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Abstract

Pennsylvania Blue marble used at the Second Bank of the United States. Philadelphia,

Pennsylvania, showed evidence of large-scale spalling, flaking, and sugaring. A

program was designed to investigate the characterization of the Second Bank marble and

the feasibility of consolidation as a treatment option for deteriorating Pennsylvania Blue

marble. Characterization, which included thin section petrography, X-Ray diffraction,

qualitative analysis of salts, and water absorption/bulk specific gravity analyses, resulted

in the recognition of decay mechanisms which were related to inherent mineralogical

composition. The experimental program assessed the performance of artificially

weathered marble treated with ethyl silicate and Acryloid-B72 in methyltrimethoxysilane

in relation to untreated marble through various standardized and non-standardized tests,

namely depth of penetration, microstructural evaluation, accelerated weathering, water

absorption, bulk specific gravity, evaporation rate, water vapor transmission rate,

resistance to salt crystallization, and resistance to abrasion. The study suggests that ethyl

silicate may be a better choice for the marble than B-72 in methyltrimethoxysilane.





Preface

For thousands of years, marble has been favored as a durable and aesthetic building

material. From the Helenic Acropolis to Augustan Rome, from the Taj Mahal to

Westminster Cathedral, marble has been chosen for the finest monuments. As

dimensional stone and cladding, sills, thresholds, fireplaces, floors, and pavements,

marble has provided a decorative, lavish appearance to countless buildings for centuries.

In imitation of the Greek and Roman building traditions, and in evocation of their ideals,

American architects conceived and executed marble banks and civic buildings well into

the nineteenth century: every major city had its marble monuments. Philadelphia was no

exception.

Among the marbles used in nineteenth-century Philadelphia, only Pennsylvania Blue

marble was quarried in the immediate area. Its accessibility, appearance, and reputedly

fine quality resulted in widespread use throughout Philadelphia and the surrounding mid-

Atlantic region. It is not surprising that William Strickland, who worked extensively in

Philadelphia, chose Pennsylvania Blue marble for the commission he "stole" from

Benjamin Latrobe in 1818.

Strickland built the Second Bank from 1818-1824. Judging fi-om the eighteen

commissions Strickland received during these six years, which included the Philadelphia

Custom House, St. Stephen's Episcopal Church, and additions to Wyck in Germantown,





it is clear that the Second Bank commission established him as an important Philadelphia

architect.

In design, the bank exemplifies Strickland's manner of straddling old and new, of

combining traditional form with utilitarian layout. When Strickland wrote that "the

student of architecture need go no further than [Stuart and Revett's] Antiquities ofAthens

as a basis for design,"' he might have been speaking of the Second Bank. The exterior

is Greek Revival in design, like many of Strickland's buildings, and augmented with late

Georgian Neoclassical details. The Doric porticoes located on the front and rear facades

are a direct copy of the Parthenon as illustrated by Stuart and Revett. A contemporary

account lauded this portico as "an important landmark in the development of Greek

Revival Style in this country."

The same article pays only minimal attention to the building material. "The building is

constructed of a pleasing Pennsylvania marble, white with blue veins, which weathers

well. It is called Chestnut Hill marble." This stone, more commonly referred to as

Pennsylvania Blue marble, is the focus of this thesis. As an easily accessible, fine quality

marble, it was highly prized during the nineteenth century in Philadelphia. Girard

College and the U.S. Customs House in Philadelphia, the Washington Sarcophagi at

Mount Vernon, and the Pennsylvania marble blocks in the Washington Monument are all

'

Strickland, William, quoted in Agnes Addison Gilchrist, fT/V/Zam Strickland: Architect and Engineer

(Philadelphia; University of Pennsylvania Press, 1950), 31.

2
Analectic Magazine 13 no. 3 (March, 1819).





constructed of Pennsylvania Blue. The marble was quarried at Marble Hall, in

Montgomery county, near Flourtown.

Though used for major buildings and monuments, Pennsylvania Blue marble has never

been studied in depth. Now that serious deterioration has been observed at the Second

Bank and the Merchant's Exchange, among others, it was vital that a thorough analysis be

performed to assist in characterization of the marble as one component of an exterior

building system, in understanding of its weathering patterns, and in development of

treatment methods.

The thesis begins with a thorough petrographic and geo-technical characterization of the

material and its intrinsic decay mechanism, followed by research on the chemistry and

logistics of consolidation, and concludes with an experimental program designed to test

for the compatibility of Pennsylvania Blue with the chosen consolidants. The thesis was

intended to broaden technical knowledge of Pennsylvania Blue marble, and to utilize its

information to address some of the possible major decay mechanisms present at the

Second Bank of the United States, and in Pennsylvania Blue marble monuments

throughout the mid-Atlantic states.

Consolidation was proposed as a potential conservation option based on the

microstructural characterization and macroscopic decay patterns observed at the Second

Bank. Two consolidant systems were examined in relation to each other and to the

untreated stone in an attempt to evaluate the viability of this conservation procedure.





It is hoped that the information presented in this thesis will be utilized in two ways. First,

the thesis has been written as a documentary tool, in which assessment and experiment

are viewed as part of a larger conservation plan, composed of a monument, and in a larger

sense, of a building's conservation history over time. In addition, the thesis has been

written to provide introductory information about the performance of Pennsylvania Blue

marble as a building material.

Throughout the following text and the appendices, samples will often be referred to in an

abbreviated manner. The abbreviations are as follows: U refers to untreated Pennsylvania

Blue marble, E refers to ethyl silicate-treated Pennsylvania Blue marble, and B refers to a

Acryloid B-72 and methyltrimethoxysilane-treated marble





1.1 Overview

Chapter one focuses on characterization of Pennsylvania Blue marble at the Second Bank

of the United States. A series of analyses and geo-physical tests were performed in order

to ascertain the mineralogical composition, morphology, physical properties, and related

decay mechanisms of Pennsylvania Blue. The following chapter will show that the

degrad-ation of the Second Bank marble is largely due to the microstructure of Pennsyl-

vania Blue. The interaction between moisture, calcite crystals, and accessory minerals

can be related to both microscopic and macroscopic deterioration. Decay on primary and

secondary building facades can be differentiated, and even predicted, by mineralogical

composition.

The information gained in this chapter will provide baseline information for the

Indepence National Historical Park division of the National Park Service regarding the

current state of deterioration at the Second Bank of the United States, as well as archival

information for future conservation campaigns. In addition, the characterization provided

a basis for the selection of appropriate consolidants, and the formulation of an

experimental program to test and refine those treatments.

Because composition, microstructure, physico-mechanical properties, and weathering

patterns differ for every monument and its environment, characterization of the

Pennsylvania Blue marble for this study was restricted to sampling from the Second





Bank, rather than expanded to include a range of Pennsylvania Blue marbles from various

buildings over time.

1.2 Lithogenesis and General Characteristics of Marbles

Commercially, marbles are often confused with limestones. Though geologists classify

metamorphic marbles as distinct from sedimentary limestone, builders" definitions are

broader; any stone that will take a polish is termed a "marble." This disparate

terminology represents a potential problem for the architectural conservator, as buildings

called "marbles" may be assumed metamorphic marbles, and treated as such without

proper understanding of the geo-chemical make-up of the stone. The subsequent use of

incompatible cleaning and conservation techniques can irreparably damage the stone.

This can be avoided if the conservator is familiar with the properties of metamorphic

marble in general, and if a thorough analysis of each building stone is performed before

any treatment is implemented.

Marbles, as metamorphic rocks, form due to intense heat and pressure exerted upon

previously crystallized limestones in the earth's crust and upper mantle. During this

process, they recrystallize and lose many characteristics of the parent limestone. Because

the components are rearranged mechanically and/or chemically, the resultant stone is

likely to attain entirely new structure and mineralogy.





Marble consists mainly of calcite (CaCO,), or crystalline calcium carbonate. Where

magnesium ions replace calcium ions to some extent, the result is dolomitic marble ((Mg,

Ca)C03). During metamorphism, calcite and dolomite minerals alter and recrystallize to

form a roughly interlocking network. The size of the constituent grains depends

primarily upon the extent of metamorphism. Grain size generally increases with

prolonged metamorphic exposure.

Non-calcareous minerals present in the parent stone metamorphose within the calcite

matrix. These secondary or accessory minerals are often responsible for marble hue and

banding, as well as for characteristic physical and mechanical properties exhibited by

various marbles. Inclusions vary with location; quartz, iron, graphite, and various micas

are common (Table 1).

1.3 History and Use of Pennsylvania Blue Marble

Throughout the nineteenth century, builders in the mid-Atlantic United States used

Pennsylvania Blue marble extensively. Only the King of Prussia quarry and Marble Hall,

both in Montgomery county, produced this prized marble. Three colors were available:

white, gray, and white banded with gray-blue. The appearance of Pennsylvania Blue,

combined with its reputedly fine quality and accessibility, made it a natural choice of

Philadelphia architects. High-profile buildings such as Girard College, the Second Bank

of the Unites States, and the United States Customs House in Philadelphia, the





Washington Sarcophagi at Mount Vernon, and the Pennsylvania marble blocks in the

Washington Monument were all constructed of Pennsylvania Blue.

Contemporary geological literature characterized Pennsylvania Blue marble as a highly

metamorphosed magnesian limestone. Its granular crystallinity was often noted, as was

its gray-blue banding. The 1891 Geological Survey ofPennsylvania identifies the

banding as graphite, and notes the presence of isolated iron sulfate crystals.

Pennsylvania Blue is no longer quarried. By 1934, both the King of Prussia quarry and

Marble Hall had been abandoned. The steep slope of the marble belt had made quarrying

difficult and expensive, yet the stone remained highly desirable, and the limited quantity

of fine-quality marble was quickly exhausted.

1.4 Macroscopic Deterioration of Pennsylvania Blue Marble

When Strickland chose Pennsylvania Blue marble for the Second Bank of the United

States, it had a fine reputation. The Analectic Magazine, of March, 1819, described the

stone as follows: "the building is constructed of a pleasing Pennsylvania marble, white

with blue veins, which weathers well."'* Judging from the performance of Pennsylvania

Blue marble over the next sixty years, it appears that weathering "well" may actually

-
. have meant weathering "attractively." According to the geological literature, the first

^ Geological Survey ofPennsylvania (Harrisburg, PA: Pennsylvania Geological Society, 1891), 469.

"*

Analectic Magazine 13 no. 3 (March 1819).





recorded incidence of damaged Pennsylvania Blue occurred in the last decade of the

nineteenth century.

As early as 1891. geologists realized that Pennsylvania Blue buildings were spalling, and

attributed this to bands of pyrite, which "subject[ed the buildings] to a slow decay" over

time.^ At the United States Customs House, frontal columns experienced serious loss

less than sixty years after its construction. Philadelphia's cold weather and winter storms

were deemed responsible, decayed stone was ultimately replaced with new marble, and

provisions were made for periodic replacement.

The Second Bank of the United States, located on Fourth and Chestnut Streets in

Philadelphia, displays decay mechanisms typical of Pennsylvania Blue. The first report

of loss is dated to 1923, when the consulting architect noted the loss of the fluting was

noted from the columns. Spalling of columns was reported twice in 1964. Similar

cornice and column loss was reported in 1983, 1986, 1989, 1994, and 1995. It is

probable that far more marble was lost than has been recorded; maintenance staff often

re-adhered spalled marble without documentation.

With continued spalling, potential hazards have increased. Because the Second Bank is a

public museum, there is a constant flow of visitors below the cornice and columns. In

addition, the aesthetic and structural integrity of the building may be compromised as

Geological Survey ofPennsylvania, 467.

Ibid., 468.





portions of the columns and cornice continue to spall. Before a conservation plan is

undertaken, characterization of the building marble and its weathering patterns were

deemed necessary to provide a basis for treatment. Samples of stone from the cornice,

frontal blocks, and side blocks has been analyzed, utilizing petrography, x-ray diffraction,

and microchemical analysis. The remainder of this chapter describes these results and

attempts to relate the findings to macroscopic and microscopic deterioration patterns

observed at the Second Bank, and, in a general sense, to all Pennsylvania Blue

monuments.

James Toner, "Literature Review and Conservation History for the Second Bank of the United States"

(Independence National Historical Park, Philadelphia, PA), 22-23.





1.5 Characterization of Pennsylvania Blue Marble

1.5.1 Petrographic Analysis

Petrographic analysis was performed to ascertain the mineral geometries and

relationships present in Pennsylvania Blue marble. Three samples of Pennsylvania Blue

were selected from Independence National Historical Park's Second Bank collection of

spalled marble. The samples, chosen by macroscopic visual examination, differed in

mineralogical composition and building placement. One sample, from the cornice,

appeared to be primarily calcite. with visible inclusions. A second sample, from an

unspecified portion of the building (probably cornice or column), was white with fewer

visible inclusions. The third sample, from a secondary facade, was markedly

differentiated from the other two samples by its gray color. Thin sections were viewed in

reflected light, plane polarized light, and with crossed polars. Sections were stained with

Alizarin Red S to ascertain the extent of calcite, and with Trypan Blue to differentiate

between quartz and dolomite.





1.5.1.1 Sample I

Hand Specimen

Location: primary facade

Color: white

Grain size: fine-grained

Observable mineral content: calcite

Thin Section

CrystalUnity: holocrystalline

Grain size: medium

Texture: crystalloblastic

Groundmass:

Calcite, 95 %, evidenced by rhombohedral cleavage traces, polysynthetic twinning. Lack

of single focus for all grains points to extreme pitting on a granular level.

Accessory Minerals:

Foreign materials 5%.

• Infrequent granular porphyroblasts vary in size from small to large. White in plane

polarized light, high order interference colors. Alteration due to metamorphism and

weathering makes positive identification different. Quartz is suspected.

• Some platy, micaceous material, probably muscovite.

Because the stone samples were obtained from an unlabeled building collection housed off-site, exact

sample locations were impossible to obtain.





Figure 1 . Thin Section of Sample I. crossed polars. 25X. Note twinning and tight

interlockuis of calcite strains.

Figure 2. Thin Section of Sample I. crossed polars. lOOX. Micaceous inclusion,

inierlockmt! calciie Lirains.





1.5.1.2 Sample II

Hand Specimen

Location: cornice, primary facade

Color: white

Grain size: fine-grained

Observable mineral content: calcite, mica

Thin Section

Crystallinity: holocrystalline

Grain size: fine

Texture: crystalloblastic

Groundmass:

Calcite, 90 %, evidenced by rhombohedral cleavage traces, polysynthetic twinning.

Some alteration visible.

Accessory Minerals:

Foreign materials 10 %.

• Isolated micaceous laths with single cleavage, high-order interference color,

orientation in one direction. Probably muscovite.

• Angular to subrounded grains of quartz show heavy pitting. Same material forms

veins. These grains are dark in reflected light, and fit well into the calcite matrix,

implying that their formation was congruent with that of the calcite.

• Isolated subround crystals of orthoclase, evidenced by simple twinning.

10





Figure 3. Thin Section of Sample II. Crossed Polars. 25X. Note interlocking calcite

matrix, bright while quartz granules, and orthoclase. evidenced by simple twimiing.

Figure 4. Thm Section of Sample II. Crossed Polars. lOOX. Note mica inclusions and

orthoclase.





1.5.1.3 Sample III

Hand Specimen

Location: secondary facade

Color: medium gray

Grain size: fine-grained

Observable mineral content: calcite, graphite

Note: tooling marks visible on surface of stone.

Thin Section

Crystallinity: holocrystalline

Grain size: fine

Texture: crystalloblastic

Groimdmass:

Interlocking calcite grains. 99 %, evidenced by rhombohedral cleavage traces,

polysynthetic twinning. Both white and gray calcite are visible. This may have to do

with crystallographic orientation. White crystals have reflective surface; gray crystals do

not.

Accessory Minerals:

foreign material 1 %.

• Black, opaque veins. In reflected light, reflective surface is visible, implying metallic

component, appear to be graphite.

• Platy mica, evidenced by single cleavage trace, high-order interference color,

orientation in one direction, probably muscovite.

12





Figure 5. Thin Section of Sample III. plane polarized light. 25X. Note orthoclase. mica,

replacement mmerals ai calcne centers.

Figure 6. Thin Section of Sample III. crosscLx poiais. lOUX. stamed for calcite. Note

graphite inclusion, replacement within calcite matrix.





1.5.2 Supplementary Analyses

1.5.2.1 X-Ray Diffraction

X-Ray diffraction was performed at the University of Pennsylvania's Laboratory for

Research on the Structure of Matter, on a Rigaku Powder X-Ray Diffratometer set at 30

kilovohs and 20 milliamps. to ascertain mineralogical composition and to assist in

petrographic analysis. Two samples from the Second Bank and one from the Study

Collection at Independence National Historical Park were analyzed. Samples were

chosen to provide mineralogical data for a range of compositions suspected to be present

in Pennsylvania Blue marble.

The closest mineralogical match for all three samples was calcium magnesium carbonate

(CaMgCOj), or dolomite (Charts 1 and 2 present the information relevant to

characterization of the Second Bank of the United States). None of the three samples,

however, was an excellent match. Graphical information obtained using x-ray diffraction

was used in conjunction with polarized light microscopy to explain this phenomenon.

In metamorphosed calcite, magnesium ions commonly replace calcium ions, resulting in

crystals of (Ca,Mg)C03 rather than crystals of CaCOj. The replacement factor, as well as

isolated dolomite crystals present within the calcite matrix, account for the presence of

magnesium. In short, x-ray diffraction provided conclusive evidence of magnesium.

14





which confirmed a century-old geological descripfion of Pennsylvania Blue as a

dolomitic marble.

1.5.2.2 Soluble Salt Analysis

Purpose

To ascertain the presence and composition of soluble salts.

Relevance

Soluble salts may occur as intrinsic natural stone constituents, or result ft-om associated

building componenets, atmospheric pollution, rising damp, maritime environments,

biological activity, or chemical treatment. Regardless of origin, salts are often seriously

detrimental to porous building materials. Surface salt deposits are soluble in water, and

can be easily carried into pores. When evaporation occurs, some salt remains within pore

spaces and crystallizes. These salts can increase in size with repeated crystallization,

eventually causing pore strain and resultant displacement, pitting, powdering, or flaking.

Detection and analysis of these salts is necessary to complete characterization of stone;

after documentation, a complementary conservation treatment can be prescribed, and

protective measures instituted.

Methodology

Geological Survey ofPennsylvania (Harrisburg, PA: Pennsylvania Geological Society, 1891), 469.

15





A chunk of representative Second Bank marble, consisting of surface crust, disaggregated

stone, and sound stone, was chosen from the front facade. The sample was ground to a

powder using a mortar and pestle. Representative samples were tested for the presence of

carbonates, sulfates, chlorides, phosphates, and nitrates, using standard chemical reagent

"spot tests."

Discussion and Conclusions

Qualitative analysis ascertained that three of the five salts tested for were present in

Pennsylvania Blue marble (Table 3). Presence of carbonates and nitrates was

immediately visible; phosphates and chlorides were not found. As the marble consists

primarily of calcium carbonate, it was expected that its reaction with reagent sulfuric acid

would be extreme. Nitrates can be attributed to biological activity, in this case, possibily

pigeon excrement due to sample location.

Sulfates were detected in the surface crust and 0.5 cm below the surface after ground

samples were soaked for 24 hours in distilled water. The sulfates can be attributed to the

presence of atmospheric pollutants in an urban area.

16





1.5.2.3 Water Absorption and Bulk Specific Gravity

Purpose

To measure the water absorption and bulk specific gravity of weathered Pennsylvania

Blue marble at the Second Bank of the United States.

Reference

ASTM C 97-83: ^'Standard Test Methods for Absorption and Bulk Specific Gravity of

Dimension Stone"

Relevance

This test measures relative porosities of weathered Pennsylvania Blue marble. The

information is critical to the conservator in regards to both stone durability and to the

effectiveness of subsequent consolidation treatments. Bulk specific gravity provides a

related measure of sample density versus porosity.

Methodology

Two representative samples were chosen, white marble from the cornice level of the

primary facade and gray marble from the secondary facade. Both samples had naturally

spalled from the building surface. The white marble had developed a surface crust and

showed evidence of disaggregation. The gray marble was comparatively intact, and still

showed evidence of tooling marks.

17





The samples were dried in the oven for 24 hours, placed in a dessicator for 24 hours, and

weighed. They were then soaked in distilled water for 48 hours, and weighed again.

Finally, the samples were hydrostatically weighed using a specific gravity balance.

Percentages of water absorption and bulk specific gravity were calculated (Table 2).

Discussion and Conclusions

Both samples of Second Bank marble show less than one percent maximum water

absorption. Bulk specific gravity shows the white marble to be denser that the gray.

The amount of water absorbed by the white marble, however, is nearly triple that

absorbed by the gray. This can be explained by the fact that the white marble is

comparatively heterogeneous. Heterogeneity has resulted in enlarged pore space and

disaggregation, which in turn has allowed for penetration of moisture and soluble salts.

18





1.6 General Conclusions

At least three varieties of Pennsylvania Blue marble appear to have been in the building

of the Second Bank of the United States. All consist of at least 90 % calcite (with

replacement magnesium, to some extent), and differ in the amount of accessory minerals

and deterioration level. Marble used for the secondary facades (Petrographic Sample III)

remains relatively intact. It is comparatively dark in cqlor and nearly homogenous in

texture, with 1 % or fewer accessory materials. Its interlocked structure is responsible for

its lack of porosity. Medium-grained white marble was used to build the front and rear

facades (Petrographic Sample I). This stone has a slightly higher proportion of foreign

material and a higher porosity and permeability; hence it is often more deteriorated than

the darker marble used for the side facades. Fine-grained, porous white marble was used

at the cornice level, and presumably wherever sculptural details required a workable stone

(Petrographic Sample II). This stone shows the highest proportion of accessory minerals,

namely mica, quartz, and orthoclase. When this knowledge is combined with the stone's

relatively high porosity and location, it is not surprising that high levels of salts,

disaggregation, and spalling are present in this area.

Stone deterioration at the Second Bank stone is clearly related to the inherent geo-

chemical and micro-fabric characteristics of Pennsylvania Blue marble in conjunction

with varying exposure. Calcite crystals on the front and rear facades show extreme pitting

in thin section. Micro-corrosion is visible along grain boundaries and cleavage traces,

which act as weak micro-planes along which moisture and salts may enter porous stone.

19





On the darker secondary facades, where the stone is homogenous, it is relatively intact;

170-year old tooling marks are still visible. On the primary facades, where the stone is

heterogeneous, and higher proportions of inclusions can be documented, the marble has

disaggregated and spalled to a signitlcant degree.

In conclusion, the presence of various shapes and sizes of accessory minerals weakens the

interlocking calcite matrix of Pennsylvania Blue marble. Quartz and orthoclase, present

as isolated crystals, tend to act as wedges, forcing the matrix apart and creating clumps of

disaggregated grains. Mica, present in lamellar beds, is responsible for planar failure due

to its phyllosilicate "sheet" structure. The weight of pollution-related surface crusts may

aid in inducing surface flaking, causing additional areas of marble to spall.
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2.1 Overview

This chapter addresses the chemistry, performance criteria, and application techniques of

polymers, focusing on two stone consolidants: alkoxysilanes and alkoxysilane-acrylic

resin mixtures. Because the project was begun knowing that consolidation was a viable

consideration, the program has focused on the evaluation of two systems.

2.2 General Characteristics of Consolidants

All stone consolidants are natural or synthetic formulations intended to restore grain-to-

grain contact of disaggregated stone and to slow the effects of deterioration. Typical

stone consolidants include alkoxysilanes, acrylic polymers, epoxies, polyurethanes,

waxes, barium hydroxide, and limewater.

A typical consolidant is applied as a liquid, reacts with its surroundings or other

ingredients, and eventually solidifies to form a sound binding matrix. The cured

consolidant alters physical and/or mechanical properties of weathered stone, effectively

creating a more coherent stone. Nimierous authors, including Horie, Amoroso and

Fassina, Heaton, and Warren, have provided comprehensive guidelines for successful

consolidants. The following is a general consensus of desirable properties for large-scale

applications.

Before and during application
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• The consolidant should penetrate to a sufficient depth during application, and remain

there after it dries.

• It should not react with the substrate, nor should it form a continuous film on the

surface.

• Application should not be harmful to the operator or environment

• The consolidant should be reasonably priced and easy to apply.

Compatibility with stone

• The product must have a thermal expansion coefficient which is compatible with the

stone, and should adapt to the changing conditions of the stone, whether wet or dry,

cold or warm.

Visual appearance

• After the consolidant cures, it should not alter the color, texture, or gloss of the stone.

Protectionfrom external substances

• The product should protect the stone from exterior weathering agents, such as acid

and alkaline pollutants, biological growth, wind, and moisture.

Strength and hardness

• By increasing grain to grain contact, the consolidant should strengthen the substrate to

a reasonable degree.

Moisture passage

• The consolidant should not affect water vapor transmission.

• The consolidant should reduce accessibility of liquid moisture to the stone interior,

while allowing sufficient moisture evaporation.

Durability

• The product should be durable and long-wearing.

reversibility

• The consolidant should allow for retreatment at any time.

Many properties, including clarity, strength, and stability, differ between consolidants.

This is a result of such factors as the consolidant's chemical composition, the application

procedure, its subsequent reaction, and the hardening process. The consolidant effect

may differ between stone types. Ethyl silicates, for example, form a network similar to

silica, which makes them particularly compatible with siliceous stones.
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and are not soluble in solvents. Subsequently, cross-linked polymers are irreversible once

they have solidified.

The processes by which monomers become polymers are collectively called

polymerization. Condensation, addition, and network polymers react to form stone

consolidants. Addition polymerization may occur in any monomer with carbon atoms

connected to a double bond (C=C; the monomer may use one of its bonds to join to

another carbon. Condensation polymerization occurs when two dissimilar molecules

react, forming a polymeric product and a by-product. Network polymerization occurs

when long polymer chains are linked or interact with small molecules to form a branched

network." Relevant polymerization processes will be discussed later in this chapter.

Polymeric coatings show great variability in physical and mechanical properties. They

range from flexible and strong to brittle and weak. They differ in refractive index, color,

and gloss. Some mechanical properties of a polymer may be inferred through molecular

size and weight and glass transition temperature. Molecular size and weight are

responsible for the viscosity of a solution, because the large molecules show resistance to

flow. " Glass transition temperature indicates the temperature at which a glassy

substance loses its solid properties, and tends toward a semi-liquid state. When choosing

a consolidant, the determination of glass transition temperature (gtt) is vital. A high gtt

C.V. Horie, Materialsfor Conservation: Organic Consolidants, Adhesives and Coatings (London:

Butterworths, 1987), 11-12.

Conservation Unit of the Museums & Galleries Commission, Science For Conservators. Volume 3:

Adhesives and Coatings (London: Routledge, 1987), 32-36.
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may be overly brittle, and crack under thermal or mechanical stress, while a low gtt may

result in a malleable, tacky coating which attracts dirt and dust, and, once bound to the

coating, is not removable without also removing the consolidant. An ideal polymer has a

glass transition temperature near room temperature. It should be noted that cross-linked

polymers cannot flow above the gtt (they may, however, become rubbery).

Polymers do not last forever. As the polymer ages, it may discolor, embrittle, weaken,

attract dirt, migrate, or crack. Heat, ultraviolet light, oxidation, and pollution are natural

enemies of polymers. However, polymeric consolidants used for architectural conserv-

ation must necessarily be exposed to some, if not all, of these mechanisms. Therefore

polymeric consolidants should be applied and monitored with their formation and

deterioration possibilities in mind to minimize the risk of inappropriate, improperly

applied, or deficient polymeric materials.

2.4 Application of Polymers

Conservators have documented four successful methods of applying polymeric materials

to stone. The methods include immersion in the consolidating solution at atmospheric

pressure, immersion under vacuum, absorption by capillary rise (partial immersion), and

surface application by brushing or spraying. Amoroso has reported good penetration of

the consolidant (on sandstone) using all four methods. The percent of consolidant

'^
Ibid., 17.
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absorbed by weight was similar. ' However, porosity of the chosen material will affect

the amount of consolidant retained, as will the chemical composition of the substrate

itself (consolidants perform differently on siliceous stones, due to the compositional

similarity of consolidant and stone, than they due on calcareous stones).

The following program examined application by two methods: absorption by capillary

rise and surface application. Capillary rise was examined because it is easily performed

in the laboratory and because it insures consolidation to the greatest depth possible.

Surface application was also performed to simulate field application, as absorption by

capillary rise is impossible when treating an entire building.

Regardless of technique, the stone must be clean and dry before application to insure

adequate penetration. If the chosen consolidant gels through a hydrolysis reaction, the

stone must not be completely without moisture, or the reaction carmot proceed. Dry, in

this sense, refers to excess surface and substrate moisture. Stone moisture should be at

equilibrium with room (or outdoor) temperature and humidity. In addition, all salts

should be removed from the stone prior to the consolidation process where possible to

avoid the possibility of consolidating foreign material within the stone substrate.

2.5 Ethyl Silicates

Amoroso and Fassina
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Ethyl silicates are possibly the most widely used consolidant for architectural stone

conservation. As noted by geologists,''* chemists. '^ and conservators.'^ their silicate

structure gives them particular affinity to sandstone and other siliceous stones. Ethyl

silicates have been successfully utilized in stone conservation for decades, "with good

durability and no discoloring."'^ It should be noted that ethyl silicates alone do not have

waterproofing properties. However, the minimization of pore size due to the application

of consolidant may result in a slight decrease in moisture intake.

As mentioned in the previous section, ethyl silicates are cross-linking polymers, and

within that group are alkoxysilanes. They may be chemically classified as silicic acid

esters, and within this context, as monomeric silane derivatives. Conservators most

commonly use tetraethoxysilane, a type of silicic acid ester, for stone conservation. The

conservator should be aware that proprietary products or custom formulations entitled

silicic acid ester, tetraethoxysilane, tetra ethyl silicate, and TEOS probably all refer to

ethyl silicates. Wacker Chemie manufactures an ethyl silicate called Wacker OH in

Germany, marketed by ProSoCo in the United States under the name of Conservare OH.

Ethyl silicates are widely appreciated for their dual nature as synthetic polymers with

mineral structures. As stated by Amoroso and Fassina, ethyl silicates "possess both the

14
Erhard M. Winkler, Stone in Architecture: Properties and Durability in Man s Environment (New

York: Springer Verlag, 1994), 270. (Hereafter Winkler.)

A. Elena Charola, personal communication.

Amoroso and Fassina, 245.
" Winkler. 270.
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advantages of a synthetic polymer, when put in solution and applied to the stone, and the

durability of a mineral product because of the formation of silicon dioxide."'^

Once applied to the stone, polymerization occurs in the presence of traces of water.

Through hydrolysis and condensation reactions, silica is deposited in a gel form within

the pores of the stone. As the reaction proceeds, ethanol is given off as follows:

Si(OC2H5)4 + 4H2O -> 4C2H5OH
pore water silica geJ ethanol

In the absence of sufficient humidity, the reaction will not proceed fully, as the pores will

not retain sufficient water to impel the reaction. Completion of the reaction takes a

number of weeks.

Tabasso's work with ethyl silicates on Lecce limestone allows for a projection of its

performance on Pennsylvania Blue marble. The decrease in porosity should cause a slight

decrease in water absorption. In addition, water vapor transmission and evaporation rate

are expected to change slightly. In addition, performance over time is expected to show

positive results. It should be kept in mind, however, that as the ethyl silicate loses

water, it may gradually shrink, causing matrix cracking over time.

2.6 B-72 in Methyltrimethoxysilane

Amoroso and Fassina, 245.
19

M. Laurenzi Tabasso and U. Santamaria, "Consolidant and Protective Effects of Different Products on
Lecce Limestone," 707, in Fifth International Congress on the Deterioration and Conservation ofStone.
25 - 27 September 7955 (Lausanne, Switzerland: Presses Polytechniques Romandes, 1985). (Hereafter

Tabasso and Santamaria.)
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The second consolidant system to be tested is a combination of Acryloid B-72 in

methyltrimethoxysilane (liereafter referred to as MTMOS), a system which has been

proposed and studied in depth by George Wheeler, primarily on museum objects. In the

past, the desirable aspects of MTMOS have been outweighed in the past by its extreme

volatility and tendency to evaporate very quickly. The addition of B-72 to MTMOS

stabilizes the system to some extent, and in addition provides an adhesive quality to the

consolidant."" The adhesive quality is useful in providing the re-establishment of grain to

grain contact of flaking stone, such as that found on the primary facade at the Second

Bank of the United States. Furthermore, the addition ofMTMOS to B-72 aids in larger

polymeric chains, and eventually in even consolidant penetration. This prevents the

formation of a surface film which may peel away.

B-72 is an synthetic acrylic polymer, a one to one ratio of methylmethacrylate and ethyl

acrylate. In the United States, it is distributed by Rohm and Haas in Philadelphia,

Pennsylvania. As a synthetic resin, it consists of chains of monomers:

H2C=C— COOCH3

H

20
George Segan Wheeler, G.L. Shearer, S. Fleming, L.W. Kelts, A. Vega, and R.J. Koestler, "Toward a

Better Understanding of B-72 Acrylic Resin/Methyltrimethoxysilane Stone Consolidants: Materials

Research Society Symposium Proceedings," 209, in Materials Issues in Art and Archaeology II. San

Francisco. 1 7 April 1990, edited by Pamela B. Vandiver, James Druzik, and George Segan Wheeler.

(Hereafter Wheeler. "Towards . .
..")

"'
E. De Witte, "Resins in Conservation: Introduction to their Properties and Applications," in Proceedings

ofthe Symposium Resins in Conservation. University ofEdinburgh, Edinburgh, United Kingdom, 21-22

May 1982, edited by J.O. Tates, N.H. Tennent, and J.H. Townsend (Edinburgh: Scottish Society for

Conservation and Restoration, 1983), 1-3. (Hereafter De Witte, "Resins in Conservation.")
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As Amoroso states, a cross-linking, polymeric chain can be created by the addition of a

cross-linking agent.'" In the B-72/MTMOS system, MTMOS acts as such an agent. The

B-72 structure above is alternated with the MTMOS structure:

OCH3

CH3— Si— OCH3

OCH,

The B-72/MTMOS system requires fresh dissolution of the B-72 in MTMOS before the

consolidation procedure. During dissolution of B-72, the polymers' knotted solid state is

dissolved as molecules ofMTMOS penetrate the polymeric chain.^^ The use of a solvent

"prevents the migration phenomenon, and therefore, movement of dissolved resin

towards the evaporation surface.
"^'^

During polymerization, the B-72 copolymers react to become a single polymeric chain.^'

The reaction requires , moderate warmth, light, and air, in conjunction with a low reaction

temperature, which allows macromolecules with high molecular weight to form, and

proceeds through hydrolysis and condensation, as in the ethyl silicate reaction. B-72

counteracts the liquid MTMOS, resulting in a slowed reaction in which the methoxy

" Amoroso and Fassina, 335.

De Witte, "Resins in Conservation.'

Amoroso and Fassina, 344.
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groups ofMTMOS hydrolyze. while the methyl groups do not. At this time, a low

reaction temperature is desirable, as it allows the formation of large molecules.' As the

liquid slowly gels, B-72 begins to promote condensation, and the reaction proceeds to

completion over a number of weeks."

The performance reports of B-72 underscore its variability. Tabasso's work with Lecce

limestone projects that absorption and penetration depth are expected to be low. Water

vapor transmission and evaporation rate will probably be reduced. Water repellency

should be increased. B-72 may not perform well after artificial weathering. However,

Amoroso and Fassina's compilation reports more positive results; acrylics such as B-72

are UV- and heat-resistant, show strong water repellency, and low propensity to

oxidize."^ In addition, they note that "acrylics usually scratch fairly easily and can crack

with time, although toughness and abrasion resistance are improved as molecular weight

As George Wheeler has suggested, the addition ofMTMOS to B-72 may aid in the

stability of the system. Hone notes that the polymer formed from MTMOS is tough,

rigid, and resistant to solvents and photo-oxidation.^' The combination of the two systems

is expected to raise the overall results.

De Witte, Resins in Conservation.
26

Amoroso and Fassina, 325-6.

Wheeler. "Towards . .
.," 225.

Tabasso, 706.

Amoroso and Fassina, 324.
^°

Ibid.. 333.
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3.1 Overview

This chapter details the program of the consolidation testing procedure based on

characterization data and consolidant chemistry. Sample pretreatment, artificial

weathering of samples, treatment of weathered samples, experimental program,

conclusions, and recommendations for future research are addressed. Based on the

experimental program designed for this research, an application of ethyl silicate or B-

72/MTMOS to Pennsylvania Blue marble is likely to inhibit deterioration. Furthermore,

this chapter provides an internal comparison of the properties and performance of B-

72/MTMOS and ethyl silicate on Pennsylvania Blue marble.

The information gained in this chapter will provide baseline information for the National

Park Service regarding the possible consolidants for use at the Second Bank of the United

States, as well as archival information for future conservation campaigns. In addition, the

program provides a basis for consolidation information on other Pennsylvania Blue

marble monuments, as well as a theoretical comparison of consolidant properties and

performance of two coatings commonly utilized in art and architectural conservation.

The procedures detailed in the following chapter provide only brief summaries of

methodology, focusing instead on purpose, reference, rationale, discussion of results, and

. conclusions obtained. Full procedural documentation and program data (tables) can be

^' Horie, 156
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experiment simulates the weathering undergone by buildings and outdoor monuments as

they are exposed to the environment over time.

Methodology

Samples may be variable in size; scrap samples with at least one crisp edge should be

used to allow for evaluation of deterioration. Samples should be elevated in sulfuric acid

solutions, by means of glass beads or rods, to insure penetration on all sides. Samples

should be weathered in a fume hood. Protective goggles and acid-resistant gloves should

be worn.

Discussion and Conclusions

Samples were weathered in sulfuric acid solutions of various molarity, based on a

comparative review of relevant literature (Table 4). It was found that the relatively intact

Pennsylvania Blue required a highly concentrated solution of acid to induce erosion. A

solution of sulfuric acid with molarity of 3 was chosen for the weathering procedure, as

an acid solution with high enough molarity to weather the stone, while remaining

relatively safe to use.

3.3.2 Artificial Weathering of Pennsylvania Blue Marble Specimens

Concentrated sulfuric acid was diluted with distilled water to 3 molar in preparation for

the acid bath. Two acid-resistant plastic tubs were filled with glass beads and glass rods
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Samples were consolidated in a fume hood over a twelve-hour period following a pre-

treatment weighing. The majority of the samples were treated using the partial

immersion process, which promotes effective penetration through direct contact with the

consolidant solution and through capillary rise of that solution. Samples were placed in a

container filled with the consolidant to depth of 1-2 centimeters. When the capillary rise

appeared complete, the samples were removed from the solutions (Figiire 8).

Those samples to be tested for penetration depth were consolidated using one of the

recommended field procedures, namely of a brush application procedure detailed by

manufacturers and conservators as a simulation of field application. Samples to be

treated with ethyl silicate has the consolidant applied in cycles of three applications to

saturation, with five minutes between each application, and 20 minutes between cycles.

Two cycles were performed on the Pennsylvania Blue laboratory samples, and three on

the Second Bank Pennsylvania Blue samples. Samples to be treated with B-72/MTMOS

were consolidated by brush application to the beading point, showing that no fiorther

consolidant was being absorbed.

Samples treated with B-72/MTMOS were tented with plastic wrap after the first half hour

of drying to retard the volatility of the solvent (Figure 9). The samples were allowed to

.dry in a fume hood for 36 hours (Figure 10). Following the initial drying period, the

consolidated samples were removed from the fume hood and allowed to dry at room

temperature and relative humidity for two weeks.

36





Following the drying period, samples were reweighted to give an approximate weight

percent increase (Table 5). Ethyl silicate-treated stones showed an increase of 0.22%,

while B-72/MTMOS treated stones showed an increase of 0.19%. The result allows an

accurate comparison of ethyl silicate-treated versus B-72/MTMOS-treated marble. Since

the weight percent is comparatively minor, the properties of ethyl silicate and B-72 in

MTMOS on the marble can be viewed as minimal, and can be expected to increase on

more weathered marble, such as that at the Second Bank of the United States.
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Figure 7. Pennsvlvania Blue marble before, during, and after laboratory weathering.

Figure 8. Scrap sample during consolidation procedure, turned on its side to show

capillar} rise.





Figure 'X Samples treated with B-72,'MTMOS. tented with plastic after consolidation.

Figure 10. Consolidated samples drying in fume hood.
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3.5 Experimental Program

3.5.1 Depth of Penetration

Purpose

To measure the penetration depths of ethyl silicate and B-72 in Pennsylvania Blue

samples and deteriorated Second Bank marble.

Reference

Rakesh Kumar and William S. Ginell(Getty Conservation Institute), "A New Technique

for Determining the Depth of Penetration of Consolidants into Limestone Using Iodine

Vapor"

Relevance

The depth of penetration of a consolidation treatment indicates the depth to which that

stone will be protected. To perform effectively, the consolidant must penetrate through

the deteriorated stone into the unaltered substrate. This test comparatively assesses the

depths of penetration of the treatments in question.

Methodology

One 2 -inch cube treated with ethyl silicate and one with B-72/MTMOS were treated. In

addition, irregular, disaggregating samples from the Second Bank, treated respectively

with ethyl silicate and B-72/MTMOS were treated (Figure 1 1). The building samples
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were tested to give a comparative penetration depth on actual deteriorated stone. For the

purposes of this test, the consohdant was brush-applied to one side of each sample, as it

would be on site. This allows an accurate look at initial consolidant performance in the

field.

Discussion and Conclusions

Both samples of artificially weathered Pennsylvania Blue showed fiill surface coverage

plus a penetration depth of 1 mm. Second Bank samples, however, showed a far greater

penetration depth: B-72/ MTMOS absorbed to a depth five times that of the B-

72/MTMOS treated laboratory sample, and ethyl silicate absorbed to a depth of 25 times.

This shows that while relatively intact Pennsylvania Blue absorbs very little consolidant,

weathered Pennsylvania Blue is receptive to the treatment. Ethyl silicate, in particular,

appears to penetrate far into the stone.
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Figure 1 1 . Samples during testing of consolidant penetration depth.
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3.5.2 Microstructure

Purpose

To ascertain the effect of consolidant treatment on the microstructure of a stone.

Reference

Ann Brackin, "A Comparative Study of the Effects of Applying AcryHcs and Silanes in

Sequence and in Mixture, with a Case Study of the Column in the Convento of Mission

San Jose y San Miguel de Aguayo, Texas." (Master's thesis, University of Pennsylvania,

1994), and

A. Elena Charola , et al. "SEM Examination of Limestones Treated with Silane or

Prepolymerized Silicone Resin in Solution." Adhesives and Consolidants: Preprints of

the Contributions to the Paris Congress, 2-8 September 1984, edited by N.S. Bromelle,

E.M. Pye, P. Smith, and G. Thompson. 184-192. London: Institute for the Conservation

of Historic Works, 1984.

Relevance

To provide a microstructural comparison of consolidant performance based on

assessment of penetration depth, pore coverage, and film characteristics.
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Methodology

Six samples, two each of untreated, ethyl silicate- treated, and B-72/MTMOS treated

were assessed. The samples were etched using 1M hydrochloric acid for approximately

one minute. Because consolidant strands may be elusive under the scanning electron

microscope, even at high magnification, two coating media were applied: one set was

sputter-coated with carbon, and one with gold, to a thickness of 720 Angstroms. Samples

were viewed using both coatings, under a JEOL 6300FV scanning microscope at 50 to

10.000 times.'" The photographs shown here employ the carbon coating, which was

surprisingly more effective in elucidating the consolidant film.

Discussion and Conclusions

The ethyl-silicate treated sample shows the ethyl silicate to lightly coat grains. Pitting

and cracking of the surface are evident through the coating (Figure 12). At very high

magnification, ropy strands of ethyl silicate link pore edges (Figure 14).

The sample treated with B-72 in MTMOS shows a smoother, heavier surface coating.

Surfaces appear rounded and slightly thicker than the ethyl silicate-treated sample.

Again, pitting and cracking are evident through the coating, showing that pores are not

clogged by consolidant application (Figure 13).

""

This experiment was supported by the National Science Foundation MRL Program, under Grant No.

DVIR9 1-20668, at the Laboratory for Research on the Structure of Matter at the University of

Pennsylvania.
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Figure 12. Scanning electron micrograph of sample treated with ethyl silicate. 200X.

Figure 1 3. Scanning electron micrograph, samples treated with B-72/MTMOS. 200X.
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Figure 14. Scanning electron micrograph of ethyl silicate strands. 1500X.
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3.5.3 Accelerated Weathering

Purpose

To simulate the combined cyclical effect of ultraviolet light, heat, and outdoor

condensation over time.

References

• ASTM G-53-93: "Standard Practice for Operating Light- and Water-Exposure

Apparatus for Exposure of Non-Metallic Minerals,"

• ASTM D-1 535-89: "Standard Test Method for Specifying Color by the Munsell

System,"

• Munsell Soil Color Book, and

• RILEM test VI. 1: "External Aspects of Stones."

Relevance

This test measures the effect of ultraviolet light and wet-dry cycling, simulating multiple,

long-term weathering patterns in a compressed period of time. Treated and untreated

samples can be assessed for levels of change at the macroscopic and microscopic level,

including ultraviolet-related degradation and consolidant performance.

Methodology

This test utilized a weatherometer in conjunction with color standards and visual analysis

in order to assess performance of untreated stone in comparison with consolidated stone
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II.

The samples were viewed under fluorescence microscopy to examine microstructural

changes. Untreated samples showed evidence of shallow surface pitting. This was not

apparent on either of the consolidated surfaces. Ethyl silicate-treated samples showed

evidence of an extremely slight yellowing, not visible to the naked eye. B-72/MTMOS-

treated samples showed evidence of intact consolidant at the surface level.

Both consolidants show some indications of change on a microscopic level after

accelerated weathering. Ethyl silicate-treated samples should be further studied to assess

the effect of weathering on consolidant stability, particularly in relation to color. If B-

72/MTMOS is selected for monument consolidation, care should be taken to test an

inconspicuous area for consolidant pooling at the surface level. It is believed, however,

that this is not a concern, as the Pennsylvania Blue monuments requiring conservation are

in general fairly porous as a result of disaggregation at the surface level, and hence

consolidant is expected to be absorbed, rather than pool.

III.

Some color variability results in the artificial weathering of consolidated Pennsylvania

Blue marble (Table 7). After exposure to ultraviolet radiation, untreated white
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Pennsylvania Blue shows no change in color, while gray bands show a slightly more

saturated value. Both white and gray Pennsylvania Blue treated with ethyl silicate shows

an slightly increased value saturation level. Neither white nor gray bands of B-

72/MTMOS treated stone, nor the charcoal gray band, show evidence of any change.

Hue and chroma remained constant.

Both consolidants appear to be fairly stable in the presence of ultraviolet light. It should

be noted that B-72/MTMOS produced no change in value, while ethyl silicate resulted in

a slight value change. Value changes present in untreated and ethyl silicate-treated marble

may be due in part to the gradual erosion of weathered surface material to a more

pronounced appearance.
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3.5.4 Water Absorption and Bulk Specific Gravity

Purpose

To measure the water absorption and bulk specific gravity of untreated samples as

compared to samples consolidated with ethyl silicate and B-72 in MTMOS.

Reference

ASTM C 97-83: "Standard Test Methods for Absorption and Bulk Specific Gravity of

Dimension Stone"

Relevance

Consolidation treatments may reduce water intake to the substrate, in effect imparting a

degree of hydrophobicity, which can in turn limit deterioration. The water absorption test

assesses this characteristic, measuring relative porosities of treated versus untreated

samples. Bulk specific gravity provides a measure of the percentage of consolidant

retained by the samples. In general, a higher percentage indicates a more effective

treatment.

Methodology

Nine samples, three each of untreated, ethyl silicate, and B-72/MTMOS were tested

following the standard ASTM procedure (Figure 15). Water absorption and bulk specific

gravity were calculated for each sample (Table 8).
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Discussion and Conclusions

I.

Water absorption, measured in weight percent, shows samples treated with B-

72/MTMOS to absorb a similar percentage of water to the untreated stone. The samples

treated with ethyl silicate absorb slightly less water.

II.

Bulk specific gravity appears to be similar for untreated and treated samples. This may

be due in part to the relatively intact pore structure of the sample stone. The experiment

should be repeated with decaying marble to assess consolidant retention.
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Figure 15. Samples soaking during water absorption/bulk specific gravity testing.





3.5.5 Evaporation Curve

Purpose

To measure the evaporation of standing water collected in pores over time within

untreated samples untreated samples as compared to samples consolidated with ethyl

silicate and B-72 in MTMOS.

Reference

RILEM test II. 5: "Evaporation Curve."

Relevar^ce

Moisture attacks all buildings through rain and snow, condensation, building cracks, and

rising damp. Once the material has been wetted, drying occurs, and water within the

pores will slowly evaporate. This test measures the hydrophobic effects of the

consolidants compared with untreated stone, as well as the relative pore space per treated

and untreated stone.

Methodology

One sample each of untreated, ethyl silicate-treated, and B-72/MTMOS-treated samples

was tested for evaporation rate over time. The samples were placed in a water bath for 48

hours prior to testing to insure full saturation. Controlled evaporation was obtained using

a dessicator and active desiccant.
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Discussion and Conclusions

As expected, each of the samples lost the most moisture during the first 10 to 20 minutes

of evaporation (Table 9, Chart 3). The sample treated with ethyl silicate lost more than

70% of its water content during the first 15 minutes of evaporation. The sample treated

with B-72/MTMOS lost 68%. and the untreated sample lost 48%. After 25 minutes, the

ethyl silicate had lost 85% of its water content, the B-72/MTMOS 83% and the untreated

sample 66%.

It is clear from this information that consolidation is beneficial to Pennsylvania Blue in

regards to evaporation rate. Both B-72 in MTMOS and ethyl silicate result in a

significantly faster evaporation period, and hence less chance of decay due to moisture

accumulation and generally wet conditions. The consolidants perform similarly,

suggesting that either consolidant would be a good choice in terms of evaporation rate

performance.
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3.5.6 Water Vapor Transmission

Purpose

To measure the transmission rates of water vapor of untreated samples as compared to

samples consolidated with ethyl silicate and B-72 in MTMOS.

Reference

ASTM E-96-80: "Water Vapor Transmission"

Relevance

This test measures the vapor permeability of treated versus untreated samples. A

reduction in permeability is a distinctly negative characteristic; values are preferably

similar, indicating that water vapor transmission is not affected by the consolidant.

Differences in water vapor transmission indicate that treated samples are retaining

moisture, which can impel deterioration.

Methodology

Three untreated samples, three ethyl silicate-treated samples, and three B-72/MTMOS-

treated samples were utilized. The samples were in the shape of disks, approximately 33-

34 mm in diameter (standard drill coring bit) and 0.75 inches thick. Each sample was

, attached to a 50 mL plastic beaker containing 30 mL of distilled water. Samples were

placed in the chamber for 19 days (Figure 16).
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Discussion and Conclusions

The samples show distinct variabiUty in water vapor transmission rates (Table 10). The

untreated samples showed an average water vapor transmission rate of 4.19 grams per

hour per square meter. The ethyl silicate-treated samples showed an average water vapor

transmission rate of 4.43 grams per hour per square meter. The B-72/MTMOS-treated

samples showed an average water transmission rate of 2.97 grams per hour per square

meter.

The fact that ethyl silicate consolidation has resulted in an improved water vapor

transmission rate can be attributed to unavoidable relative humidity variations within the

testing chamber. However, the difference between the untreated stone and the ethyl

silicate is notably small particularly in comparison to the sample treated with B-

72/MTMOS. Consolidation with B-72/MTMOS has resulted in a significantly lowered,

and therefore undesirable, water vapor transmission rate.

The variations in the values obtained during this testing program, while comparable for the purposes of

this project, suggest that further analysis may be required. Repetition of the test under strictly controlled

weather and humidity conditions may corroborate the above findings without statistical variability.
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Figure 16. Samples during water vapor transmission rate testing.





3.5.7 Sodium Sulfate Crystallization

Purpose

To observe durability by way of salt crystallization resistance of untreated samples as

compared to samples consolidated with ethyl silicate and B-72 in MTMOS.

Reference

• Building Research Establishment Sodium Sulfate Crystallization Test,

• ASTM C 88-90, "Standard Test Method for Soundness of Aggregates by Use of

Sodium Sulfate or Magnesium Sulfate," and

• RILEM Test V. 1 "Crystallisation Test by Total Immersion," parts a and b.

Relevance

This test measures relative resistance to salt crystallization, as a measure of natural

weathering over time. It should be kept in mind that many factors influence the

deterioration of urban marble, and that this test is not meant to provide an accurate picture

of deterioration, but to measure the protective effects of a consolidant when the marble is

exposed to movement and stresses of salt.

Methodology

Samples were uniform in size and shape to reduce variability in testing conditions. Nine

samples, three each of untreated, ethyl silicate-treated, and B-72/MTMOS treated
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samples were submitted to the test procedure (Figure 17). The procedure utilizes aspects

of the three standardized tests listed above.

Discussion and Conclusions

Untreated samples and those treated with ethyl silicate performed poorly in comparison to

samples treated with B-72/MTMOS. losing 0.1 1% and 0.10% as compared to 0.03%

respectively (Table 11).'^ It is clear that B-72/MTMOS inhibits salt deterioration on

Pennsylvania Blue marble significantly more than ethyl silicate.

It should be kept in mind, however, that the loss of material was low for all samples,

leading to the conclusion that this relatively intact Pennsylvania Blue is fairly sulfate

resistant.. It is likely that Pennsylvania Blue with fewer inclusions and/or decaying

Pennsylvania Blue will be more susceptible to sulfates. In this case, it is expected that

the results of B-72/MTMOS treated stone versus the ethyl silicate and the untreated will

be more dramatic.

34
It should be noted that one comer of an untreated sample was blown off during the salt Immersion

process, causing some variability in final weight percents.
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Fiiiuie 1 7. Samples during immersion in sodium sulfate solution.





3.5.8 Abrasion Resistance

Purpose

To determine the resistance to abrasion of untreated samples as compared to samples

consolidated with ethyl silicate and B-72 in MTMOS.

Reference

Kumar. Rakesh, and Ginnell, "Evaluation of Consolidants . .
." in Methods ofEvaluating

Products {Rome: 1995), 163-178.

Relevance

This test measures relative cohesive strength as a function of the resistance of treated and

untreated stones to external mechanical abrasion.

Methodology

Nine samples, three each of untreated, ethyl silicate-treated, and B-72/MTMOS-treated,

were tested. The samples were exposed to 60 psi of alumina powder for four minutes at a

distance of 10 cm. This was sufficient to create holes approximately the size of pencil

erasers in each sample.

Discussion and Conclusions

The samples showed no appreciable difference in abrasion resistance (Table 12). We can

conclude that the abrasion resistance of relatively intact Pennsylvania Blue does not
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change when treated with either ethyl silicate or B-72/MTMOS. Further research should

address the relative abrasion resistances of treated and untreated Second Bank marble to

assess the affect of consolidants in regards to abrasion resistance on that particular

building.
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2.6 Conclusions

The consolidants chosen for study in this thesis showed varying effects on Pennsylvania

Blue marble. Both consolidants showed weather resistance, a decrease in water absorp-

tion, and an improved evaporation curve. Ethyl silicate, in addition, shows good pene-

tration depth and an excellent water vapor transmission rate. B-72/MTMOS outperforms

ethyl silicate in regards to salt resistance and color stability. Neither consolidant affected

abrasion resistance, probably due to the soundness of the samples tested.

B-72/MTMOS's questionable results during testing of water vapor transmission rate and

penetration depth may result in an ineffectual, or even deleterious, consolidation

campaign. The penetration depth is a particular issue as the consolidant must penetrate

beyond the calcite-mica interfaces to provide effective cohesion. The volatility of the B-

72/MTMOS system presents an additional challenge to exterior field consolidation.

The positive results obtained by ethyl silicate during testing of water vapor transmission

rate, penetration depth, weathering resistance, water absorption, and evaporation rate

outweigh the less positive results obtained for sulfate resistance and color stability, partic-

ularly since the color change was extremely minor. This study suggests that ethyl silicate

is preferable to B-72/MTMOS for consolidation treatment of Pennsylvania Blue marble.

However, ethyl silicate does not address the problem of flake reattachment.

Further assessment of the decay mechanisms of Pennsylvania Blue marble would be in-

valuable in treating decaying monuments. Evaluation of microstructural variances will
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assist in further understanding, predicting, and possibly preventing, of decay. Expansion

of the treatment program to include a detailed conditions survey at the Second Bank of

the United States and other Pennsylvania Blue monuments would aid in understanding of

the stone's macroscopic weathering patterns. The National Park Service may wish to

address the largest scale spalling by mechanical pinning under the direction of an archi-

tectural stone conservator. Column integrity should be assesed by a structural engineer.

A consolidation program involving the use of naturally weathered Pennsylvania Blue

marble would be useful in comparison to the data obtained during this project,

particularly as it relates to seriously deteriorated Pennsylvania Blue monuments. A

possible source for such marble is Laurel Hill Cemetery, where broken marble gravestone

slabs have been stockpiled in the past. In addition, the Pennsylvania Blue marble

quarries, while defunct, could be explored for remaining material.

In conclusion, it should be noted that before ethyl silicate (or any consolidant) is used to

treat historic fabric, a comprehensive testing program should be carried out to asses its

performance in relationship to that particular monument. This is particularly important

tor monuments of Pennsylvania Blue, as the stone shows mineralogical heterogeneity and

an inherent tendency to disaggregate in extreme exposure. It is hoped that continued

research and attention to this local building stone will result in further study, in

documentation, and in conservation of the Second Bank of the United States, and in many

other Pennsylvania Blue marble monuments.
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Manual Laboratory Weathering: What amount of deterioration is produced by
various molarities of sulfuric acid solution over time?

sample size: variable

number of samples per type of treatment: variable

total number of samples: variable

duration of testing program: variable

Significance and Use

Qualitative and quantitative analysis of erosion, evidenced by degree of sugaring and

erosion of crisp edges, allows for a quantification of artificial weathering. Quantitative

results will allow a "percent lost" to be calculated for the weathered stone (in this case,

Pennsylvania Blue), answering the question "How weathered is weathered?"

Specimens

Scrap samples with at least one crisp edge will be used.

Procedure

Three solutions of sulfuric acid, with molarity .02 M, .2 M, and .IM, are to prepared so

that concentration as a ftinction of time may be measured.

Samples must be brushed to remove marble dust that may clog surface pores, inhibiting

the introduction of acid.

Samples shall be weighed before immersion in sulfuric acid.

Samples shall be placed in the various molarity solutions for 20 hours.

Samples shall be dried for 4 hours in 60° C oven.

Samples shall be brushed with stiff metal to remove sugared stone, and then weighed.

Process should be repeated to sufficient deterioration.

The data from this experiment (sufficient molarity of acid as well as amount of time in

the acid) will be used in manual weathering of cut samples before beginning the tests,

simulating the condition of the stone at the Second Bank.

Note: samples should be soaked in distilled water after acid bath and before beginning

the testing program.

68





Depth of Penetration

sample size: 2 in cube

number of samples per type of treatment: 2

total number of samples: 4

duration of testing program: 1 day

Procedure

1

.

Expose the treated stone or its vertical section to iodine vapor in a closed glass

chamber for about 5-10 minutes (It may take more time if the concentration of

consolidants is below 1 - 2 %.)

2. Measure the colored (yellow or light brown) area or distance.

Parameters

Stone must be white or light-colored.

Silicates give comparatively faint color using this method.
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Accelerated Weathering

sample size: variable

number of samples per type of treatment: 1

total number of samples: 3

duration of testing program: 14 days

Significance and Use

The use of the apparatus under this practice is intended to simulate the deterioration

caused by water as rain or dew and the ultraviolet energy in sunlight. It is not intended to

simulate the deterioration caused by localized weather phenomena, such as atmospheric

pollution, biological attack, and salt water exposure.

Specimens

The samples must be approximately .25 cm thick, and no less than 7.5 x 5 cm.

Specimens may vary in size and shape.

Procedure

1

.

Weigh samples. Samples should be at equilibrium with room temperature and relative

humidity prior to testing.

2. Observe the samples in natural light. Use the Munsell system to record the value,

chroma, and hue of each sample. Assess stones qualitatively on macroscopic level and

record observations. Record the weather conditions and time of day.

3. Place the samples securely into the sample rocks, bending the metal clamps as

necessary to secure a tight fit. Place the racks, sample side in, in the weatherometer.

4. Calibrate the UV exposure temperature and condensation exposure as desired.

5. Turn the weatherometer on. Monitor controls for 14 days.

6. Turn off weatherometer and remove samples.

7. Observe the samples in natural light. Use the Munsell system to record the value,

chroma, and hue of each sample. Assess stones qualitatively on macroscopic level and

record observations. Record the weather conditions and time of day.
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Water Absorption and Bulk Specific Gravity

sample size: 3 x 3 x .75 in.

number of samples per type of treatment: 3

total number of samples: 9

duration of testing program: three days

Significance and Use

These test methods are useful in indicating the differences in absorption between the

various dimension stones. These test methods also provide one element in comparing

stones of the same type.

Specimens

The specimens may be cubes, prisms, cylinders, or any regular form with least dimension

not under 2 inches and greatest dimensions not over three inches but the ratio of volume

to surface area shall be not less than .3 inches nor greater than .5 inches.

Procedure

1

.

Dry the specimens for 24 hours in a ventilated oven at a temperature of 105 ± 2 °C.''^

2. After drying, cool the specimens in the room for 30 minutes and weigh. Determine

the weights to the nearest 0.02 g.

3. Immerse the specimens completely in filtered or distilled water at 20 ° ± 5 °C for 48

hours. At the end of this period remove them fi-om the water bath one at a time, surface

dry with a damp cloth, and weigh to the nearest 0.02 g.

4. Weigh the saturated specimens suspended in distilled water at 20 ° ± 5 °C. Determine

the suspended weights to the nearest 0.02 g. A satisfactory means of weighting

specimens in water is to use a basket for suspending the specimens in a glass jar of water

supported above the balance pan. Determine the weight of the basket when suspended in

water to the same depth as when weighing specimens therein. Subtract the weight of the

basket to the nearest 0.02 g from the combined weight of the specimen and basket.

Carefully remove air bubbles clinging to the basket or specimen before recording the

weight.

Calculation

Calculate the bulk specific gravity as follows:

Bulk specific gravity = A/(B-C)

Due to amount of sample available, sample size is smaller than recommended test specimen size.

' Samples were dried at 60 °C to prevent possible damage of the consolidants.
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The samples must be placed in a room of constant temperature and relative humidity. No
artificial ventilation should take place.

Initial water content must be equal to maximum water content.
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Water Vapor Transmission

sample size: 34 mm in diameter x .75 in. thick

number of samples per type of treatment: 3

total number of samples: 9

duration of testing program: 21 days

Significance and Use

The purpose of these tests is to obtain, by means of simple apparatus, reliable values of

water vapor transfer through permeable and semi-permeable materials, expressed in

suitable units. These values are for use in design, manufacture, and marketing. A
permeance value obtained under one set of test conditions may not indicate the value

under a different set of conditions. For this reason, the test conditions should be selected

that most closely approach the conditions of use.

Terminology

1

.

Water vapor permeability: the time rate of water vapor transmission through unit area

of flat material of unit thickness induced by unit vapor pressure difference between two

specific surfaces, under specified temperature and humidity conditions.

2. Water vapor transmission rate: the steady water vapor flow in unit time through unit

area of a body, normal to specific parallel surfaces, under specific conditions of

temperature and humidity at each surface.

Apparatus

1

.

The test dish shall be of any non-corroding material, impermeable to water or water

vapor, it may be of any shape. Light weight is desirable. A large, shallow dish is

preferred, but its size and weight are limited when an analytical balance is chosen to

detect small weight changes. The mouth of the dish shall be as large as practical and at

least 4.65 in." The desiccant or water area shall not be less than the mouth area. An
external flange or ledge around the mouth, to which the specimen may be attached, is

useful when shrinking or warping occurs. When the specimen area is larger than the

mouth area, this overlay upon the ledge is a source of error, particularly for thick

specimens. This overlay material should be masked so that the mouth area defines the

test area. If a rim is provided, it shall be not more than 6 mm higher than the specimen as

attached.

2. The room or cabinet where the assembled test dishes are to be placed shall have a

controlled temperature and relative humidity. The temperature chosen shall be between

21 and 32 °C and shall be maintained constant within 0.6 °C. The relative humidity shall

'^ Modifications to this size are warranted if amount of sample is limited.
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be maintained at 50 ± 2 %. Both temperature and relative humidity should be measured
frequently. Air shall be continuously circulated throughout the chamber, with a velocity

sufficient to maintain uniform conditions at all test locations.

3. The balance shall be sensitive to a change smaller than 1 % of the weight change
during the period when a steady state is considered to exist. The weights used shall be
accurate to 1 % of the weight change during the steady-state period. The balance must
have a sensitivity of . 1 g and the weights must be accurate to . 1 g.

Materials

1

.

Distilled water shall be used in the test dish.

2. Sealant used for attaching the specimen to the dish must be highly resistant to the

passage of water vapor (and water). It must not lose weight to, or gain weight from, the

atmosphere in an amount, over the required period of time, that would affect the test

result by more than 2 %. It must not affect the vapor pressure in a water-filled dish.

Specimens

1

.

Specimens shall be representative of the material tested. When a product is designed

for use in only one position, three specimens shall be tested by the same method with the

vapor flow in the designated direction.

2. The tested overall thickness shall be at least five times the sum of the maximum pit

depth in both its faces. The overall thickness of each specimen shall be measured at the

center of each quadrant to the nearest 0.05 mm and the results averaged.

Preparation

Attach the specimen to the dish by sealing in such a manner that the dish mouth defines

the area of the specimen exposed to the vapor pressure in the dish. If necessary, mask the

specimen top surface, exposed to conditioned air so that its exposure duplicates the

mouth shape and size and is directly above it. Thoroughly seal the edges of the specimen

to prevent the passage of vapor into, or out of, or around the specimen edges or any

portion thereof The same assurance must apply to any part of the specimen faces outside

there defined areas.

Procedure

L Fill the test dish with distilled water to a level 19 ± 6 mm from the specimen. The air

space thus allowed has a small vapor resistance, but it is necessary in order to reduce the

risk of water touching the specimen when the dish is handled. The water depth shall be

not less than 3 mm to ensure coverage of the dish bottom throughout the test.
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2. Attach the specimen to the dish.

3. Weigh the dish assembly and place it in the controlled chamber on a true horizontal

surface.

4. Continue to weight the dish assembly over time until a steady water vapor

transmission rate is established.

Calculations

1

.

The results of the rate of water vapor transmission may be determined either

graphically or numerically.

2. Plot the weight against elapsed time, and inscribe a curve which tends to become

straight. Judgment here is required and numerous points are helpful. When a straight

line adequately fits the plot of at least six properly spaced points, with due allowance for

scale sensitivity, a nominally steady state exists, and the slope of the straight line is the

rate of water vapor transmission.

3a. A mathematical least squares regression analysis of the weight as a function of time

will give the rate of water vapor transmission. An uncertainty, or standard deviation of

this rate, can also be calculated to define the confidence band. For very low permeability

materials, this method can be used to determine the results after 30 to 60 days when using

an analytical balance, with a sensitivity of ± 1 mg, even if the weight change does not

meet the 1 00 times the sensitivity requirement. Specimens analyzed in this manner must

be clearly identified in the report.

3b. Calculate the water vapor transmission, WVTR, as follows:

WVTR = G/tA = (G/t)/A

where, in metric units,

G = weight change (from the straight line) (g)

t = time (h)

G/t = slope of the straight line (g x h' x m" )

A = test area (cup mouth area) (m")

WVT = rate of water vapor transmission (g x h' x m"')

77





Resistance to Sodium Sulfate Crystallization

sample size: 2 in cube

number of samples per type of treatment: 3

total number of samples: 9

duration of testing program: 15 days

Significance and Use

The purpose of this test is to determine the resistance of stones to sodium sulfate

crystallization. The test measure the weight change and deterioration rate of stone

samples exposed to repeated cycles of sodium sulfate crystallization.

Specimens

Cubes of a standard size (50 mm is convenient) should be used.

Procedure

1. Prepare a stock salt solution using 10 % anhydrous sodium sulfate.

2. Dry samples in a 60±5° C oven for 24 hours. Cool to room temperature and weigh

each sample.

3. Cover the bottom of a suitable container with glass beads or rods. Place the samples

into the container. Cover with salt solution. Immerse samples in solution for 16 - 18

hours.

4. Remove the samples from the salt solution.

5. Dry samples in a 60±5° C oven for 4 hours. Remove from oven and cool to room

temperature.

6. Immerse the samples in the salt solution as directed in step 3.

7. Repeat steps 3 through 6 for 14 days.

8. On day 15, after oven-drying samples, cool to room temperature and weigh each

sample. Calculate the weight change.
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Abrasion Resistance

sample size: variable

number of samples per type of treatment: 3

total number of samples: 9

duration of testing program: one day

Significance and Use

This test method is useful in indicating the differences in abrasion resistance between the

various building stones. This test method also provides one element in comparing stones

of the same type.

Specimens

At least three specimens 2 inches square and preferably 1 inch in thickness shall be sawed

from the sample. The sharp edges shall be rounded by grinding.

Procedure

1

.

Insure that abrasive canister is filled with desired abrasive. Turn on micro-abrasive

unit and set to desired psi.

2. Place one specimen into the testing chamber. Stabilize with wooden blocks. Set the

powder gun the desired distance from the sample. Measure the distance to insure that the

gun-sample distance remains constant throughout the experiment. Place a metal plate in

front of the sample.

3. Turn on powder flow. Allow to stabilize for 10 seconds. Remove metal plate. Allow

the sample to be abraded until the desired hole size has been created. Be sure to keep

close track of the time.

4. Turn off powder flow. Remove sample from testing chamber. Remove powder

residue from hole in sample.

5. Place a small amount of fine sand into a weighing boat. Weigh the boat. Using a

disposable pipette, remove sufficient sand from the boat to fill the sample hole. Reweigh

the weighing boat. Subtract the final amount of sand fi-om the iniUal amount to determine

relative weight lost during abrasion.

4. Perform steps 2 through 5 for each sample. Compare data to determine relative

resistance to micro-abrasion.
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Table I. Physical Properties, Crystallography, and Composition of Calcite (CaCOj)

Crystallography

System; hexagonal

Form: prismatic, rhombohedral. scalenohedral. Anhedral or aggregated grains.

Cleavage: perfect rhombohedral cleavage (74 °55')

Twinning: lamellar twinning common, often pastel pink and green

Birefringence: creamy high-order interference colors

Relief: variable with rotation, moderately negative to high positive relief

Physical Properties

Specific gravity: 2.71

Hardness: 3 on cleavage planes. 2 1/2 on base

Optical properties: uniaxial negative

Refractive index: 1 .66

Luster: vitreous to earthy

Color: white or colorless (gray, red. green, blue, yellow, brown, and black less common)

Color in thin section: colorless

Composition

Composition: CaO 56,0 %, CO, 44.0 %.

Replacement: manganese, iron, zinc, opal, and particularly magnesium are common
Alteration: magnesium often replaces calcium (dolomitic marble)

38
Because magnesium and calcium ions have the same ionic charge of 2+, as well as a similar atomic

radius in 8-coordination, replacement of calcium with magnesium within the calcite matrix is likely. It

follows that differentiation between calcite and dolomite in thin section can be difficult. Many properties

of dolomite, including rhombohedral cleavage, lamellar twinning, variable relief, and creamy interference

colors, are comparable to those of calcite. Though dolomite is minimally harder than calcite (3.5-4). with a

higher specific gravity (2.86-2.93), it may be difficult to distinguish between calcite and dolomite in thin

section. Where practical, dolomite can be distinguished from calcite by its lack of effervescence in cold

hydrochloric acid. Moreover, dolomite may be cloudy, colorless, or iron-stained in thin section, with

commonly euhedral grains. Refractive indices tend to be higher than those of calcite. Calcite has a

stronger tendency to twin, and its lamellae are never parallel to the short diagonal of the calcite rhomb.
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Table 2. Water Absorption and Bulk Specific Gravity of Weathered Pennsylvania Blue Marble

at the Second Bank of the United States





Table 5. Sample Weights, Pre- and Post-Consolidation





Table 8. Water Absorption and Bulk Specific Gravity of

Untreated and Consolidated Pennsylvania Blue Marble





Table 10. Water Vapor Transmission
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Appendix B Technical Data for Ethyl Silicate, B-72, and MTMOS
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Product name: ProSoCo Conservare OH Stone Strengthener

batch number: not listed on package

date of supply: April 1996

address of supplier/ manufacturer: 1 1 1 Snyder Road, South Plainfield, NJ 07080 (908)754-4410

properties of product as supplied:

solution,

viscosity: (2mm in DIN cup) 42S

method of setting:

how activated:

hydrolysis

proportions of components: 75% tetraethylorthosilicate, 25% by weight MEK and acetone

setting time two (-three) weeks @ 68°F and 50% R.H.

modification of product by conservator: none

special requirements:

shelf life: 12 months in sealed container

pretreatment of objects: control of surface conditions during application. Area to be treated

should

wind,

hazards:

be clean and dry. No direct sunlight for several hours prior to application to insure cool surface.

Surface and air temperature should be 50 - 80°F during application. Screen against direct sun,

and rain.

toxicity: liquid and vapor highly irritating to eyes, moderately to skin, nose, and throat, serious ill

effects by ingestion.

flash point: 2°C

precautions necessary: protective clothing, solvent resistant gloves, boots, headgear, splash

goggles,

physical properties from manufacturer's literature:

specific gravity @ 25°C: .94

boiling point: 56°C

ignition temperature: 505°C

% volatile by volume: 75

solubility in water: negligible

optical properties:

color: colorless

refractive index: 1..38

reversibility of treatments: none
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Product name: Acryloid B-72 100% Resin

batch number: 709235

date of supply: not listed on package

address of supplier/manufacturer: Rohm and Haas Company, Independence Mall West, Philadelphia, PA
19105; (215)428-4044

properties of product as supplied:

solid

how activated:

mixing,

proportions of components: 98% by weight acrylic copolymer, .15% residual monomer, 1.0%

residual toluene

modification of product by conservator: dissolution in MTMOS
hazards:

toxicity: vapor can irritate nose throat, lungs, eyes, skin.

flammability: combustible

precautions necessary: wear respirator, cotton or canvas gloves, safety glasses,

physical properties from manufacturer's literature:

hardness: Tukon hardness 10-1

1

glass transition temperature: 40 °C

solubility in water: negligible

% volatile by weight: 1.15

specific gravity: 1.15

solubility parameter: 9.3

bulk density @ 25°C: 9.6 lbs/gal

optical properties:

color: clear granules
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Product name: Dow Corning Z 6070 Silane

batch number: BK 12383

address of supplier/manufacturer: Midland, MI 48686-0994; (800)252-9899

properties of product as supplied:

solution,

viscosity .5 Nsm" x 10" at 20 °C

physical properties:

boiling point: 215F/I02C

specific gravity (at 77°F/25°C): .95

vapor pressure (at 77°F/25°C): 20 mmHg
% volatiles: not determined

evaporation rate: less than one

solubility in water: reacts

method of setting: hydrolysis and condensation

how activated:

water activated

setting time 15 min - 24 hrs

modification of product by conservator: mixed with B-72

special requirements:

shelf life: 12 months from shipment date

pretreatment of objects: clean

hazards:

toxicity: high, may be fatal or cause blindness if ingested, vapor may irritate eyes, vapor

overexposure may cause drowsiness.

flashpoint: 47F/8C

precautions necessary: safety glasses, respiratory protection,

optical properties:

color: clear

contents:

methyl alcohol/67561 2%
dimethyldimethoxysilane/1 1 12396 1%

methyltrimethoxysilane/l 185553 97% by weight
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Appendix C.l Annotated Bibliography of Related Non-Carbonate

Manual Laboratory Weathering
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Emery. J.A. "A Laboratory Weathering Method for Evaluating Finish Durability on

Plywood Sidings and Composite Panels." In Permanence ofOrganic Coatings, 86-125.

Philadelphia: American Society for Testing and Materials. 1982.

=> Describes accelerated weathering of plywood, incorporating Weatherometer wet-dry

cycling and laboratory freeze-thaw testing, over a period of 12 weeks.

Sasse. H.R.. and D. Honsinger. "A New Chemical and Engineering Approach for

Development and Optimization of Stone Protecting Materials." In Science, Technology,

and European Cultural Heritage, 648-652. Bologna, 1 991

.

=> Mentions accelerated weathering, but with little elaboration.
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Philadelphia: American Society for Testing and Materials, 1994.
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greater than 95 %. Test method follows JASO M 609 test by the Society of

Automotive Engineers in Japan.

Suits, L. David. "Accelerated Weathering of Geosynthetics." In Accelerated and

Outdoor Durability Testing ofOrganic Materials, 183-198. Philadelphia: American

Society for Testing and Materials. 1994.

=> Though the article deals with polymer weathering, the method of laboratory may be

applicable to carbonates treated with polymeric coatings. ASTM tests D4355 and G26
were modified and synthesized to create a test for wet-dry cycling and UV light exposure.

Samples were placed in a borosilicate glass box and submitted to the following: each cycle

consisted of 102 minutes of exposure at 150 ° ± 10 ° C and R.H. of 30% ±5%, followed by

1 8 minutes of light plus water spray. Samples were cycled for 500 hours.
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accelerated

weathering

code

and author

S

Accardo

C
Bortz

C, L

Charola

C
Eastes

L, SS

Fassina

C
Gauri

(1973)

description of cycle,

including use of

standardized tests

24h immersion m
saturated sodium sulfate

soln. 24h oven drying at

60° C (forced ventilation)

chemical exposure; 1/8"

deep .01 molar sulphurous

acid soln and .01 molar

salt soln.

4 h .02 M H:S04 soln, 20

h UV exposure at 50 ° C

and 70% R.H.

#of
cycle

sample

size

30

up to

300

cycle

s

where

12-16

= lyr

0,6-0.06 M H2SO4 sprayed

on samples using

handheld atomizer

attached to container of

compressed gas.

I. 9 days UV lamps (300

lux) at 30 ± rCandR.H.
of90±5%, jOdays .05 M
NaCl spray + H2SO4

added to pH 5 (spray 5

min/h) with temp 25 ± 2
°

C, repeat 9 days UV.

II. 5 h salt spray as above,

19hUV lamps (300 lux)

at 30+ rC and R.H. of

20 + 5%
dynamic SOj system:

reaction chamber

containing 900 cc SO, per

minute of air flow.

Unspecified amount of

water added to achieve

high humidity.

5 cm
cube

less

than

carbonate

stone type

Carrara marble

(Bianco)

5 cm
cube

1.

one

cycle

II. 15

cycle

3 cm X

5 cm x

2 mm

5x5x1

cm

Vermont marble

Georgia marble

Alabama marble

Tennessee

marble

New York

marble

Missouri marble

Carrara marble

remarks

results in irregular

surfaces. Increase

in pore size and

water absorption.

Indiana

limestone

Vincenza

limestone

Salem (IN)

limestone,

Shelbome (VT)

marble

Carrara marble

Proconnesian

marble

dissolution of

some surface

grains

used to produce

surface deposits of

gypsum with a

range of

concentrations

to

sulfa-

tion

4x2.5

x 1 cm

Carrara marble

part I produced

little weathering;

part II was more

successful.

Samples showed

evenly strongly

etched surface, as

well as deeper

cleavage lines and

diffused corrosion

pits.

possible to

produce thick

gypsum crusts

through this

manner of

sulfation.
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