‖β̂S−βS‖∞ = OP[{(log p)/n}1/2]. These rates parallel those for the usual lasso

estimator (Wainwright, 2009), but are established here under a different form of the irrepresentability

condition, which explicitly takes the zero-sum constraint into account.

2.5. Numerical studies

2.5.1. Simulations

We conducted simulation studies to compare the numerical performance of the proposed method

with two usual lasso estimators defined in (2.12) and (2.14), which we refer to as lasso (i) and lasso

(ii), respectively. In lasso (i), the reference component is taken at random from the p components,

and after β̂
(i)
\p is obtained, we let β̂

(i)
p =−1>β̂

(i)
\p . Note that both lasso (i) and the proposed estimator

satisfy the zero-sum constraint, whereas lasso (ii) does not.

We generated the covariate data in the following way. We first generated an n× p data matrix W =

(wi j) from a multivariate normal distribution Np(θ ,Σ), and then obtained the covariate matrix X =

(xi j) by the transformation xi j = ewi j/∑
p
k=1 ewik . The covariates generated thus follow a logistic normal
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Table 2.1: Means and standard errors (in parentheses) of various performance measures for three
methods based on 100 simulations

(n, p) Method PE `1 loss `2 loss `∞ loss FP FN
ρ = 0.2

(50, 30) Lasso (i) 0.43 (0.01) 1.16 (0.03) 0.19 (0.01) 0.25 (0.01) 5.44 (0.29) 0.00 (0.00)
Lasso (ii) 0.42 (0.01) 1.10 (0.03) 0.19 (0.01) 0.25 (0.01) 4.15 (0.28) 0.00 (0.00)
Proposed 0.42 (0.01) 1.05 (0.03) 0.18 (0.01) 0.24 (0.01) 3.57 (0.23) 0.00 (0.00)

(100, 200) Lasso (i) 0.45 (0.01) 1.25 (0.03) 0.24 (0.01) 0.27 (0.01) 4.94 (0.28) 0.00 (0.00)
Lasso (ii) 0.42 (0.01) 1.12 (0.02) 0.21 (0.01) 0.26 (0.01) 2.96 (0.23) 0.00 (0.00)
Proposed 0.41 (0.01) 1.07 (0.02) 0.19 (0.01) 0.24 (0.01) 3.03 (0.24) 0.00 (0.00)

(100, 1000) Lasso (i) 0.82 (0.05) 2.01 (0.07) 0.69 (0.06) 0.42 (0.02) 5.18 (0.27) 0.28 (0.08)
Lasso (ii) 0.66 (0.03) 1.68 (0.05) 0.52 (0.03) 0.38 (0.01) 2.84 (0.21) 0.13 (0.04)
Proposed 0.61 (0.02) 1.57 (0.04) 0.43 (0.03) 0.34 (0.01) 3.10 (0.22) 0.04 (0.02)

ρ = 0·5
(50, 30) Lasso (i) 0.46 (0.01) 1.55 (0.05) 0.35 (0.03) 0.33 (0.01) 6.70 (0.32) 0.08 (0.04)

Lasso (ii) 0.43 (0.01) 1.40 (0.04) 0.30 (0.02) 0.31 (0.01) 5.00 (0.30) 0.02 (0.01)
Proposed 0.42 (0.01) 1.32 (0.04) 0.28 (0.02) 0.30 (0.01) 4.81 (0.27) 0.02 (0.01)

(100, 200) Lasso (i) 0.62 (0.03) 2.11 (0.07) 0.75 (0.06) 0.48 (0.02) 7.16 (0.39) 0.33 (0.08)
Lasso (ii) 0.47 (0.01) 1.60 (0.04) 0.45 (0.03) 0.37 (0.01) 4.61 (0.27) 0.09 (0.05)
Proposed 0.45 (0.01) 1.54 (0.03) 0.40 (0.02) 0.36 (0.01) 4.60 (0.29) 0.01 (0.01)

(100, 1000) Lasso (i) 1.51 (0.08) 3.70 (0.08) 2.32 (0.11) 0.81 (0.02) 3.39 (0.23) 2.55 (0.12)
Lasso (ii) 0.94 (0.05) 2.72 (0.08) 1.40 (0.08) 0.62 (0.02) 2.44 (0.20) 1.29 (0.13)
Proposed 0.91 (0.07) 2.59 (0.08) 1.25 (0.09) 0.59 (0.02) 3.73 (0.29) 0.99 (0.13)

PE, prediction error; FP, number of false positives; FN, number of false negatives.

distribution (Atchison and Shen, 1980). To reflect the fact that the components of a composition in

metagenomic data often differ by orders of magnitude, we let θ = (θ j) with θ j = log(0·5p) for j =

1, . . . ,5 and θ j = 0 otherwise. To describe different levels of correlations among the components, we

let Σ = (ρ |i− j|) with ρ = 0·2 or 0·5. We generated the responses according to model (2.2) with β ∗ =

(1,−0·8,0·6,0,0,−1·5,−0·5,1·2,0, . . . ,0)> and σ = 0·5, so that three of the six nonzero coefficients

were among the five major components and the rest among the minor components.

We set (n, p) = (50,30), (100,200), and (100,1000), and repeated 100 simulations for each setting.

The tuning parameter λ was selected by GIC as described in §2.3.2. We used six performance

measures for comparisons. The prediction error ‖y−Zβ̂‖2
2/n was computed from an independent

test sample of size n. The estimation accuracy was assessed by the `q losses ‖β̂−β ∗‖q with q= 1,2,

and ∞. Two variable selection measures were the number of false positives and the number of false

negatives, where positives and negatives refer to nonzero and zero coefficients, respectively. The

means and standard errors of these performance measures for three methods are reported in Table

2.1.
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As seen from Table 2.1, the lasso (i) estimator has inferior performance in almost all settings, since

the reference component is not regularized and is always included in the selected model. The

lasso (ii) estimator performs better than lasso (i), but always violates the zero-sum constraint in

finite samples. The proposed estimator performs slightly better than lasso (ii) in terms of prediction

and estimation. The variable selection performance of the proposed estimator is comparable to

lasso (ii) with low to moderate dimensionality, but it tends to select fewer false negatives at the

cost of slightly increased false positives in high dimensions. This is reasonable because missing

important variables is more influential than including unimportant variables with shrunk coefficients.

A potential remedy for the violation of the zero-sum constraint in the lasso (ii) estimator would be

to refit the unpenalized linear log-contrast model with the constraint using the selected variables,

which is also useful for reducing the bias caused by the `1 penalty. In the Supplementary Material,

we compare the performance of the two-step procedures formed by adding a refitting step to lasso

(ii) or the proposed method, confirming the advantages of our method in the more challenging

settings.

2.5.2. Application to gut microbiome data

Gut microbiome composition is considered an important factor that affects energy extraction from

the diet and contributes to human health and diseases such as obesity. We illustrate the proposed

method by an application to the data set reported in Wu et al. (2011), where a cross-sectional study

of 98 healthy volunteers was carried out at the University of Pennsylvania for investigating long-

term dietary effect on gut microbiome composition. Stool samples were collected on these subjects

and DNA samples were analyzed by 454/Roche pyrosequencing of 16S rRNA gene segments of

the V1–V2 region. The pyrosequences were denoised to yield an average of 9265, with standard

deviation 3864, reads per sample. After taxonomic assignment of the denoised sequences, 3068

operational taxonomic units were combined into 87 genera that appeared in at least one sample.

Since the number of sequencing reads varies greatly across samples, these count data should not

be used directly in a standard regression analysis, and we transformed them into compositional

data after replacing zero counts by the maximum rounding error 0·5 (Aitchison, 2003 §11·5). De-

mographic information including body mass index (BMI) was also collected on these subjects. We

are interested in identifying a subset of important genera whose subcomposition is associated with

BMI.
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We applied the proposed method to this data set with BMI as the response, and used a refitted

version of tenfold crossvailidation to choose the tuning parameter, where the prediction error for

each sample split was computed with the refitted coefficients obtained after model selection and

without penalization. To obtain stable selection results, we generated 100 bootstrap samples and

applied the same crossvalidation procedure to select the genera. The selection probabilities of

87 genera with bootstrapped crossvalidation are shown in Fig. 2.1(a). Four genera were selected

over 70 times out of the 100 bootstrap replicates. We also followed the approach of stability se-

lection (Meinshausen and Bühlmann, 2010) to assess the stability of the selected genera, where

100 subsamples of size n/2 were taken to compute the selection probabilities. All four genera

had a selection probability greater than 0·85, indicating that the selection results are quite stable.

These four genera along with their selection probabilities and refitted coefficients are presented in

Table 2.2. A plot of the fitted versus observed values of BMI in Fig. 2.1(b) shows that the model with

four selected genera fits the data reasonably well except for five obese subjects.
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Figure 2.1: Analysis of gut microbiome data. (a) Selection probabilities with bootstrapped cross-
validation for 87 genera that belong to eight phyla. Selections with a positive sign and a negative
sign are shown by dark grey blocks and light grey blocks, respectively; only four major phyla are
indicated. (b) Fitted versus observed values of BMI.

Since our simulations have demonstrated that the lasso (i) estimator is inferior in all respects, we

compare our method only with the lasso (ii) estimator. With selection probabilities above the cutoff

value of 0·7, three genera were selected by lasso (ii) with bootstrapped crossvalidation, which co-

incide with three of the four previously selected genera except alistipes. To compare the prediction
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Table 2.2: Selection probabilities and refitted coefficients of four selected genera in the gut micro-
biome data

Selection probability Refitted
Phylum Genus Boot. CV Stab. Sel. coefficient
Bacteroidetes Alistipes 0.72 0.89 -0.76
Firmicutes Clostridium 0.90 0.96 -1.35
Firmicutes Acidaminococcus 0.80 0.92 -0.61
Firmicutes Allisonella 0.92 0.87 -1.50

Boot. CV, bootstrapped crossvalidation; Stab. Sel., stability selection.

performance of the two methods, we randomly divided the data into a training set of 70 subjects

and a test set of 28 subjects, and used the fitted model chosen by crossvalidation based on the

training set to evaluate the prediction error on the test set. The prediction error averaged over 100

replicates was 30·30 for the proposed method and 30·55 for lasso (ii), with standard errors 0·97 and

1·04, respectively, suggesting that the prediction performance of the proposed method is slightly

better than or similar to that of lasso (ii).

It is interesting to contrast the variable selection results at the phylum level: the proposed method

selected both bacteroidetes and firmicutes as associated with BMI, whereas lasso (ii) selected only

the firmicutes. Thus, our method seems more consistent with the previous finding that the relative

proportion of bacteroidetes to firmicutes is decreased in obese mice and humans by comparison

with lean subjects (Ley et al., 2005, 2006). One biological explanation for the finding as suggest-

ed by metagenomic and biochemical analyses is that the firmicutes-enriched microbiome holds

a greater metabolic potential than the bacteroidetes-enriched microbiome for more efficient ener-

gy harvest from the diet, which in turn contributes to changes in energy balance and subsequent

weight gain (Turnbaugh et al., 2006). Furthermore, our selection results at the genus level indicate

that obesity may be associated with changes in gut microbiome composition at a finer taxonomic

level than previously thought.

2.6. Discussion

The linear log-contrast model assumes that the absolute amounts of the covariate components

have no effect on the response. We have adopted this modeling approach in the microbiome data

analysis because the total amount of the microbiome cannot be reliably measured in experiments.

Nevertheless, if such measurements are available, it would be worthwhile to assume a more flexible
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model in which the total amount also plays a role in affecting the response. To this end, one may

consider the semiparametric varying-coefficient log-contrast model

yi = β0(ai)+
p

∑
j=1

β j(ai) logxi j + εi,
p

∑
j=1

β j(ai) = 0,

with ai being the total amounts. This reduces to model (2.2) when all the coefficients β0, . . . ,βp are

constants. A regularized estimation procedure for this model could be developed by combining the

ideas of our approach and the kernel lasso method in Wang and Xia (2012).

Another possible extension of our method for microbiome data analysis would be to take into ac-

count the phylogenetic relationships among the bacterial taxa. Under the biologically plausible

assumption that phylogenetically close taxa tend to have similar effects on the clinical trait, one can

combine the `1 penalty in our regularization problem with a Laplacian penalty that encourages s-

moothness among the regression coefficients of closely related taxa on the phylogenetic tree (Chen

et al., 2013). Such an extension is likely to increase the power of identifying important taxa that are

relatively rare but phylogenetically close.
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CHAPTER 3

REGRESSION ANALYSIS FOR MICROBIOME COMPOSITIONAL DATA

3.1. Introduction

The human microbiome includes all microorganisms in and on the human body. These microbes

play important roles in human metabolism, nutrient intake and energy generation and thus are es-

sential in human health. The gut microbiome has been shown to be associated with many human

diseases such as obesity, diabetes and inflammatory bowel disease (Manichanh et al., 2012; Qin

et al., 2012; Turnbaugh et al., 2006). Next generation sequencing technologies make it possible

to study the microbial compositions without the need for culturing the bacterial species. There

are, in general, two approaches to quantify the relative abundances of bacteria in a community.

One approach is based on sequencing the 16S ribosomal RNA (rRNA) gene, which is ubiquitous

in all bacterial genomes. The resulting sequencing reads provide information about the bacterial

taxonomic composition. Another approach is based on shotgun metagenomic sequencing, which

sequences all the microbial genomes presented in the sample, rather than just one marker gene.

Both 16S rRNA and shotgun sequencing approaches provide bacterial taxonomic composition in-

formation and have been widely applied to human microbiome studies, including the Human Micro-

biome Project (HMP) (Turnbaugh et al., 2007) and the Metagenomics of the Human Intestinal Tract

(MetaHIT) project (Qin et al., 2010).

Several methods are available for quantifying the microbial relative abundances based on the se-

quencing data, which typically involve aligning the reads to some known database (Segata et al.,

2012). Since the DNA yielding materials are different across different samples, the resulting num-

bers of sequencing reads vary greatly from sample to sample. In order to make the microbial

abundance comparable across samples, the abundances in read counts are usually normalized to

the relative abundances of all bacteria observed. This results in high-dimensional compositional

data with a unit sum. Some of the most widely used metagenomic processing softwares such as

MEGAN (Huson et al., 2007) and MetaPhlAn (Segata et al., 2012) only output the relative abun-

dances of the bacterial taxa at different taxonomic levels.

This chapter considers regression analysis of microbiome compositional data, where the goal is to
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identify the bacterial taxa that are associated with a continuous response such as the body mass

index (BMI). Compositional data are strictly positive and multivariate that are constrained to have a

unit sum. Such data are also referred to as mixture data (Aitchison and Bacon-shone, 1984; Cornell,

2011; Snee, 1973). Regression analysis with compositional covariates needs to account for the

intrinsic multivariate nature and the inherent interrelated structure of such data. For compositional

data, it is impossible to alter one proportion without altering at least one of the other proportions.

Linear log-contrast model (Aitchison and Bacon-shone, 1984) has been proposed for compositional

data regression where logarithmic-transformed proportions are treated as covariates in a linear

regression model with the constraint of the sum of the regression coefficients being zero. Lin et al.

(2014) proposed a variable selection procedure for such models in high-dimensional settings and

derived the weak oracle property of the resulting estimates. In analysis of microbiome data, it is also

of biological interest to study the subcompositions of bacteria taxa within higher taxonomic levels,

such as subcompositions of species under a given genus or phylum, or subcompositions of genera

within a phylum. In subcompositional data, the proportions of species have been calculated relative

to total proportions of the species under a given genus; that is, the values in the subcomposition

have been re-closed to add up to 1. Regression analysis of such subcompositional data is also

considered in this chapter.

One of the founding principles of compositional data analysis is that of subcompositional coherence

(Aitchison, 1982): any compositional data analysis should be done in a way that we obtain the same

results in a subcomposition, regardless of whether we analyze only that subcomposition or a larger

composition containing other parts. This is especially relevant in high-dimensional regression anal-

ysis with compositional covariates, where the goal is to select the bacteria whose compositions are

associated with the response. Once such bacteria are identified, it is desirable to recalculate the

subcomposition only within those identified. However, these subcompositions have different values

from those calculated based on a larger set of bacterial taxa. The log-contrast model of Aitchison

and Bacon-shone (1984) and Lin et al. (2014) satisfies this principal by imposing a linear constraint

on the regression coefficients. This chapter extends this model for analysis of microbiome subcom-

positions, where multiple linear constraints are imposed in order to achieve the subcompositional

coherence.

Penalized and constrained regression, including constrained Lasso regression, has been studied
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by James, Paulson, and Rusmevichientong (2015), where the regression coefficients are subject

to a set of linear constraints. A computational algorithm through reformulating the problem as an

unconstrained optimization problem was proposed and non-asymptotic error bounds of the esti-

mates were derived. Different from James, Paulson, and Rusmevichientong (2015), this chapter

presents an efficient computational algorithm based on the coordinate descent method of multi-

pliers and augmented Lagrange of optimization problem. Since the resulting estimates are often

biased due to `1 penalty imposed on the coefficients, variance estimation and statistical inference

of the resulting estimates are difficult to derive. In order to make the statistical inference on the re-

gression coefficients and to obtain the confidence intervals, asymptoticly unbiased estimates of the

regression coefficients are first obtained through a de-biased procedure and their joint asymptotic

distribution is derived. The proposed de-biased procedure extends that of Javanmard and Monta-

nari (2014) to take into account the linear constraints on regression coefficients. However, due to

the linear constraints on the regression coefficients, the theoretical developments are different from

Javanmard and Montanari (2014).

Section 3.2 presents linear regression models with linear constraints for compositional covariates.

Section 3.3 presents an efficient coordinate descent method of multipliers to implement the pe-

nalized estimation of the regression coefficients under linear constraints. Section 3.4 provides an

algorithm to obtain de-biased estimates of the coefficients and derives their joint asymptotic distri-

bution. Section 3.5 presents results from an analysis of gut microbiome data set in order to identify

the bacterial genera that are associated with BMI. Methods are evaluated in Section 3.6 through

simulations.

3.2. Regression Models for Compositional Data

3.2.1. Linear log-contrast model

Linear log-contrast model (Aitchison and Bacon-shone, 1984) has been proposed for composi-

tional data regression. Specifically, suppose an n× p matrix X consists of n samples of the com-

position of mixture with p components, and suppose Y is a response variable depending on X.

The nature of composition makes each row of X lie in a (p− 1)-dimensional positive simplex

Sp−1 = {(x1, . . . ,xp) : x j > 0, j = 1, . . . , p and ∑
p
j=1 x j = 1}. Based on this nature, Aitchison and Bacon-
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shone (1984) introduced a linear log-contrast model as follows:

Y = Zp
β\p + ε, (3.1)

where Zp = {log(xi j/xip)} is n× (p− 1) log-ratio matrix with the pth component as the reference

component, β\p = (β1, . . . ,βp−1) is the regression coefficient vector, and noise ε is independently

distributed as N(0,σ2). An intercept term is not included in the model, since it can be eliminated by

centering the response and predictor variables.

The selection of reference component is crucial to analysis, especially in high-dimensional settings.

To avoid choosing an arbitrary reference component, Lin et al. (2014) reformulated model (3.1) as

a regression problem with a linear constraint on the coefficients by letting βp =−∑
p−1
j=1 β j,

Y = Zβ + ε, 1>p β = 0, (3.2)

where 1p = (1, . . . ,1)> ∈ Rp, Z = (z1, . . . ,zp) = (logxi j) ∈ Rn×p, and β = (β1, . . . ,βp)
>.

3.2.2. Subcompositional regression model

In analysis of microbiome data, the relative abundances of taxa are often obtained at different

taxonomic ranks, including species, genus, family, class and phylum. It is of interest to study

whether the composition of taxa that belong to a given taxon at a higher rank is associated with

the response, in which case subcompositions of taxa (e.g., all the genera that belong to a given

phylum) are calculated. Suppose r taxa at a given rank are considered with mg taxa at the lower

rank that belong to taxon g. Let Xgs be the relative abundance of the sth taxon that belong to the gth

taxon at a higher rank, for g = 1, · · · ,r, s = 1, · · · ,mg such that

mg

∑
s=1

Xgs = 1, for g = 1, · · · ,r.

Let n×mg matrix Xg represents n samples of the subcomposition of mg taxa. The following model

can be used to link the subcompositions to a response Y ,

Y =
r

∑
g=1

Zgβg + ε, (3.3)
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where Zg = (Zg1, . . . ,Zgmg) = (logXg1, . . . , logXgmg) ∈ Rn×mg , and βg = (βg1, · · · ,βgmg)
>. To make the

model subcompositional coherence, the following r linear constraints are imposed,

1>mgβg =
mg

∑
s=1

βgs = 0 for g = 1 · · · ,r.

This set of linear constraints can be written as C>β = 0, where β = (β>1 , · · · ,β>r )>, and

C> =



1 · · · 1 0 · · · 0 0 · · · 0

0 · · · 0 1 · · · 1 0 · · · 0
...

...
...

... · · ·
...

...
...

...

0 · · · 0 0 · · · 0 1 · · · 1


r×p

Models (3.2) and (3.3) belong to a more general high-dimensional linear model with r linear con-

straints on the coefficients,

Y = Zβ + ε, C>β = 0, (3.4)

where the rows of Z ∈ Rp are independently and identically distributed with mean zero, C is a p× r

matrix of the constraint coefficients, β = (β1, . . . ,βp)
>, and ε ∼ Nn(0,σ2I). Without loss of generality,

C = (c1, . . . ,cr) is assumed to be orthonormal. In high-dimensional settings, β is assumed to be

s-sparse, where s = #{i : βi 6= 0} and s = o(
√

n/ log p).

This chapter considers estimation and inference of Model (3.4) under the general linear constraints.

Lin et al. (2014) proposed a procedure for variable selection and estimation for Model (3.2) and de-

rived the weak oracle property of the resulting estimates. James, Paulson, and Rusmevichientong

(2015) considered a more general model and provided non-asymptotic bounds on estimation er-

rors. However, variances of the estimates and statistical inference are lacking. In this chapter,

an algorithm to perform variable selection for Model (3.4) based on `1 penalized estimation is first

proposed based on coordinate descent method of multipliers. An inference procedure for the penal-

ized estimator of the regression coefficients is then introduced. The proposed approach parallels

to that of Javanmard and Montanari (2014) by first obtaining de-biased estimates of the coefficients

for high-dimensional linear model with linear constraints, β̂ u, which are shown to be asymptotically

Gaussian, with mean β and covariance σ2(M̃Σ̂M̃)/n, where Σ̂ is the empirical covariance and M̃

25



is determined by solving a convex program. Based on this asymptotic result, the corresponding

confidence intervals and p-values are constructed and used for statistical inference.

3.3. Penalized Estimation

In this following presentation, for a matrix Am×n, ||A||p is the `p operator norm defined as ||A||p =

sup||x||p=1 ||Ax||p, where ||v||p is the standard `p norm of a vector v. In particular, ||A||∞ =max1≤i≤m ∑
n
j=1 |ai j|.

We also define |A|∞ = maxi, j |ai j|.

Consider model (3.4). Define PC = CC> as the projection onto the space spanned by the columns

of C. Two basic regularity conditions on C are assumed:

Condition 2. ||Ip−PC||∞ ≤ k0 for a constant k0 that is free of p.

Condition 3. The diagonal elements of Ip−PC are greater than zero.

Condition 1 is equivalent to that ||c j||1||c j||∞, j = 1, . . . ,r are all bounded by a constant that is free of

p. Condition 2 means that the group of constraints do not indicate simple constraint such as β j = 0.

If (Ip−PC) j, j = 0, then the jth row and column of Ip−PC are all zeros, and thus (Ip−PC)e j = 0,

which means that e j lies in the space spanned by the columns of C. It is easy to verify that the

constraint matrix C in the log-contrast model (3.2) or the subcompositional model (3.3) satisfies

both conditions. For example, in the log-contrast model (3.2), k0 = 2 for C = 1p/
√

p since

||(Ip−1p1>p /p)a||∞ = ||a− 1
p

p

∑
j=1

a j1||∞ ≤ ||a||∞ + | 1
p

p

∑
j=1

a j| ≤ 2||a||∞.

Define Z̃ = Z(Ip−PC). Since PCβ = 0, model (3.4) can be rewritten as

Y = Z̃β + ε, C>β = 0. (3.5)

The regression coefficients can be estimated using `1 penalized estimation with linear constraints,

β̂
n = argmin

β

(
1

2n
||Y − Z̃β ||22 +λ ||β ||1

)
subject to C>β = 0, (3.6)

where λ is a tuning parameter.

A coordinate descent method of multipliers can be used to implement the constrained optimization
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problem (3.6). First, the augmented Lagrange of optimization problem (3.6) (Bertsekas, 2014) is

formed as,

Lµ(β ,η) =
1
2n
||y− Z̃β ||22 +λ ||β ||1 +η

>C>β +
µ

2
||C>β ||22,

where η ∈ Rr is the Lagrange multiplier, and µ > 0 is a penalty parameter. Problem (3.6) can be

solved by iterations

β
k+1← argmin

β

Lµ(β ,η
k), η

k+1← η
k +µC>β

k+1.

Define ξ = η/µ, the iterations become

β
k+1← argmin

β

{
1

2n
||y− Z̃β ||22 +λ ||β ||1 +

µ

2
||C>β +ξ

k||22
}
, (3.7)

ξ
k+1← ξ

k +C>β
k+1. (3.8)

The iteration of β can be further detailed as

β
k+1
j ← 1

||z̃ j||22
n

+µ||C j||22

Sλ

[
1
n

z̃>j (y−∑
i6= j

β
k+1
i z̃i)−µ(∑

i 6= j
β

k+1
i C>i C j +C>j ξ

k)

]
, (3.9)

where Ci, i = 1, . . . , p are the rows of C, z̃i, i = 1, . . . , p are columns of Z̃, and Sλ (t) = sgn(t)(|t|−λ )+.

Combining (3.7)-(3.9) yields the following algorithm for solving problem (3.6).

Input: Y , Z̃, and λ .
Output: β̂ n

1: Initialize β 0 with 0 or a warm start, ξ 0 = 0, µ > 0 and k = 0.
2: For j = 1, . . . , p,1, . . . , p, . . . , update β

k+1
j by (3.9) until convergence.

3: Update ξ k+1 by (3.8).
4: k← k+1 and repeat the two steps above until convergence.

Algorithm 2: Coordinate descent method of multipliers for solving problem (3.6)

The penalty parameter µ that is needed to enforce the zero-sum constraints does not affect the

convergence of Algorithm 1 as long as µ > 0. It can however affect the convergence rate of the

algorithm. In this chapter, µ = 1 is taken in all the computations.
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3.4. A De-biased Estimator and Its Asymptotic Distribution

3.4.1. A De-biased estimator

The asymptotic distribution of `1 regularized estimator β̂ n is not manageable and β̂ n is biased due

to regularization. Javanmard and Montanari (2014) proposed a procedure to construct a de-biased

version of the unconstrained LASSO estimator that has a tractable asymptotic distribution, which

can be used to obtain the confidence intervals of the regression coefficients. Similar de-biased

procedures were also developed by Zhang and Zhang (2014) and Bühlmann et al. (2013).

Adapting the de-biased procedure of Javanmard and Montanari (2014), the following algorithm can

be used to obtain de-biased estimates of the regression coefficients, β̂ u.

Input: Y , Z, β̂ n, and γ.
Output: β̂ u

Let β̂ n be the regularized estimator from optimization problem (3.6).
Set Z̃ = Z(Ip−PC).
Set Σ̂≡ (Z̃>Z̃)/n.
for i = 1,2, . . . , p do:
Let mi be a solution of the convex program:

minimize m>Σ̂m

subject to ||Σ̂m− (Ip−PC)ei||∞ ≤ γ.
(3.10)

end for
Set M = (m1, . . . ,mp)

>, set
M̃ = (Ip−PC)M(Ip−PC). (3.11)

Define the estimator β̂ u as follows:

β̂
u = β̂

n +
1
n

M̃Z̃>(Y − Z̃β̂
n). (3.12)

Algorithm 3: Constructing a de-biased estimator

To solve problem (3.10), Matlab package CVX is used for specifying and solving convex pro-

grams (Grant and Boyd, 2013). To briefly explain the logic behind this algorithm, denote Σ =

EZ̃>Z̃/n, and suppose that Σ = VΛV> is the eigenvalue/eigenvector decomposition of Σ, where
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Λ = diag(λ1, . . . ,λp−r). Note that (V,C) is full rank and orthonormal, and

Σ = (V,C)

 Λ 0

0 0

(V,C)>.

Define

Ω = (V,C)

 Λ
−1 0

0 0

(V,C)>,

then

ΣΩ = (V,C)

 Ip−r 0

0 0

(V,C)> = VV> = Ip−PC,

where Ω is the inverse of Σ in the perpendicular space of the column space of C. The de-biased

algorithm first finds an approximation of Ω by rows, denoted by M̃, and then corrects the bias based

on M̃. At the last step of this algorithm, β̂ u is the de-biased version of β̂ n. It is easy to check that

C>β̂ u = 0, which is guaranteed by (3.11).

The feasibility of the optimization (3.10) is presented in Lemma 1 under the following assumptions

on matrix Z̃ = (Z̃1, . . . , Z̃n)
>:

Condition 4. There exist uniform constants Cmin,Cmax such that 0 < Cmin ≤ σmin(Σ) ≤ σmax(Σ) ≤

Cmax < ∞, where σmax(A)(σmin(A)) is the largest (smallest) non-zero eigenvalue of matrix A.

Condition 5. There exists a uniform constant κ ∈ (0,∞) such that the rows of Z̃Ω
1/2 are sub-

Gaussian with ||Ω1/2Z̃1||ψ2 ≤ κ, where the sub-Gaussian norm of a random vector Z ∈Rn is defined

as

||Z||ψ2 = sup{||Z>x||ψ2 : x ∈ Rn, ||x||2 = 1},

with ||X ||ψ2 defined as ||X ||ψ2 = supq≥1 q−1/2(E|X |q)1/q for a random variable X .

These two conditions are imposed on Z̃ = Z(Ip−PC), not on the original log-ratio matrix Z. For the

subcompositional model (3.3), it is easy to see that Z̃ is the matrix of the centered log-ratio (CLR)

transformation of the original taxonomic composition (Aitchison, 1982), where

Z̃gs = log
Xgs

mg
√

∏
mg
s=1 Xgs

.
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CLR has been shown to be effective in transforming compositional data to approximately multivari-

ate normal in many real compositional and microbiome data (Aitchison, 1982; Kurtz et al., 2015).

Conditions 4 and 5 are therefore reasonable assumptions in our setting.

The following Lemma shows that if γ = c
√

log p/n in Algorithm 2 is properly chosen, Ω is in the

feasible set of the optimization problem (3.10) with a large probability.

Lemma 1. Let Σ̂≡ (Z̃>Z̃)/n be the empirical covariance. For any constant c > 0, the following holds

true,

P

{∣∣∣ΩΣ̂− (Ip−PC)
∣∣∣
∞

≥ c

√
log p

n

}
≤ 2p−c′′ ,

where c′′ = (c2Cmin)/(24e2κ4Cmax)−2.

3.4.2. Asymptotic distribution and inference

To obtain the asymptotic distribution of the de-biased estimator β̂ u, an additional assumption on Z̃

is required.

Condition 6. The inequality (3τ−1)δ−2s(Z̃/
√

n)−(τ+1)δ+
2s(Z̃/

√
n)≥ 4τφ0 holds for a constant φ0 > 0,

where for any matrix A ∈ Rn×m, δ
+
k (A) and δ

−
k (A) are the upper and lower restricted isometry

property (RIP) constants of order k defined as

δ
+
k (A) = sup

{
||Aα||22
||α||22

: α ∈ Rm is k-sparse vector
}
,

δ
−
k (A) = inf

{
||Aα||22
||α||22

: α ∈ Rm is k-sparse vector
}
.

Condition 6 means that δ
−
2s(Z̃/

√
n) and δ

+
2s(Z̃/

√
n) should be close, that is, any 2s columns of the

CLR transformed compositional data matrix Z̃/
√

n should be close to orthonormal.

The following theorem gives the asymptotic distribution of the de-biased estimates of the regression

coefficients.

Theorem 2. Consider the linear model (3.5) with β as an s-sparse vector, and let β̂ u be defined as

in equation (3.12) in Algorithm 3. Then,

√
n(β̂ u−β ) = B+∆, B|Z∼ N(0,σ2M̃Σ̂M̃>), ∆ =

√
n(M̃Σ̂− (Ip−PC))(β − β̂

n).
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Further, assume the Conditions (2)-(6) hold. Then setting λ = rc̃σ
√
(log p)/n in optimization prob-

lem (3.6) and γ = c
√

(log p)/n in Algorithm 3, the following holds true:

P
{
||∆||∞ >

cc̃k0(τk0 +1)
φ0

· σs log p√
n

}
≤ 2p−c′ +2p−c′′ ,

where K = maxi

√
Σ̂i,i and constants c′ and c′′ are given by

c′ =
c̃2

2K2 −1, c′′ =
c2Cmin

24e2κ4Cmax
−2.

Theorem 2 says that N(0,σ2M̃Σ̂M̃>) can be used to approximate the distribution of β̂ u with proper

choices of c and c̃ (or equivalently γ and λ ). This leads to the following corollary that can be used to

construct asymptotic confidence intervals and p-values for β in high-dimensional linear model with

linear constraints (3.4).

Corollary 1. Let σ̂ be a consistent estimator of σ .

(1) Define δi(α,n) = Φ−1(1−α/2)σ̂n−1/2[M̃Σ̂M̃>]1/2
i,i .

Then Ii = [β̂ u
i −δi(α,n), β̂ u

i +δi(α,n)] is an asymptotic two-sided level 1−α confidence interval

for βi.

(2) For individual hypothesis H0,i : βi = 0 versus H0,i : βi 6= 0, an asymptotic p-value can be con-

structed as follows:

Pi = 2

[
1−Φ

(
n1/2|β̂ u

i |
σ̂ [M̃Σ̂M̃>]1/2

i,i

)]
.

The following lemma shows that with Condition 2, the diagonal elements of M̃Σ̂M̃> are nonzero

with a γ that is not too large.

Lemma 2. Let M̃ be the matrix obtained by equation (3.11). Then for γ < (1− (PC)i,i)/k0 and all

i = 1, . . . , p,

[M̃Σ̂M̃>]i,i ≥
(1− (PC)i,i− k0γ)2

Σ̂i,i
.
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3.4.3. Selection of the tuning parameters

In real applications, the estimator β̂ n, tuning parameter λ and estimation of noise level σ̂ are ob-

tained through scaled LASSO (Sun and Zhang, 2012). Specifically, the following two steps are iter-

ated until convergence:

β̂
n← argmin

C>β=0

{
||Y − Z̃β ||22 +2nλ0σ̂ ||β ||1

}
,

σ̂
2← ||Y − Z̃β̂ ||22/n,

where λ0 =
√

2Ln(k/p), Ln(t) = n−1/2Φ−1(1− t), Φ−1 is the quantile function for standard normal and

k is the solution of k = L4
1(k/p)+ 2L2

1(k/p). Then λ̂ = λ0σ̂ , and γ = aλ̂/σ̂ are used in Algorithm 2,

where a = 1/3 is used in all simulations and real data analysis in this chapter.

3.5. Association Between Body Mass Index and Gut Microbiome

Gut microbiome plays an important role in food digestion and nutrition absorption. Wu et al. (2011)

reported a cross-sectional study to examine the relationship between micronutrients and gut mi-

crobiome composition, where the fecal samples of 98 healthy volunteers from the University of

Pennsylvania were collected, together with demographic data such as body mass index, age and

sex. The DNAs from the fecal samples were analyzed by 454/Roche pyrosequencing of 16S r-

RNA gene segments of the V1-V2 region. After the pyrosequences were denoised, a total of about

900,000 16S reads were obtained with an average of 9165 reads per sample and 3068 operational

taxonomic units (OTUs) were obtained. These OTUs were combined into 87 genera that appeared

in at least one sample. Out of these 87 genera, 42 genera have zero counts in more than 90% of the

samples and were removed from our analysis. The remaining 45 relatively common genera belong

to four phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. Since dysbiosis of gut

microbiome has been shown to be associated with obesity (Ley et al., 2005, 2006; Turnbaugh et al.,

2006), it is interesting to identify the bacterial genera that are associated with BMI after adjusting

for total fat and caloric intakes. In the following analysis, zero count was replaced by the maximum

rounding error of 0.5, commonly used in compositional and microbiome data analysis (Aitchison,

2003; Kurtz et al., 2015). Since the number of reads is very large, replacing zero with other very

small counts does not affect our results. These read counts are then converted into compositions
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of the genera or subcompositions of the genera within phylum.

3.5.1. Analysis of the data at the genus-level

The proposed method was first applied to perform regression analysis with BMI as the response and

the log-transformed compositions of the 45 genera as the covariates. In addition, total fat intake

and total caloric intake were also included as the covariates in the model. The model was fit with

the constraint that the sum of the coefficients corresponding to the 45 genera is zero, assuming

E(BMI) =
45

∑
g=1

βg log(Xg)+ γ1FAT+ γ2CALORIE,

where ∑
45
g=1 βg = 0, and log(Xg) is the logarithm of the relative abundance of the gth genus. The goal

of this analysis is to identify the bacteria genera that are associated with BMI.

Figure 3.1 shows the estimated regression coefficients from LASSO with one constraint and their

de-biased estimates together with the 95% confidence intervals of the regression coefficients. Four

genera were statistically significant with p-value of 0.0251 for Alistipes, 0.0031 for Clostridium,

0.0031 for Acidaminococcus, and 0.0042 for Allisonella, respectively. These four genera were

exactly the same genera identified using stability selection by Lin et al. (2014). They belong to

two bacterial phyla, Bacteroidetes and Firmicutes. The results indicate that Alistipes in the Bac-

teroidetes phylum is negatively associated with BMI, which is consistent with previous findings that

the gut microbiota in obese mice and humans tend to have a lower proportion of Bacteroidetes (Ley

et al., 2005, 2006; Turnbaugh et al., 2006). However, for the Firmucutes phylum, both the positively

associated (Acidaminococcus and Allisonella) and negatively associated (Clostridium) genera were

observed to be associated with BMI, suggesting that obesity may be associated with changes in gut

microbiome composition at a lower taxonomic level than previously thought.

3.5.2. Subcomposition analysis

The proposed method was then applied to subcomposition analysis, where the number of sequenc-

ing reads were converted into compositions of genera within each phylum. This creates four sub-

compositions of the genera within four phyla. This analysis aims to answer the question whether

the composition of genera within a given phylum is associated with BMI, where the log-transformed

genera subcompositions are treated as predictors, together with total fat and caloric intakes as
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Figure 3.1: Analysis of gut microbiome data. Lasso estimates, de-biased estimates and 95% confi-
dence intervals of the regression coefficients in the model treating the composition of 45 genera as
covariates together with total fat and caloric intakes. Dashed vertical lines separate bacterial genus
into different phyla.

covariates in the following model,

E(BMI) =
4

∑
g=1

mg

∑
s=1

βgs log(Xgs)+ γ1FAT+ γ2CALORIE,

where ∑
mg
s=1 βgs = 0 for g = 1, · · · ,4, and log(Xgs) is the logarithm of the relative abundance of the sth

genus of the gth phylum.

Figure 3.2 shows the LASSO estimates, de-biased estimates, and 95% confidence interval of the

coefficients of the 45 genera. Four genera were statistically significant with p-value of 0.0036

for Clostridium, 0.0056 for Acidaminococcus, 0.0116 for Allisonella, and 0.0111 for Oscillibactor.

All four genera belong to phylum Firmicutes, indicating that the subcomposition of the bacterial

genera within Firmicutes is associated with BMI. The genus Alistipes has a p-value of 0.0523 in this

analysis, which is marginally significant. It is interesting that the bacterial genus Oscillibactor was

identified as one of the two bacterial genera that are negatively associated with BMI. Oscillibacter

was observed to be increased on the resistent starch and reduced carbohydrate weight loss diets

(Walker et al., 2011) in a strictly diet-controlled experiments in obese men, which may explain

its negative association with BMI. A recent study also identified Oscillibacter-like organisms as a
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potentially important gut microbe that mediates high fat diet-induced gut dysfunction (Lam et al.,

2012). It is possible that Oscillibacter directly regulates components involved in the maintenance of

gut barrier integrity.

−4

−3

−2

−1

0

1

2

3

4

5

Pa
ra

m
et

er
 E

st
im

at
es

 

 

Alistipes

Clostridium
Oscillibacter

Acidaminococcus

Allisonella

fat

Actinobacteria Bacteroidetes Firmicutes Proteobacteria
Intake

De−biased
LASSO

Figure 3.2: Analysis of gut microbiome data. Lasso estimates, de-biased estimates and 95%
confidence intervals of the regression coefficients in the model treating the subcompositions of the
genera in each phylum as covariates together with total fat and caloric intakes. Dashed vertical
lines separate bacterial genus into different phyla.

Figure 3.3 shows the predicted BMI using leave-one-out cross-validation (LOOCV). In each round

of LOOCV, the variables were selected based on the estimated 95% confidence intervals and the

prediction was performed using refitted coefficients of the selected bacterial genera, together with

calorie and fat intakes. An R2 = 0.1576 was obtained between the observed and predicted values.

As a comparison, fitting the model with one linear constraint at the genus-level resulted a R2 =

0.1361 based on LOOCV, indicating some gain in prediction by the subcompositional analysis.

3.6. Simulation Evaluation and Comparisons

In order to simulate the compositional covariates, a n× p matrix W of taxon counts is first generated

with each row of W being generated from a log-normal distribution lnN(ν ,Σ), where Σi j = ζ |i− j|

with ζ=0.2 or 0.5 is the covariance matrix to reflect different levels of correlation between the taxa

counts. Parameters ν j = p/2 for j = 1, . . . ,5 and ν j = 1 for j = 6, . . . , p are set to allow some taxa

to be much more abundant than others, as often observed in real microbiome compositional data.
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Figure 3.3: Analysis of gut microbiome data. Observed and predicted BMI using LOOCV and
variables selected based on 95% confidence intervals, together with total fat and caloric intakes.

The compositional covariate matrix Z is obtained by normalizing the simulated taxa counts as

zi j = log
(

wi j

∑
p
k=1 wik

)
, i = 1, · · · ,n, j = 1, . . . , p

. Based on these compositional covariates, the response Y is generated through Model (3.2) with

β = (1,−0.8,0.4,0,0,−0.6,0,0,0,0,−1.5,0,1.2,0,0,0.3,0, . . . ,0)

and σ = 0.5. Different dimension/sample size combinations (p,n)=(50,100), (50,200), (50,500),

(100,100), (100,200), (100,500) are considered and the simulations are repeated 100 times for

each setting. The tuning parameters are chosen using the method described in Section 3.4.3. The

regression coefficient β used in the simulation satisfies the following 8 linear constraints

10

∑
j=1

β j = 0,
16

∑
j=11

β j = 0,
20

∑
j=17

β j = 0,
23

∑
j=21

β j = 0,

30

∑
j=24

β j = 0,
32

∑
j=31

β j = 0,
40

∑
j=33

β j = 0,
p

∑
i=41

β j = 0.

(3.13)
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3.6.1. Estimation of confidence intervals

The model is first fitted under the correct constraints specified in (3.13) and the corresponding

confidence intervals are obtained based on our asymptotic results. Figure 3.4 shows the coverage

probability for various models and samples sizes, indicating that the coverage probabilities of the

confidence intervals are close to the nominal level of 0.95 when the sample size is large. For

small sample sizes, the empirical coverage probability is slightly greater than the nominal level of

0.95, indicating some conservativeness. Figure 3.5 shows the lengths of confidence intervals. As

expected, larger sample sizes result in shorter lengths and larger correlations among the variables

lead to increased length of the confidence intervals.
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Figure 3.4: Coverage probabilities of confidence intervals based on 100 replications. For each
model, minimum, median (in red line), mean (in red dot) and maximum of the coverage probabilities
over compositional covariates are shown. The confidence intervals are constructed using multiple,
one, no and wrong linear constraints, labeled by ‘Multi’, ‘One’, ‘No’ and ‘Wrong’ respectively.
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Figure 3.5: Average lengths of confidence intervals based on 100 replications. For each model,
minimum, median (in red line), mean (in red dot) and maximum of the lengths of the intervals overall
all compositional covariates are shown. The confidence intervals are constructed using multiple,
one, no and wrong linear constraints, labeled by ‘Multi’, ‘One’, ‘No’ and ‘Wrong’ respectively.

As comparisons, the model is also fitted under no constraint, one single constraint, ∑
p
j=1 β j = 0, and

misspecified constraints,

5

∑
j=1

β j = 0,
12

∑
j=6

β j = 0,
23

∑
j=13

β j = 0,
30

∑
j=24

β j = 0,
p

∑
j=31

β j = 0.

The coverage probabilities and the lengths of the confidence intervals are given in Figure 3.4 and

Figure 3.5, respectively. While the coverage probabilities are relatively less sensitive to such mis-

specification, the intervals estimated under the correct linear constraints are much shorter than

those obtained with one or none of the linear constraints, especially when sample size is small.

Using the wrong constraints results in much longer intervals with less accurate coverage.
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3.6.2. Variable selection based on the confidence intervals

The confidence intervals of the regression coefficients can also be applied to choose the variables

of interest. For example, a variable can be selected if the nominal 95% confidence interval of the

corresponding regression coefficient includes zero. Table 3.1 shows the true positive rate and false

positive rate of the variables identified based on 95% confidence intervals under multiple constraints,

one single constraint and no constraint. When the sample size is small, imposing the correct linear

constraints can lead to more true discoveries while the false positive rates are still controlled under

5%. In contrast, the models with only one or no constraint lead to much lower true positive rates

and the standard LASSO without any constraint gives the worst variable selection results.

Table 3.1: True/False positive rates of the significant variables selected based on 95% confidence
intervals constructed using multiple, one and no linear constraints, labeled by ‘Multi’, ‘One’ and ‘No’
respectively. Variable correlations ζ , numbers of variables p and sample sizes (n) are considered.

Configuration True Positive Rate False Positive Rate

Constraints Constraints
ζ p n Multi One No Multi One No

0.2 50

50 0.9329 0.8514 0.7586 0.0121 0.0056 0.0051
100 1.0000 1.0000 0.9957 0.0330 0.0286 0.0267
200 1.0000 1.0000 1.0000 0.0386 0.0333 0.0328
500 1.0000 1.0000 1.0000 0.0498 0.0477 0.0470

0.2 100

50 0.8571 0.8071 0.7700 0.0131 0.0166 0.0139
100 1.0000 0.9857 0.9400 0.0265 0.0218 0.0173
200 1.0000 1.0000 1.0000 0.0374 0.0353 0.0333
500 1.0000 1.0000 1.0000 0.0441 0.0428 0.0406

0.5 50

50 0.8500 0.7486 0.6543 0.0095 0.0030 0.0019
100 0.9971 0.9900 0.9871 0.0281 0.0240 0.0223
200 1.0000 1.0000 1.0000 0.0351 0.0309 0.0305
500 1.0000 1.0000 1.0000 0.0474 0.0437 0.0412

0.5 100

50 0.7643 0.7157 0.6443 0.0168 0.0173 0.0118
100 0.9814 0.9300 0.8500 0.0227 0.0137 0.0145
200 1.0000 1.0000 1.0000 0.0359 0.0320 0.0319
500 1.0000 1.0000 1.0000 0.0444 0.0417 0.0409

3.6.3. Prediction evaluation

Prediction performances are also evaluated and compared for models with or without linear con-

straints. The prediction error ||Y −Zβ̂ ||22/n is computed from an independent test sample of size n.

Table 3.2 shows the prediction errors of the LASSO estimator, refitted estimator with variables se-

lected by LASSO, and refitted estimator with variables selected by the 95% confidence intervals. For

each of these three estimators, model fitting and coefficient refitting and prediction are performed
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with multiple, one and no linear constraints. Overall, fitting the models with correct multiple con-

straints substantially decreases the prediction error. The LASSO estimator has the worst prediction

performance, while the two refitted estimators have comparable prediction errors.

Table 3.2: Testing set prediction error of the LASSO estimator, refitted estimator with variables
selected by by LASSO, and refitted estimator with variables selected based on 95% confidence
intervals. For each estimator, model was fit using multiple, one and no linear constraints. Variable
correlations ζ , numbers of variables p and sample sizes (n) are considered.

Refitted with Refitted with
Configuration LASSO Estimator Selection by LASSO Selection by 95% CI

Constraints Constraints Constraints
ζ p n Multi One No Multi One No Multi One No

0.2 50

50 0.687 0.926 0.983 0.360 0.502 1.336 0.370 0.487 1.375
100 0.360 0.391 0.412 0.300 0.309 1.153 0.284 0.296 1.155
200 0.293 0.302 0.307 0.271 0.273 1.039 0.264 0.269 1.054
500 0.265 0.269 0.270 0.259 0.261 1.025 0.255 0.258 1.034

0.2 100

50 1.027 1.429 1.438 0.484 0.776 1.531 0.496 0.602 1.483
100 0.408 0.467 0.491 0.305 0.315 1.164 0.286 0.322 1.300
200 0.303 0.318 0.322 0.273 0.276 1.066 0.268 0.277 1.076
500 0.269 0.274 0.274 0.263 0.264 1.041 0.260 0.264 1.049

0.5 50

50 0.806 1.095 1.210 0.520 0.687 1.179 0.441 0.557 1.278
100 0.400 0.476 0.454 0.300 0.319 0.959 0.283 0.301 0.963
200 0.305 0.325 0.320 0.270 0.272 0.861 0.263 0.267 0.877
500 0.269 0.276 0.274 0.258 0.260 0.847 0.255 0.257 0.862

0.5 100

50 1.069 1.494 1.731 0.668 0.993 1.416 0.606 0.690 1.361
100 0.476 0.604 0.560 0.322 0.366 0.963 0.293 0.342 1.134
200 0.323 0.358 0.342 0.271 0.273 0.884 0.265 0.270 0.896
500 0.274 0.284 0.279 0.262 0.262 0.863 0.258 0.261 0.876

3.6.4. Simulation based on real microbiome compositional data

Another set of simulations are conducted where the gut microbiome composition data analyzed in

Section 3.5 are used to generate the covariates with p = 45 through resampling. The many zeros

in the compositional data matrix are replaced with pseudo-count of 0.05 and are renormalized to

have unit sum. For each simulation, we resample with replacement from the rows of compositional

data matrix to achieve the required sample size. The coefficients β and noise level σ are the same

as in prevision section. The sample size is chosen to be n = 50,100,200 and 500. Each setting

is repeated 500 times. The coverage probability and length of confidence intervals are shown in

Figure 3.6 for model with multiple, one and no constraints on the coefficients. Similar conclusions

are observed. The coverage probabilities are relatively less sensitive to misspecification of linear

constraints, however, the intervals estimated under the correct linear constraints are shorter than
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Figure 3.6: Coverage probabilities and length of confidence intervals based on 500 replications.
Data are simulated by resampling the gut microbiome composition data in Section 3.5.

those obtained with one or none of the linear constraints, especially when sample size is small.

Using the wrong constraints results in much longer intervals with a less accurate coverage.

3.7. Discussion

This chapter has considered the problem of regression analysis for microbiome compositional data

obtained through 16S sequencing or metagenomic sequencing. The models and methods in this

chapter can be applied to identify the microbial subcompositions that are associated with a contin-

uous response. The idea of imposing the constraints on regression coefficients was motivated by

using the log-ratios as covariates. However, the method proposed does not use the log-ratios as

covariates, it treats the logarithm of the relative abundances as covariates and allows the response

to depend on the relative abundances of certain bacteria instead of the ratios. Imposing linear

constraints on coefficients enhances the interpretability and also guarantees the subcompositional

coherence. Our method allows selecting taxa in different higher rank taxa. By applying our subcom-

positional analysis, Oscillibacter genus was found to be associated with BMI, even after total fat and

caloric intakes were adjusted, indicating that gut microbiome may serve as independent predictor

for complex phenotypes such as BMI. Our simulation studies have demonstrated a clear gain in

prediction performance when true linear constraints are imposed. However, the small sample size

of our data did not allow us to extensively evaluate gain in BMI prediction by incorporating the gut

microbiome data.

An estimation procedure through regularization under linear constraints has been developed. In
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order to obtain the confidence interval of the regression coefficients, de-biased estimates of the

regression coefficients are obtained, which are shown to be approximately normally distributed.

The p optimization problems in the de-biased algorithm can be solved efficiently using convex

programs. For one simulated data set in Section 3.6, Algorithm 2 took about 36 seconds for p = 100

and 300 seconds for p = 200 on a PC with a core of Intel i7-3770 CPU3.40GHz. For large p, convex

optimization problems can be carried out in parallel. In typical microbiome studies, p is less than

1,000.

The general results presented in this chapter can also be used for statistical inference for the log-

contrast model considered in Lin et al. (2014). This type of de-biased estimates were also proposed

in Zhang and Zhang (2014) and Geer et al. (2014). Lee et al. (2016) proposed an exact inference

procedure for LASSO by characterizing the distribution of a post-selection estimator conditioned on

the selection event. It is interesting to extend their approach to the high-dimensional regression

problems with constraints. Efron (2014) developed a bootstrap smoothing procedure for computing

the standard errors and confidence intervals for predictions, which is different from what was con-

sidered in this chapter. Efron’s procedure can be applied directly to make inferences on predictions

using the methods developed here.

Several extensions are worth considering. Model (3.4) can be extended to include the interaction

terms of the form λlk(logxil − logxik)
2, where xil and xik are the proportion of the lth and the kth

component of subject i, λlk is the coefficient that corresponds to the interaction between these two

components (Aitchison and Bacon-shone, 1984). Similar variable selection and inference procedure

can be developed. It is also interesting to develop methods for generalized linear models with high-

dimensional compositional data as covariates.
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CHAPTER 4

A MODEL FOR PAIRED-MULTINOMIAL DATA AND TESTING ON TAXONOMIC TREE

4.1. Introduction

The human microbiome includes all microorganisms in and on the human body (Gill et al., 2006).

These microbes play important roles in human metabolism in order to maintain human health.

Dysbiosis of gut microbiome has been shown to be associated with many human diseases such

as obesity, diabetes and inflammatory bowel disease (Manichanh et al., 2012; Qin et al., 2012;

Turnbaugh et al., 2006). Next generation sequencing technologies make it possible to quantify

the relative composition of microbes in high-throughout. Two high-throughput sequencing based

approaches have been used in microbiome studies. One approach is based on sequencing the

16S ribosomal RNA (rRNA) amplicons, the resulting reads provide information about the bacte-

rial taxonomic compositions. Another approach is based on shotgun metagenomic sequencing,

which sequences all the microbial genomes presented in the sample, rather than just one marker

gene. Both 16S rRNA and shotgun sequencing approaches provide bacterial taxonomic composi-

tion information and have been widely applied to human microbiome studies, including the Human

Microbiome Project (Turnbaugh et al., 2007) and the Metagenomics of the Human Intestinal Tract

project (Qin et al., 2010).

Compared to shotgun metagenomics, 16S rRNA sequencing is an amplicon-based approach,

which makes the detection of rare taxa easier and requires less starting genomic material than

some metagenomic approaches. One important step in analysis of such 16S amplicon sequencing

reads data is to assign them to a taxonomy tree. Several computational methods are available for

accurate taxonomy assignments, including BLAST (Altschul et al., 1990), the online Greengenes

(DeSantis et al., 2006) and RDP (Cole et al., 2007) classifiers, and several tree-based methods.

Liu et al. (2008) compared several of these methods and recommended use of Greengenes or

RDP classifier. Each taxonomy assignment method produces lineage assignments at the levels of

domain, phylum, class, order, family and genus and the final data can be summarized as counts of

reads that are assigned to nodes of the existing taxonomic tree.

Given the multivariate nature of the count data measured on the taxonomic tree, methods for anal-
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ysis of multivariate count data are greatly needed in the microbiome research. Researchers are

interested in testing multivariate hypotheses concerning the effects of treatments or experimental

factors on the whole assemblages of bacterial taxa. These types of analyses are useful for studies

aiming at assessing the impact of microbiota on human health and on characterizing the microbial

diversity in general. Multivariate methods for testing the differences in bacterial taxa composition

between groups of metagenomic samples have been developed. The commonly used method-

s include permutation test such as Mantel test (Mantel, 1967), Analysis of Similarity (ANOSIM)

(CLARKE, 1993), and distance-based MANOVA (PERMANOVA) (Anderson, 2001). An alternative

test is based on the Dirichlet multinomial (DM) distribution to model the counts of sequence reads

from microbiome samples (Chen and Li, 2013; La Rosa et al., 2012). However, this family of DM

probability models may not be appropriate for microbiome data because, intrinsically, such models

impose a negative correlation among every pair of taxa. The microbiome data, however, display

both positive and negative correlations (Mandal et al., 2015). Models that allow for flexible covari-

ance structures are therefore needed.

Many microbiome studies involve collection of 16S amplicon sequencing data over time or over

different body sites in order to assess the dynamics of the microbial communities. Such studies

generate paired-multinomial count data, where the repeatedly observed microbiomes and there-

fore the corresponding taxonomic count data are dependent. Modeling such paired-multinomial

count data is the focus of this chapter. To the best of our knowledge, there is no flexible model

for such paired-multinomial data. In this chapter, a probability distribution for paired multinomial

count data, which allows flexible covariance structure, is introduced. The model can be used to

model repeatedly measured multivariate counts. Based on this paired-multinomial distribution, a

test statistic is developed to test the difference of compositions from paired multivariate count data.

An application of the test to the analysis of count data observed on a taxonomic tree is develope-

d in order to test difference in paired microbiome compositions and to identify the subtrees with

differential subcompositions.

The chapter is organized as follows. In Section 4.2, the Dirichlet multinomial model and the test

of compositional equality based on this model are briefly reviewed. A paired multinomial (PairMN)

model for paired count data is defined. In Section 4.3, a statistical test of equal composition based

on the paired multinomial model is developed and is applied to counts data observed on the taxo-
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nomic tree to test for overall compositional difference and to identify the subtrees that show different

subcompositions. Results from simulation studies are reported in Section 4.5 and application to an

analysis of gut microbiome data is given in Section 4.6. A brief discussion is given in Section 4.7.

4.2. Paired Multinomial Distribution of Paired Multivariate Count Data

4.2.1. Dirichlet multinomial distribution for multivariate count data and the associated two-sample

test

Consider a set of microbiome samples measured on n subjects with d distinct taxa identified across

all samples at a given taxonomic level (e.g., phylum, class, etc.). Let X1, . . . ,Xn ∈ Nd denote the

count data of these n samples, where the jth entry of Xi is the number of the sequencing reads

aligned to the jth taxon from the ith sample. In order to account for overdispersion of the count data

in microbiome studies, X1, . . . ,Xn are often assumed to follow a Dirichlet multinomial distribution

(Chen and Li, 2013; La Rosa et al., 2012), DM(Ni,α,θ), i = 1, · · · ,n, where Ni is the total number

of the reads from the ith sample that are mapped to these d taxa, α = (α1, · · · ,αd), 0 ≤ α j ≤ 1,

∑ j α j = 1 is a vector of the expected taxa composition, and θ is an overdispersion parameter.

Consider the two-group comparison problem, where two groups of microbiome samples, denoted

by X11, . . . ,Xn11 for the n1 samples in group 1 and X12, . . . ,Xn22 for the n2 samples in group 2. La

Rosa et al. (2012) assumes both independently follow a DM distribution with

Xi1 ∼ DM(Ni1,α1,θ1), i = 1, . . . ,n1,

Xi2 ∼ DM(Ni2,α2,θ2), i = 1, . . . ,n2,

(4.1)

and propose a test for the following hypothesis:

H0 : α1 = α2 vs Ha : α1 6= α2. (4.2)

Define

π̂ t = (
nt

∑
i=1

Xit)/(
nt

∑
i=1

Nit), t = 1,2, (4.3)

which is a consistent estimator for α t for t = 1,2. Wilson (1989) and La Rosa et al. (2012) proposed
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to reject the null hypothesis when

d

∑
k=1

(π̂1k− π̂2k)
2

C1π̂1k +C2π̂2k
> χ

2
d−1
−1
(1−α), (4.4)

where

Ct =
1

N2
·t

(
θ̂αt

( nt

∑
i=1

N2
it −N·t

)
+N·t

)
, t = 1,2

and θ̂t is a consistent estimator of θt , t = 1,2.

In many microbiome studies, microbiome data are often observed for the same subjects over two

different time points or different body sites. If the microbiome of each subject is measured several

times, these repeated measurements are not independent to each other and cannot be handled

by the independent DM model. Thus, a new model is developed in the next section to take into

account the within-in subject correlations.

4.2.2. Paired Multinomial Distribution for Paired Multinomial Data

Any model for paired multinomial data such as those observed in microbiome studies with repeated

measures needs to account for the dependency of the data. For a paired multinomial random

variable Xi = (Xi1,Xi2) ∈Nd×2, i = 1, . . . ,n, a paired multinomial (PairMN) distribution can be defined

as

Xi ∼ PairMN
(
Ni1,Ni2,π1,π2,Σ1,Σ2,Σ12

)
,

where

Xit |Pit ∼ Multinomial(Nit ,Pit) ∈ Rd ,

EPit = π t ,

VarPit = Σt ,

Cov(Pi1,Pi2) = Σ12,

(4.5)

for t = 1,2. Here, the group-specific composition is represented by π t . The joint distribution of

(Pi1,Pi2) is only defined up to its first and second moments so that it includes a wide range of
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distributions. Under this probability model, the moments of Xit are given as follow:

EXit = Nitπ t ,

VarXit = Nit
(
diag(π t)−π tπ

>
t
)
+Nit(Nit −1)Σt ,

Cov(Xi1,Xi2) = Ni1Ni2Σ12.

(4.6)

Compared to the DM model in (4.1), this model has several important features. First, for a given t,

the model allows a more flexible covariance structure for the observed counts that is characterized

by Σt . Second, this model uses Σ12 to quantify the correlation between the repeated samples of

the same subject. If Pit is assumed to follow a Dirichlet distribution, the proposed model in (4.5)

becomes the DM distribution in (4.1). However, a parametric assumption is not needed to achieve

the flexible covariance structure.

4.3. Statistical Test Based on Paired Multinomial Samples

4.3.1. A general test for paired multinomial distributions

In order to test if there is any difference in microbiome composition between two correlated samples,

consider the following hypotheses:

H0 : π1 = π2 vs Ha : π1 6= π2. (4.7)

Define

π̂ t =
∑

n
i=1 Xit

∑
n
i=1 Nit

,

then Eπ̂ t = π t . A Hotelling’s T 2 type of statistic based on π̂1− π̂2 can then be developed.

A consistent estimator for Σπ = Var(π̂1− π̂2) is given in the following Lemma.
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Lemma 3. Define

N·t =
n

∑
i=1

Nit

Nct =
1

(n−1)N·t

(
N2
·t −

n

∑
i=1

N2
it

)

St =
1

n−1

n

∑
i=1

Nit(π̂ it − π̂ t)(π̂ it − π̂ t)
>

Gt =
1

N·t −n

n

∑
i=1

Nit
(
diag(π̂ it)− π̂ it π̂

>
it
)

Σ̂12 =
1

(n−1)

n

∑
i=1

Ni1 +Ni2

Nc1 +Nc2
(π̂ i1− π̂1)(π̂ i2− π̂2)

T

where π̂ it = Xit/Nit , then

Σ̂π =
2

∑
t=1

{
St +(Nct −1)Gt

NctN·t
+

∑
n
i=1 N2

it −N·t
NctN2

·t
(St −Gt)

}
− ∑

n
i=1 Ni1Ni2

N·1N·2

(
Σ̂12 + Σ̂

>
12
) (4.8)

is a consistent estimator for Σπ = Var(π̂1− π̂2). In other words,

||Σ̂π −Σπ ||max→ 0 in probability as n→ ∞ (4.9)

where || · ||max is the max norm of matrix.

A statistic to test H0 vs Ha specified in (4.7) is defined as

F =
n−d +1

(n−1)(d−1)
(π̂1− π̂2)Σ̂

†
π(π̂1− π̂2)

>, (4.10)

where Σ̂
†
π is the Moore-Penrose pseudoinverse of Σ̂π because Σ̂π is singular due to the unit sum

constraint on Pit . In the computation, the negative eigenvalues of Σ̂π are truncated to 0 because Σπ

is non-negative definite.

The following Theorem shows that under the null, this test statistic follows an asymptotic F-distribution

with degrees of freedom of d−1 and n−d−1.

Theorem 3. With test statistic F defined in (4.10), an asymptotic level α test for testing (4.7) is to
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reject H0 when

F > F−1
d−1,n−d+1(1−α). (4.11)

The p-value for testing (4.7) is

p = 1−Fd−1,n−d+1(F). (4.12)

Remark 1. Lemma 3 and the proposed test statistic in (4.10) can be easily extended to unpaired

multivariate count data with unequal sample sizes.

4.4. Analysis of Microbiome Count Data Measured on the Taxonomic Tree

4.4.1. Identification of subtrees of with differential subcompositions based on the proposed test

The proposed test statistic can be applied to identify the subtrees of the taxonomic tree that are

different in their compositions between two measurements (e.g., time or body sites). A rooted

taxonomic tree T with nodes v1, . . . ,vK0 representing for the taxonomic units of T is often available

based on 16S sequencing data. For each microbiome sample, 16S RNA reads can be aligned

to the nodes of T . Without loss of generality, assume that the first K nodes v1, . . . ,vK are all the

internal non-leaf nodes and v1 is the root node. Also, denote τ(vk) as the set of all direct child

nodes of vk,k = 1, . . . ,K.

For a given internal node k, let the count Q(vk) assigned to node vk be the number of all descending

reads of vk. For convenience, also denote Q(S) =
(
Q(vk1), . . . ,Q(vk j)

)
for any set of nodes S =

{vk1 , . . . ,vk j}. For each split from a parental node to the child nodes, the reads on the parent node

are either assigned to a child node or remain unassigned. For each parent node vk, the counts of

reads assigned to its direct child node are in vector Q(τ(vk)), and the count of reads unassigned

is Q(vk)−∑ j∈τ(vk)
Q(v j). For a subject i with measurement index t, at a given internal node k,

k = 1, . . . ,K, denote

X(k)
it =

(
Qit(τ(vk)),Qit(vk)− ∑

j:v j∈τ(vk)

Qit(v j)
)>

, (4.13)

N(k)
it = Qit(vk), (4.14)

where X(k)
it is the vector of the read counts that are assigned to each of the child node or unassigned

reads and N(k)
it is the sum of these read counts. In the subtree shown in Figure 4.2b, X(k2)

it =
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(Qit(vk8),Qit(vk9),Qit(vk2)−Qit(vk8)−Qit(vk9)) and N(k2)
it = Qit(vk2).

For a study with a pair of repeated microbiome measurements, for each internal node k, k = 1, . . . ,K,

the paired vectors of read counts are assumed to have PairMN distributions,

(X(k)
i1 ,X(k)

i2 )|(N(k)
i1 ,N(k)

i2 )∼ PairMN
(
N(k)

i1 ,N(k)
i2 ,π

(k)
1 ,π

(k)
2 ,Σ

(k)
1 ,Σ

(k)
2 ,Σ

(k)
12

)
,

where X(k)
it are counts for the ith sample in the tth measurement.

In order to identify the subtrees with differential subcompositions between the two measurements,

the following hypotheses can be tested using the proposed method in Theorem 3,

H(k)
0 : π

(k)
1 = π

(k)
2 , k = 1, . . . ,K. (4.15)

Define pk as the p-value from testing H(k)
0 . Theorem 3 shows that under the null hypotheses, pk’s

are asymptotically uniformly distributed. In fact, they are also asymptotically independent under the

null. Take Figure 4.2b as an example, under the H(k1)
0 and H(k2)

0 ,

P(pk1 ≤ α, pk2 ≤ β ) =
∫

P(pk1 ≤ α|Q(vk2), pk2 ≤ β )P(pk2 ≤ β |Q(vk2))dF(Q(vk2))

=
∫

P(pk1 ≤ α|Q(vk2))P(pk2 ≤ β |Q(vk2))dF(Q(vk2))

a
= α

∫
P(pk2 ≤ β |Q(vk2))dF(Q(vk2))

= αP(pk2 ≤ β )
a
= P(pk1 ≤ α)×P(pk2 ≤ β )

where a
= are equations that hold asymptotically. Therefore, to control for multiple comparisons, the

false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995) can be used to identify the

subtrees with different subcompositions between two repeated measurements.

4.4.2. Global test for differential overall compositions on taxonomic tree

The goal for testing the global difference in taxonomic compositions between pairs of measure-

ments can be formulated as the following composite hypothesis,

H0 = ∩K
k=1H(k)

0 vs Ha = ∪K
k=1(H

(k)
0 )c, (4.16)
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where H(k)
0 is specified by (4.15).

To test this composite hypothesis, the combined p-value can be obtained using Fisher’s method,

pcombined = 1− (χ2
2K)
−1

(
−2

K

∑
k=1

log pk

)
(4.17)

or 2nd smallest p-value,

pcombined = 1−
(
1+(K−1)p(2)

)
(1− p(2))

K−1 (4.18)

where p(2) is the 2nd smallest p-value of p1, . . . , pK . Under the null, the pcombined computed using

either methods is asymptotically uniformly distributed. Test (4.18) is more powerful if only a small

number of subtrees with differential subcompositions between the two measurements, while test

(4.17) is more suitable if differences occur in a large number of subtrees.

4.5. Simulation Studies

4.5.1. Comparison with test based on the DM model

To compare the performance of our pairMN test statistic in (4.11) with the original unpaired statistic

(4.4), two data generating models within the class of PairMN are considered. The first model

generates Pit , i = 1, . . . ,n based on a mixture of Dirichlet distributions:

Pit = (1−ρ)P′it +ρP′′i , t = 1,2,

P′it ∼ Dir(α t ,θαt ), t = 1,2,

P′′i ∼ Dir(`,θ`).

(4.19)

Under this setting,

π t = (1−ρ)α t +ρ`, 0 < ρ < 1, t = 1,2

Σt = (1−ρ)2
θαt

(
diag(α t)−α tα

>
t
)
+ρ

2
θ`

(
diag(`)− ``>

)
, t = 1,2

Σ12 = ρ
2
θ`

(
diag(`)− ``>

)
.

(4.20)

In our simulation, the dimension is set as d = 8. The parameter ρ is used to control the degree of

correlation in Σ12, where ρ ranges from 0 to 0.6. Other parameters are set as θ` = 1, θα1 = 3, θα2 = 5,
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` = (0.12,0.06,0.08,0.43,0.02,0.14,0.1,0.05), α1 and α2 such that π1 = (0.15,0.05,0.22,0.3,0.03,0.1,

0.07,0.08), and under the alternative hypothesis π2 = (0.1,0.1,0.22,0.3,0.03,0.1,0.07,0.08). The

number of total counts Nit are simulated from a Poisson distribution with mean 1000. When ρ = 0,

this model degenerates to the Dirichlet-multinomial distribution.

The second model generates Pit , i = 1, . . . ,n based on a log-normal distribution. Specifically,

Pit =
eZit

1>eZit
, t = 1,2, (4.21)

where

(Zi1 j,Zi2 j)∼ N


 µ j1

µ j2

 ,
 σ2

j1 ρσ j1σ j2

ρσ j1σ j2 σ2
j2


 , j = 1, . . . ,d,

Zit = (Zit1, . . . ,Zitd)
>, t = 1,2.

Under this setting, no explicit expressions for π t , Σt and Σ12 are available, but the correlation

can be quantified using ρ, and the difference in π t can be quantified by the difference in µ t =

(µ1t , . . . ,µdt)
>, t = 1,2. In our simulation, the dimension of sample is d = 8, ρ ranges from 0 to 0.6,

σ t = (σ1t , . . . ,σdt)
> = (1, . . . ,1) for t = 1,2, µ1 = (3,1,0.5,1,0,1,1,0), and set µ2 = (3,1,1,0.5,0,1,1,0)

under the alternative. The number of total counts Nit are also simulated from a Poisson distribution

with mean 1000.

For both data generating models, sample sizes of n = 20,50 and 100 are considered. The simula-

tions are repeated 5,000 times for each specific setting and the null hypothesis is rejected at level

of α = 0.05. The type I error and the empirical power of the various tests are shown in Figure 4.1. It

shows that both tests have test size under the nominal level in all of the settings. For data simulat-

ed from the paired multinomial-Dirichlet distribution (4.19), the power of the unpaired test is slightly

better than the paired test only when ρ is very small, that is, when there is a weak within-subject

correlation (Figure 4.1 (a)). This is expected since the unpaired test (4.4) is developed specifically

for the Dirichlet-multinomial distribution, i.e. PairMN model with ρ = 0. When ρ increases from 0 to

0.6, the paired test has a steadily increasing power with the test size still around the nominal level,

while the size and power of the unpaired test gradually decrease. The results suggest that com-

pared with the paired test, the unpaired test tends to be conservative and therefore has reduced
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power in detecting the difference in compositions when the within-subject correlation is large.

For data simulated from log-normal-based PairMN model (4.21), the power of our paired test is

much larger than the power of the unpaired test for all values of ρ, while the type 1 errors are well

controlled (Figure 4.1 (b)). These results show that the proposed paired test performs well in both

data generating models, suggesting that our test is very flexible and robust to different distributions

of Pit .

4.5.2. Simulating count data on a taxonomic tree

The proposed tests in (4.17) and (4.18) are further compared with PERMANOVA test (Anderson,

2001) using L1 Kantorovich-Rubinstein (K-R) distance (Evans and Matsen, 2012) with unit branch

length and with each pair of samples as a stratum. Using the notations in Section 4.4.2, the L1 K-R

distance between two trees Qi1t1 and Qi2t2 is given by

d(Qi1t1 ,Qi2t2) =
K0

∑
k=1
|pi1t1(vk)−pi2t2(vk)| (4.22)

where

pit(vk) =
(
Qit(vk)− ∑

j:v j∈τ(vk)

Qit(v j)
)
/Qit(v1) k = 1, . . . ,K0

is the proportion of reads that are assigned to node vk but cannot be further specified to its child

nodes. This is sum of the l1 distances between two compositional vectors over each branch of the

taxonomic tree.

In order to simulate data that mimic real microbiome count data, count data on the taxonomic tree

are generated based on sampling from a real 16S microbiome dataset from Flores et al. (2014),

where the gut (feces), palm and tongue microbial samples of 85 college-age adults where taken

in a range of three months and were characterized using 16S rRNA sequencing. Within the gut

microbiome samples, counts of reads are summarized on a taxonomic tree that has 1050 nodes

from kingdom to species (see Figure 4.2). Since no large changes are expected in gut microbiome

during a three-month period, these samples are assumed to have the same null distribution, which

resulted in a total of 638 gut microbial samples.

Using the notation in Section 4.4.1, these samples are denoted as Qo
1, . . . ,Q

o
638. Before the simula-

53



tion, the matrix Po ∈ (0,1)638×1050 with

Po(i,k) =
(

Qo
i (vk)− ∑

j:v j∈τ(vk)

Qo
i (v j)

)
/Qo

i (v1), i = 1, . . . ,638, k = 1, . . . ,1050

is first calculated, which is the composition of all nodes for each of the 638 gut microbial samples.

The total count of reads of all samples are also calculated and recorded using No ∈ N638.

To simulate a pair of correlated microbiome sample Qi1 and Qi2, three compositions Po
i1, Po

i2 and Po
i3

from Po are randomly sampled and two total counts No
i1 and No

i2 are randomly resampled from No.

Read counts Wi1 are sampled from multinomial(No
i1,

Po
i1+Po

i3
2 ), and Wi2 from multinomial(No

i2,
Po

i2+Po
i3

2 )+

Ei, where Ei is a perturbation to the genus of Streptococcus, and is drawn from Binomial(No
i2, pε) at

the coordinate corresponding to Streptococcus and zero otherwise. Qit is then iteratively computed

such that Qit(vk)−∑ j:v j∈τ(vk)
Qit(v j) = Witk for t = 1,2 and i = 1, . . . ,n, where n is the number of pairs

simulated and is set to be 20, 50 and 100 in our simulation. The percent of perturbation pε is

chosen to range from 0 to 2%. For each scenario, we repeat the simulations for 100 times. For

the global test of (4.16), we reject the null hypothesis at the level of 0.05. For the identification of

subtrees with differential subcompositions in multiple testing (4.15), we control the FDR at the level

of 0.05.

Figure 4.3 compares the rejection rate of PERMANOVA with our method in (4.17) and (4.18) for the

global test (4.16). Within method (4.18), which combines p-values using the 2nd smallest p-value,

we also compare the our paired test based on PairMN in (4.10) with the unpaired test based on DM

in (4.4). When the sample size is small, none of the methods is able to detect the perturbation to

Streptococcus. As the sample size increases, the rejection rate of our method using 2nd smallest

p-value combination of the paired-tests gradually increases, especially when the percent of pertur-

bation gets closer to 2%. Our method using (4.17) with Fisher’s method of p-value combination

does not perform as well because the perturbation only occurs to a very small number of subtrees.

The method using 2nd smallest p-value combination of the unpaired tests also performs worse than

the paired tests.

Figure 4.4 shows the percent of discoveries of the differential subtrees with FDR controlled at 0.05.

We observe that the observed FDR is close to the nominal level of 0.05. Since the count of genus

Streptococcus is set to be different, the counts on all the parent nodes of Streptococcus are also
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Table 4.1: p−values of different comparisons between two body sites and between smokers and
non-smokers based on the proposed tests and PERMANOVA.

PairMN (Fisher || 2nd) PERMANOVA
Nasopharynx and Oropharynx (Left Side) 0 || 0 <0.001
Nasopharynx and Oropharynx (Right Side) 0 || 0 <0.001
Smoker vs Nonsmoker (nasopharynx) 2.1e-07 || 8.6e-05 0.003
Smoker vs Nonsmoker (oropharynx ) 1.2e-07 || 6.2e-04 0.005
Left vs Right (nasopharynx) 0.16 || 0.65 0.053
Left vs Right (oropharynx ) 0.37 || 0.79 0.99

changed. Therefore, the differential subtrees denoted by their root nodes are: (a) Kingdom Bacteria,

(b) Phylum Firmicutes, (c) Class Bacilli, (d) Order Lactobacillales, (e) Family Streptococcaceae

and (f) Genus Streptococcus (see Figure 4.2). Among these, (c) and (e) are not identified in any

scenario because these subtrees have counts mostly mapped in one child node and thus make

any changes nearly impossible to detect. The test does not have power to identify (a) because the

perturbation is too small to detect given the large counts on the child nodes of (a). All the other

three subtrees are identified by our method when the percent of perturbation and sample size get

larger.

4.6. Analysis of Microbiome Data in the Upper Respiratory Tract

The human nasopharynx and oropharynx are two body sites located very close to each other in the

upper respiratory tract. The nasopharynx is the ecological niche for many commensal bacteria. It is

interesting to understand whether these nearby sites have similar microbiome composition and how

smoking perturbs their compositions. Charlson et al. (2010) collected the left and right nasopharynx

and oropharynx microbiome samples from 32 current smokers and 36 nonsmokers. The samples

were sequenced using 16S rRNA sequencing, and the count of reads are aligned onto a taxonomic

tree with 213 nodes from kingdom to species.

Several comparisons of the overall microbiome compositions were compared and the results are

summarized in Table 4.1. As expected, no significant differences were observed between left and

right nasopharynx or oropharynx. However very significant differences were observed between

nasopharynx and oropharynx both in the left and right sides, further confirming the niche-specific

colonization at discrete anatomical sites. In addition, smoking had strong effects on microbiome

composition in both nasopharynx and oropharynx
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4.6.1. Comparison of nasopharynx and oropharynx microbiome for nonsmokers

Since a large overall microbiome composition differences was observed, it is interesting to identify

which subtrees and their corresponding subcompositions led to such a difference. The proposed

subtree identification procedure in Section 4.4.2 using the pairNM test in (4.11) was applied to

identify the subtrees with differential subcompositions between the two body sites at an FDR=0.05.

The identified parental nodes, their child nodes and the corresponding subcompositions are shown

in Figure 4.5. One advantage of the proposed method is to identify these subtrees at various

taxonomic levels. For example, at the phylum level, nasopharynx clearly had more Firmicutes,

however, oropharynx had more Bacteroidetes. At the genus level, Streptococcus appeared more

frequently in oropharynx, but Lactococcus occurred more in nasopharynx.

4.6.2. Comparison of microbiome between smokers and non-smokers

The proposed procedure was also applied to identify the differential subtrees with differential sub-

compositions between smokers and nonsmokers in nasopharynx and oropharynx and the results

are shown in Figure 4.6 for a FDR=0.05. For nasopharynx, the subcompositions of classes under

Firmicutes, classes under Bacteroidetes and families under Clostridiale were different, with fewer

Bacilli in Firmicutes, more Bacteroidia in Bacteroidetes, and fewer Veillonellaceae in Clostridiales

being observed in smokers (Figure 4.6a).

For oropharynx, differences in the subcomposition of phyla and species under Prevotalla were ob-

served, with more Firmicuates and more Melaninogenica in Prevotella observed in smokers (Fig-

ure 4.6b).

4.7. Discussion

This chapter has introduced a flexible model for paired multinomial data in modeling the dependen-

cy of of the data. Based on this model, a T 2 type of test statistic has been developed for testing

equality of the overall composition between two repeatedly measured multinomial data. The test

can be used for analysis of count data observed on a taxonomic tree to identify the subtrees that

show differential subcompositions in repeated measures. Our simulations have shown that the

proposed test has correct type 1 errors and much increased power than the commonly used tests

based on DM model or the PERMANOVA test. The test proposed in this chapter can be applied to
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both independent and repeated measurement data. For independent data, the proposed test allows

more flexible dependent structure among the taxa than the Dirichlet multinomial model, which only

allows negative correlations among the taxa. The proposed test statistics are also computational-

ly more efficient than the commonly used permutation-based procedures such as PERMANOVA,

which enables their applications in large-scale microbiome studies.

As demonstrated in our simulations, the proposed overall test of composition is more powerful than

PERMANOVA type of tests when the overall composition difference is due to a few subcompo-

sitions since our test considers each subtree and subcomposition separately and then combines

the p-values. Since the tests for differential subcomposition condition on the total counts of the

parental nodes, all the p-values are independent that facilitates simple combination of p-values and

identification of subtrees based on FDR controlling.

Although the chapter has focused on using existing taxonomic tree and 16S sequencing data,

the tests proposed in this chapter can also be applied to shotgun metagenomic sequencing data.

One possible approach is to build phylogenetic trees based on a small set of universal marker

genes (Sunagawa et al., 2013) and to align the sequencing reads to these phylogenetic trees. The

proposed methods can be applied to each of these trees and the results can be combined. This

deserves further investigation.
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Figure 4.1: Simulation results: size and power of the paired and unpaired tests for data simulated
under the PairMN model (a) and the correlated log-normal model (b) for sample size n = 20,50 and
100. x-axis is the correlation parameter ρ.
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(a) Entire taxonomic tree. This figure is generated using GraPhlAn (Asnicar et al., 2015).

(k1)o_Lactobacillales

(k2)f_Streptococcaceae
(k8)g_Streptococcus

(k9)g_Lactococcus
(k3)f_Aerococcaceae

(k4)f_Lacobacillaceae

(k5)f_Carnobacteriaceae

(k6)f_Enterococcaceae

(k7)f_Leuconostocaceae

(b) Detail tree structure above genus of Streptococcus.

Figure 4.2: Taxonomic tree of the gut microbiome samples from which the simulated data are
generated. In our simulations, the count of genus Streptococcus is perturbed to generate samples
from the alternative distribution.
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Figure 4.3: Comparison of rejection rate of the proposed method with PERMANOVA with the level
of test at α = 0.05. X-axis is the perturbation percentage pε , where pε = 0 corresponds to the null
hypothesis.
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Figure 4.4: Identification of subtrees with differential subcompositions with FDR set to 0.05. Y-axis
shows the percent of discovery of the corresponding subtree in 100 simulations with FDR controlled
at 0.05. The empirical FDR is close to 0.05.
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k__Bacteria

p__Proteobacteria

p__Firmicutes

p__Bacteroidetes

c__Bacilli

c__Betaproteobacteria

o__Bacteroidales

o__Flavobacteriales

o__Actinomycetales

o__Lactobacillales

f__Streptococcaceae

g__Veillonella

Nasopharynx Oropharynx

p__Firmicutes
p__Bacteroidetes

c__Gammaproteobacteria

c__Betaproteobacteria

c__Bacilli
c__Clostridia
c__Bacteroidia
c__Flavobacteriia

o__Lactobacillales

o__Burkholderiales
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s__dispar 
g__Veillonella 

Figure 4.5: Parental nodes and the child nodes that showed differential subcomposition between
nasopharynx and oropharynx.
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(a) Nasopharynx.

k__Bacteria

g__Prevotella

Nonsmoker Smoker

p__Firmicutes

p__Proteobacteria

p__Fusobacteria

p__Bacteroidetes

s__melaninogenica

g__Prevotella

(b) Oropharynx.

Figure 4.6: Parental nodes and the child nodes that showed differential subcomposition between
smokers and nonsmokers in nasopharynx (a) and oropharynx (b).
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CHAPTER 5

FUTURE TOPICS

Part of my future research will be related to my current work. I am hoping to develop more statistical

methods for problems in microbiome research and metagenomic studies. The following are projects

I am interested in working on in the near future.

5.1. Log-Contrast Generalized Linear Models

In human microbiome research, besides continuous responses such as BMI, discrete responses

such as presence/absence of Crohn’s disease are also common. Since ordinary linear model is

not suitable for discrete response, it is important to extend our work in Chapter 3 to log-contrast

generalized linear model (GLM). Suppose the response yi follows an exponential family distribution

with the log composition Zi as covariates in the following way:

f (yi|β ,Zi) = h(yi)exp{ηiyi−A(ηi)}, ηi = Z>i β ,

where β is the regression coefficients. This is a special case of the exponential family, which

includes binomial distribution with A(η) = log(1+ eη). Then, similar to Model (3.4), the estimation

of β can be formulated as a convex optimization problem below

β̂
n = argmin

β

{
n

∑
i=1

log f (yi|β ,Zi)+λ ||β ||1

}
subject to C>β = 0

= argmin
β

{
1
n
[Y>Zβ −

n

∑
i=1

A(Z>i β )]+λ ||β ||1

}
subject to C>β = 0

(5.1)

Define µ(η) = OηiA(ηi) and ν(η) = O2
ηi

A(ηi). To obtain the confidence intervals for β , we can also

construct a de-biased estimator β̂ u with some modification to (3.12) by

β̂
u = β̂

n +
1
n

M̃Z̃>(Y −µ(β̂ n, Z̃)). (5.2)

where µ =(µ(Z̃>1 β̂ n), . . . ,µ(Z̃>n β̂ n)), and M̃ can be computed by (3.10) and (3.11) with Σ̂=(Z̃>VZ̃)/n

and V = diag(ν(Z̃>1 β̂ n), . . . ,ν(Z̃>n β̂ n)). However, detailed theoretical analyses of the estimator and
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confidence intervals require more assumptions on the transformed design matrix Z̃ and careful

handling of function A(η).

5.2. Statistical Inference for Signal-Noise-Ratio

Another important question in microbiome research is to estimate the fraction of the variance in

a response such as BMI can be explained by the observed microbiome composition, as opposed

to other unknown or unmeasured factors. This quantity corresponds to the “R-square” and signal-

noise-ratio in the linear regression model. To be specific, we consider the high-dimensional regres-

sion model with log-transformed microbiome composition as covariates and linear constraints on

the regression coefficients:

yi = Z>i β + εi, C>β = 0, i = 1, . . . ,n. (5.3)

Here Z1, · · · ,Zn are independent log-transformed microbiome compositions, ε1, · · · ,εn are errors

which are uncorrelated with Z1, · · · ,Zn. The problem of quantifying variance explained by covari-

ates is to make statistical inference for the signal-noise-ratio (SNR):

SNR = 1− σ2

Var(yi)
= 1− σ2

Var(Z>i β )+σ2
,

where σ2 =Var(εi) is the noise level, Var(Z>i β ) is the variance which can be explained by covariates.

Since Var(yi) can be naturally estimated by ∑
n
i=1 y2

i /n, we can instead focus on statistical inference

for σ2. The problem of statistical inference for σ2 has attracted a lot of recent interest. For example,

Fan, Guo, and Hao (2012) and Sun and Zhang (2012) both provide estimates of σ2 with sparsity

assumption on β . Dicker (2014) and Janson, Barber, and Candès (2015) develop methods for

the estimation and inference of σ2 without assuming β to be sparse but require the covariance

structure of Zi to be known. However, in microbiome research, the covariance structure of Zi is

often complicated and hardly known and β is sometimes dense, it is more desirable to develop a

method of inference on SNR when β is not necessarily sparse and covariance structure of Zi is

limited.
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APPENDIX

PROOFS

A.1. Proofs for Chapter 2

Proof of Theorem 1. Let Ŝ = { j : β̂ j 6= 0} denote the support of β̂ . If p ∈ Ŝ, the optimality conditions

for problem (2.3) can be written as

−n−1(Zp
Ŝ\p

)>(y−Zp
β̂\p)+λ{sgn(β̂Ŝ\p

)− sgn(β̂p)1s−1}= 0, (A.1)

‖n−1(Zp
Ŝc)
>(y−Zp

β̂\p)+λ sgn(β̂p)1p−s‖∞ ≤ λ , (A.2)

where β̂p = −1>p−1β̂\p. The idea of the proof is to define an event that occurs with high probability

and, conditioning on that event, find some β̂ with the desired properties such that (A.1) and (A.2)

hold.

For J ⊂ {1, . . . , p}, let ZJ denote the submatrix formed by the jth columns of Z with j ∈ J. By the

union bound and the classical Gaussian tail bound, we have

Pr{‖n−1(ZS)
>

ε‖∞ ≥ λ/2} ≤ ∑
j∈S

Pr{|n−1z>j ε| ≥ λ/2} ≤ sexp{−nλ
2/(8σ

2)}

and, since Π≡ I−n−1Zp
S\p

(Cp
S\pS\p

)−1(Zp
S\p

)> is a projection matrix and has spectral norm at most 1,

Pr{‖n−1(Zp
Sc)
>

ε−Cp
ScS\p

(Cp
S\pS\p

)−1n−1(Zp
S\p

)>ε‖∞ ≥ λξ}= Pr{‖n−1(Zp
Sc)
>

Πε‖∞ ≥ λξ}

≤ ∑
j∈Sc

Pr{|n−1(z j− zp)
>

Πε| ≥ λξ} ≤ (p− s)exp{−nλ
2
ξ

2/(8σ
2)},

where we have used the normalization assumption max j ‖z j‖2 ≤
√

n. Thus, with probability at least

1− pexp{−nλ 2ξ 2/(8σ2)}, the following inequalities hold:

‖n−1(ZS)
>

ε‖∞ ≤ λ/2, ‖n−1(Zp
Sc)
>

ε−Cp
ScS\p

(Cp
S\pS\p

)−1n−1(Zp
S\p

)>ε‖∞ ≤ λξ . (A.3)

In what follows, we condition on the event that (A.3) holds and analyze the optimality conditions

(A.1) and (A.2) using deterministic arguments.
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First, we take β̂Sc = 0. Substituting y = Zp
S\p

β ∗S\p
+ ε and replacing Ŝ by S, we write (A.1) as

β̂S\p −β
∗
S\p

= (Cp
S\pS\p

)−1[n−1(Zp
S\p

)>ε−λ{sgn(β̂S\p)− sgn(β̂p)1s−1}]. (A.4)

Now define β̂S\p by (A.4) with sgn(β̂S\p) and sgn(β̂p) replaced by sgn(β ∗S\p
) and sgn(β ∗p ), respectively.

By (A.3), (A.4), and the triangle inequality, we have

‖β̂S−β
∗
S ‖∞ = ‖DSS\p(C

p
S\pS\p

)−1[n−1(Zp
S\p

)>ε−λ{sgn(β̂S\p)− sgn(β̂p)1s−1}]‖∞

≤ ‖DSS\p(C
p
S\pS\p

)−1(DSS\p)
>‖∞‖n−1(ZS)

>
ε‖∞

+λ‖DSS\p(C
p
S\pS\p

)−1(DSS\p)
>‖∞

≤ ϕλ/2+ϕλ = 3ϕλ/2 < βmin

by assumption. This implies that sgn(β̂S) = sgn(β ∗S ), and hence we have found a β̂ such that the

desired properties and (A.1) hold.

It remains to verify that β̂ also satisfies (A.2). Substituting y = Zp
S\p

β ∗S\p
+ ε and (A.4), we write

n−1(Zp
Sc)
>(y−Zp

β̂\p)+λ sgn(β̂p)1p−s

= n−1(Zp
Sc)
>

ε−Cp
ScS\p

(β̂S\p −β
∗
S\p

)+λ sgn(β ∗p )1p−s

= n−1(Zp
Sc)
>

ε−Cp
ScS\p

(Cp
S\pS\p

)−1n−1(Zp
S\p

)>ε

+Cp
ScS\p

(Cp
S\pS\p

)−1
λ{sgn(β ∗S\p

)− sgn(β ∗p )1s−1}+λ sgn(β ∗p )1p−s.

By (A.3), Condition 1, and the triangle inequality, we have

‖n−1(Zp
Sc)
>(y−Zp

β̂\p)+λ sgn(β̂p)1p−s‖∞

≤ ‖n−1(Zp
Sc)
>

ε−Cp
ScS\p

(Cp
S\pS\p

)−1n−1(Zp
S\p

)>ε‖∞

+λ‖Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β ∗S\p
)− sgn(β ∗p )1s−1}+ sgn(β ∗p )1p−s‖∞

≤ λξ +λ (1−ξ ) = λ ,

which verifies (A.2) and completes the proof.
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of Proposition 1. To apply Theorem 4 of Rockafellar (1976) for the convergence of the method of

multipliers, we need only verify for problem (2.3) that (a) Slater’s condition is satisfied, and (b) there

exists a constant c such that the c-sublevel set of feasible points Bc = {β : Q(β )≤ c and ∑
p
j=1 β j = 0}

is nonempty and bounded, where Q(·) is the objective function in problem (2.3). Claim (a) holds

since in this case Slater’s condition reduces to feasibility and 0 is a feasible point. To show (b),

take any c ≥ Q(0); then Bc is nonempty since 0 ∈ Bc, and is bounded since ‖β‖1 ≤ c/λ for β ∈ Bc.

Proposition 1 follows from the aforementioned result.

Proof of Proposition 2. For J ⊂ {1, . . . , p−1}, let Zr
J denote the submatrix formed by the jth columns

of Zr with j ∈ J. Define

Pr =


Ir−1 −1 0

0
... Ip−1−r

0 −1 0

 ∈ R(p−1)×(p−1),

and let Er ∈ R(p−1)×(p−1) denote the matrix with 1s in the rth column and 0s elsewhere. Then

we have sgn(β ∗S\r)− sgn(β ∗r )1s−1 = Pr
S\rS\p

{sgn(β ∗S\p
)− sgn(β ∗p )1s−1}, Zr

S\r
= Zp

S\p
(Pr

S\rS\p
)>, and Zr

Sc =

Zp
Sc −Zp

S\p
(Er

ScS\p
)>. Furthermore,

Cr
S\rS\r = n−1(Zr

S\r)
>Zr

S\r = n−1Pr
S\rS\p

(Zp
S\p

)>Zp
S\p

(Pr
S\rS\p

)>

= Pr
S\rS\p

Cp
S\pS\p

(Pr
S\rS\p

)>,

Cr
ScS\r = n−1(Zr

Sc)>Zr
S\r = n−1{Zp

Sc −Zp
S\p

(Er
ScS\p

)>}>Zp
S\p

(Pr
S\rS\p

)>

= n−1{(Zp
Sc)
>Zp

S\p
−Er

ScS\p
(Zp

S\p
)>Zp

S\p
}(Pr

S\rS\p
)>

= (Cp
ScS\p
−Er

ScS\p
Cp

S\pS\p
)(Pr

S\rS\p
)>.
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Substituting these identities into the left-hand side of (2.9) yields

Cr
ScS\r(C

r
S\rS\r)

−1{sgn(β ∗S\r)− sgn(β ∗r )1s−1}+ sgn(β ∗r )1p−s

= (Cp
ScS\p
−Er

ScS\p
Cp

S\pS\p
)(Cp

S\pS\p
)−1{sgn(β ∗S\p

)− sgn(β ∗p )1s−1}+ sgn(β ∗r )1p−s

=Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β ∗S\p
)− sgn(β ∗p )1s−1}

−Er
ScS\p
{sgn(β ∗S\p

)− sgn(β ∗p )1s−1}+ sgn(β ∗r )1p−s

=Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β ∗S\p
)− sgn(β ∗p )1s−1}

−{sgn(β ∗r )− sgn(β ∗p )}1p−s + sgn(β ∗r )1p−s

=Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β ∗S\p
)− sgn(β ∗p )1s−1}+ sgn(β ∗p )1p−s,

and (2.10) follows similarly.

A.2. Proofs for Chapter 3

Definition 1. For any matrix M, define the restricted orthogonal constant (ROC) of order k1 and k2

as below

θk1,k2(M) = sup
{ |〈Mα1,Mα2〉|
||α1||2||α2||2

:α1 is k1-sparse vector,α2 is k2-sparse vector,

α1 and α2 have non-overlapping support
}

Before proving Theorem 2, we need to present Lemma 4 and Theorem 4.

Lemma 4. Suppose ||Ip−PC||∞ ≤ k0, then for any matrix A, we have

|(Ip−PC)A|∞ ≤ k0|A|∞.

Proof of Lemma 4. By definition of || · ||∞ for matrices, for any vector a ∈ Rp,

||(Ip−PC)a||∞ ≤ k0||a||∞.

Theorem 4. Let β̂ n be the estimator obtained by solving optimization problem (3.6) for Model (3.5),
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where β is s-sparse. If (3τ−1)δ−2s(Z̃/
√

n)− (τ +1)δ+
2s(Z̃/

√
n) ≥ 4τφ0 for some constant φ0 > 0, and

||Z̃>ε||∞ ≤ nλ/τ, then,

||β̂ n−β ||1 ≤ sλ (k0 +1/τ)/φ0.

Proof. By the definition of β̂ n, we have

1
2n
||y− Z̃β̂

n||22 +λ ||β̂ n||1 ≤
1

2n
||y− Z̃β ||22 +λ ||β ||1.

Denote h = β̂ n−β , and Sh be the set of index of the s largest absolute values of h.

Then by Y = Z̃β + ε, we have

1
2n

(||ε− Z̃h||22−||ε||22)≤ λ (||β ||1−||β̂ n||1). (A.5)

Notice that

||β ||1−||β̂ n||1 = ||βsupp(β )||1−||β̂ n
supp(β )||1−||β̂

n
supp(β )c ||1

≤ ||βsupp(β )− β̂
n
supp(β )||1−||hsupp(β )c ||1

≤ ||hsupp(β )||1−||hsupp(β )c ||1

≤ ||hSh ||1−||hSc
h
||1.

Also,

1
2n

(||ε− Z̃h||22−||ε||22) =−
1

2n
(Z̃h)>(2ε− Z̃h)≥−1

n
h>Z̃>ε ≥−1

n
||Z̃>ε||∞||h||1

=−1
n
||Z̃>ε||∞(||hSh ||1 + ||hSc

h
||1).

Then, by ||Z̃>ε||∞ ≤ nλ/τ and (A.5), we have

−(||hSh ||1 + ||hSc
h
||1)≤ τ(||hSh ||1−||hSc

h
||1).

Therefore,

||hSc
h
||1 ≤

τ +1
τ−1

||hSh ||1. (A.6)
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By the KKT condition of optimization problem (3.6), we have

||Z̃>(y− Z̃β̂
n)+Cµ||∞ ≤ nλ

for some µ ∈ Rr. Then by Lemma 4,

||Z̃>(y− Z̃β̂
n)||∞ = ||(Ip−PC)(Z̃>(y− Z̃β̂

n)+Cµ)||∞

≤ k0||Z̃>(y− Z̃β̂
n)+Cµ||∞ ≤ k0nλ .

Then

||Z̃>Z̃h||∞ ≤ ||Z̃>(y− Z̃β̂
n)||∞ + ||Z̃>(y− Z̃β )||∞ ≤ k0nλ + ||Z̃>ε||∞.

Using Lemma 5.1 in Cai and Zhang (2013), we can get

|〈Z̃hSh , Z̃hSc
h
〉| ≤ θs,s(Z̃)||hSh ||2 ·max(||hSc

h
||∞, ||hSc

h
||1/s)

√
s

≤
√

sθs,s(Z̃)||hSh ||2 ·
τ +1
τ−1

||hSh ||1/s

≤ τ +1
τ−1

θs,s(Z̃)||hSh ||
2
2.

Then,

(k0nλ + ||Z̃>ε||∞)||hSh ||1 ≥ ||Z̃
>Z̃h||∞||hSh ||1 ≥ 〈Z̃

>Z̃h,hSh〉

= 〈Z̃hSh , Z̃hSh〉+ 〈Z̃hSh , Z̃hSc
h
〉

≥ ||Z̃hSh ||
2
2−

τ +1
τ−1

θs,s(Z̃)||hSh ||
2
2

≥ (δ−2s(Z̃)−
τ +1
τ−1

θs,s(Z̃))||hSh ||
2
2

≥
(

3τ−1
2(τ−1)

δ
−
2s(Z̃)−

τ +1
2(τ−1)

δ
+
2s(Z̃)

)
||hSh ||

2
1/s.

The last inequality comes from θk1,k2(A) ≤
1
2
(δ+

k1+k2
(A)− δ

−
k1+k2

(A)) for any matrix A from Lemma 1

of Kang et al. (2015). The inequality above gives us

||hSh ||1 ≤ s
k0nλ + ||Z̃>ε||∞

n
2(τ−1)

(
(3τ−1)δ−2s(Z̃/

√
n)− (τ +1)δ+

2s(Z̃/
√

n)
) = s

k0nλ + ||Z̃>ε||∞
2nτφ0/(τ−1)

.
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Therefore, by ||Z̃>ε||∞ ≤ nλ/τ and (A.6), we have

||β̂ n−β ||1 = ||hSh ||1 + ||hSc
h
||1 ≤

2τ

τ−1
||hSh ||1 ≤ sλ (k0 +1/τ)/φ0.

Proof of Theorem 2.

β̂
u−β = β̂

n−β +
1
n

M̃Z̃>ε +
1
n

M̃Z̃>Z̃(β − β̂
n)

=
1
n

M̃Z̃>ε +(M̃Σ̂− Ip)(β − β̂
n)

=
1
n

M̃Z̃>ε +(M̃Σ̂− Ip +PC)(β − β̂
n), since C>β =C>β̂ n = 0.

Thus,
√

n(β̂ u−β ) = B+∆ where B =
1√
n

M̃Z̃>ε.

Notice that (Ip−PC)Σ̂(Ip−PC) = Σ̂, and B = 1√
n M̃Z̃>ε = 1√

n M̃(Ip−PC)Z>ε. Thus,

B|Z∼ N
(

0,σ2M̃(Ip−PC)Σ̂(Ip−PC)M̃>
)
= N(0,σ2M̃Σ̂M̃>).

||∆||∞ ≤
√

n
∣∣∣M̃Σ̂− (Ip−PC)

∣∣∣
∞

||β − β̂
n||1

=
√

n
∣∣∣(Ip−PC)

(
MΣ̂− (Ip−PC)

)∣∣∣
∞

||β − β̂
n||1

≤ k0
√

n
∣∣∣MΣ̂− (Ip−PC)

∣∣∣
∞

||β − β̂
n||1.

The last inequality is by Lemma 4.

By Lemma 1, when choosing γ = c
√

(log p)/n, Ω is a feasible solution of the optimization prob-

lem (3.10) with probability at least 1− 2p−c′′ . Therefore,
∣∣∣MΣ̂− (Ip−PC)

∣∣∣
∞

≤ γ = c
√

(log p)/n with

probability at least 1−2pc′′ .
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By Theorem 4, take λ = τ c̃σ
√
(log p)/n,

P(||β̂ n−β ||1 ≤ (k0 +1/τ)λ s/φ0)≥ 1−P(||Z̃>ε||∞ > nλ/τ)

≥ 1−
p

∑
i=1

P(|(Z̃>ε)i|> nλ/τ)

≥ 1−2pexp
{
−1

2
(nλ/τ)2

n(σK)2

}
= 1−2p1−c̃2/(2K2) = 1−2p−c′ .

Altogether, we have

P
{
||∆||∞ >

cc̃k0(k0τ +1)
φ0

sσ log p√
n

}
≤ P

{
||β̂ n−β ||1 ≤ sλ (k0 +1/τ)/φ0 = c̃(k0τ +1)sσ

√
(log p)/n/φ0

}
+ P

{∣∣∣MΣ̂− (Ip−PC)
∣∣∣
∞

≤ γ = c
√

(log p)/n
}

≤ 2p−c′ +2p−c′′ .

Proof of Lemma 1. Note that Σ1/2Ω1/2Z̃l = (Ip−PC)Z̃l = Z̃l . Therefore,

ΩΣ̂− (Ip−PC) =
1
n

n

∑
l=1

{
ΩZ̃l Z̃>l − (Ip−PC)

}
=

1
n

n

∑
l=1

{
Ω

1/2
Ω

1/2Z̃l Z̃>l Ω
1/2

Σ
1/2− (Ip−PC)

}
.

Define v(i j)
l =Ω

1/2
i,· Ω1/2Z̃l Z̃>l Ω1/2Σ

1/2
·, j −(Ip−PC)i, j. Since EΩZ̃l Z̃>l =ΩΣ=(Ip−PC), we have Ev(i j)

l = 0.

Then, by the proof of Lemma 6.2 in Javanmard and Montanari (2014),

||v(i j)
l ||ψ1 ≤ 2||Ω1/2

i,· Ω
1/2Z̃l Z̃>l Ω

1/2
Σ

1/2
·, j ||ψ1

≤ 2||Ω1/2
i,· Ω

1/2Z̃l ||ψ2 ||Σ
1/2
j,· Ω

1/2Z̃l ||ψ2

≤ 2||Ω1/2
i,· ||2||Σ

1/2
j,· ||2||Ω

1/2Z̃l ||ψ2 ||Ω
1/2Z̃l ||ψ2

≤ 2
√

σmax(Σ)σmax(Ω)κ2

≤ 2
√

Cmax/Cminκ
2 ≡ κ

′,
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where ||X ||ψ1 is the sub-exponential norm of a random variable X and is defined as

||X ||ψ1 = sup
p≥1

p−1(E|X |p)1/p.

Applying Bernstein-type inequality for centered sub-exponential random variables (Bühlmann and

Van De Geer, 2011), we get

P

{
1
n

∣∣∣∣∣ n

∑
l=1

v(i j)
l

∣∣∣∣∣≥ γ

}
≤ 2exp

[
−n

6
min

(
(

γ

eκ ′
)2,

γ

eκ ′

)]
.

Take γ = c
√
(log p)/n with c≤ eκ ′

√
n/ log p, we have

P

{
1
n

∣∣∣∣∣ n

∑
l=1

v(i j)
l

∣∣∣∣∣≥ c

√
log p

n

}
≤ 2p−c2/(6e2κ ′2) = 2p−(c

2Cmin)/(24e2κ4Cmax).

Therefore, by union bounding over all pairs of i and j,

P

{∣∣∣ΩΣ̂− (Ip−PC)
∣∣∣
∞

≥ c

√
log p

n

}
≤ 2p−(c

2Cmin)/(24e2κ4Cmax)+2.

Proof of Lemma 2. Suppose M̃ = (m̃1, . . . , m̃p)
>. Since

∣∣∣M̃Σ̂− (Ip−PC)
∣∣∣
∞

≤ k0

∣∣∣MΣ̂− (Ip−PC)
∣∣∣
max
≤ k0γ,

we have 1−PCi,i− e>i Σ̂m̃i ≤ k0γ. Therefore, for all L≥ 0,

m̃>i Σ̂m̃i ≥ m̃>i Σ̂m̃i +L(1−PCi,i− k0γ)−Le>i Σ̂m̃i

≥min
m

{
m>Σ̂m+L(1−PCi,i− k0γ)−Le>i Σ̂m

}
= L(1−PCi,i− k0γ)− L2

4
Σ̂i,i (The minimizer m = Lei/2)

≥min
L≥0

{
L(1−PCi,i− k0γ)− L2

4
Σ̂i,i

}
≥

(1−PCi,i− k0γ)2

Σ̂i,i
(take L = 2(1−PCi,i− k0γ)/Σ̂i,i).
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A.3. Proofs for Chapter 4

Proof of Lemma 3. By (4.6), we have

Varπ̂ t =
∑

n
i=1 N2

it −N·t
N2
·t

Σt +
1

N·t

(
diag(π t)−π tπ

>
t
)

Cov(π̂1, π̂2) =
∑

n
i=1 Ni1Ni2

N·1N·2
Σ12

It can also be shown that

E(St −Gt) = NctΣt

E
(
St +(Nct −1)Gt

)
= Nct

(
diag(π t)−π tπ

>
t
)

EΣ̂12 = Σ12

Thus,

Σπ = Var(π̂1− π̂2)

=
∑

n
i=1 N2

it −N·t
NctN2

·t
E(St −Gt)+

1
NctN·t

E
(
St +(Nct −1)Gt

)
− ∑

n
i=1 Ni1Ni2

N·1N·2
E
(
Σ̂12 + Σ̂

>
12
)

(A.7)

By central limit theorem, we have

||(St −Gt)−E(St −Gt)||max → 0

||
(
St +(Nct −1)Gt

)
−E
(
St +(Nct −1)Gt

)
||max → 0

||Σ12−EΣ̂12||max → 0

(A.8)

Combining (4.8), (A.7) and (A.8), we have

||Σ̂π −Σπ ||max→ 0 in probability as n→ ∞

74



Proof of Theorem 3. Define Sd−1 = {x ∈ Rp : 1>x = 0}. Then π1−π2, π̂1− π̂2 ∈ Sd−1. Therefore

(π̂1− π̂2)
>

Σ
†
π(π̂1− π̂2)→ χ

2
d−1

Now we are going to show that Σ̂
†
π → Σ

†
π in probability.

Let Γ be a projection matrix in the form of [V,1>d /
√

d]. Then, because 1>d Σ̂π = 1>d Σπ = 0, by Lemma 3,

we have

||V>(Σ̂π −Σπ)V||2/d ≤ ||V>(Σ̂π −Σπ)V||max = ||Γ>(Σ̂π −Σπ)Γ||max→ 0 in probability

where || · ||2 is the spectral norm of matrix.

Define ∆ = V>(Σ̂π −Σπ)V. Using Neumann series expansion,

(V>Σ̂π V)−1− (V>Σπ V)−1 =
∞

∑
i=1

(
(V>Σπ V)−1

∆
)nV>Σπ V

⇒||(V>Σ̂π V)−1− (V>Σπ V)−1||2 ≤
∞

∑
i=1
||V>Σπ V||i+1

2 ||∆||
i
2→ 0 in probability

Therefore,

||(V>Σ̂π V)−1− (V>Σπ V)−1||max ≤ ||(V>Σ̂π V)−1− (V>Σπ V)−1||2→ 0 in probability

⇒ ||V(V>Σ̂π V)−1V>−V(V>Σπ V)−1V>||max→ 0 in probability (A.9)

Suppose we have the eigenvalue decomposition of Σπ as Σπ = UΛU>, where U ∈ Rd×(d−1) and

Λ ∈ R(d−1)×(d−1). Then 1>d U = 0. Also, UV is orthogonal because

UVV>U> = U(Id−1d1>d /d)U> = UU> = Id−1
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Therefore,

V(V>Σπ V)−1V> = V(V>UΛU>V)−1V>

= V(U>V)−1
Λ
−1(V>U)−1V> = V(U>V)>Λ

−1(V>U)>V>

= (Id−1d1>d /d)UΛ
−1U>(Id−1d1>d /d) = UΛ

−1U>

= Σ
†
π

Similarly, we have

Σ̂
†
π = V(V>Σ̂π V)−1V>

Combining (A.9), we have

||Σ̂†
π −Σ

†
π ||max→ 0 in probability

Then by Slutsky Theorem, for fixed d and n→ ∞,

F =
n−d +1

(n−1)(d−1)
(π̂1− π̂2)

>
Σ̂

†
π(π̂1− π̂2)→ χ

2
d−1/(d−1)

Since Fd−1,n−d+1→ χ2
d−1/(d−1) for fixed d and n→ ∞, F > F−1

d−1,n−d+1(1−α) is an asymptotic level

α test.
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