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By measuring the tracks of tracer particles in a quasi-two-dimensional spatiotemporally chaotic
laboratory flow, we determine the instantaneous curvature along each trajectory and use it to
construct the instantaneous curvature field. We show that this field can be used to extract the
time-dependent hyperbolic and elliptic points of the flow. These important topological features are
created and annihilated in pairs only above a critical Reynolds number that is largest for highly
symmetric flows. We also study the statistics of curvature for different driving patterns and show
that the curvature probability distribution is insensitive to the details of the flow. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2948849�

I. INTRODUCTION

Fluid systems provide excellent opportunities for study-
ing spatiotemporal chaos �STC�.1,2 A system displaying STC
is, in general, governed by partial differential equations and
has in principle an infinite number of degrees of freedom in
the continuum approximation. If a sufficiently large number
of degrees of freedom are excited, the system is turbulent.
But if only a subset of these degrees of freedom is active, so
that the flow lacks a turbulent cascade, the dynamics instead
may be said to be spatiotemporally chaotic. Often, the num-
ber of active degrees of freedom is proportional to the system
size; that is, STC is extensive.3–5

Classic examples of STC in fluids include spiral defect
chaos in thermal convection2,5–7 and irregularly moving lo-
calized structures in electrically driven liquid crystal layers.8

It is usually understood that in STC, spatial structures must
be deformed in ways that are nonperiodic in time; exactly
how this occurs, however, remains unclear.

In this paper, we address the question of how the spatial
structures are modified and evolve as a flow becomes spa-
tiotemporally chaotic. We do so by looking at topological
properties of the velocity field.

The fundamental quantity of interest in any fluid flow is
the velocity field. As is the case for any vector field, loca-
tions where the magnitude of the field vanishes have special
topological significance. At these stagnation points �also
called critical points, in the context of nonlinear dynamics9�,
the direction of the velocity field is undefined. To a large
extent, the qualitative structure of the flow is determined by
the locations of the stagnation points and the local flow
around each of them.

In a two-dimensional incompressible flow field, there are
only two possible types of stagnation points. In regions of
strong vorticity, where the flow is highly rotational, a stag-
nation point is elliptic. As sketched in Fig. 1, the instanta-
neous local flow around an elliptic point consists of concen-
tric closed streamlines. Stagnation points in straining

regions, however, are hyperbolic. Figure 1 also shows the
instantaneous local flow around a hyperbolic point, which is
dominated by four special streamlines that meet at the hyper-
bolic point; two of these streamlines bring fluid to the hyper-
bolic point �the stable manifold�, while the other two carry
fluid away �the unstable manifold�. In a time-dependent flow,
both the streamlines and the locations of the hyperbolic and
elliptic points change in time; nevertheless, the qualitative
flows around the hyperbolic and elliptic points persist.

We recently described a method for locating these hyper-
bolic and elliptic points in two-dimensional flows by consid-
ering the curvature of the trajectories of tracer particles.10 We
showed that for sufficiently strong driving, the hyperbolic
and elliptic points break free from their forced locations and
began to interact, undergoing annihilation and creation in
hyperbolic-elliptic pairs. These interactions begin abruptly at
a finite driving strength.

Here, we describe the curvature fields and the dynamics
of the hyperbolic and elliptic points for three quasi-two-
dimensional base flows with different imposed symmetries:
the square vortex lattice we considered previously,10 forcing
that is random in space,11,12 and a set of parallel shear bands
�commonly known as the Kolmogorov flow13�. We investi-
gate how the degree of spatial symmetry of the flow forcing
affects the onset of topological changes as the Reynolds
number is varied.

We begin in Sec. II by describing our experimental
methods, including an improved procedure for locating the
hyperbolic and elliptic points that is able to handle flow
fields with strong shear correctly. In Sec. III, we present our
results, discussing both statistics of the curvature field and
the dynamics of the hyperbolic and elliptic points. We find
that the probability density function �PDF� of curvature is
extremely wide, and that its shape is independent of Rey-
nolds number when properly rescaled. Surprisingly, this
shape can be described by a model that considers the flow
velocity and acceleration to be Gaussian random variables.
By tracking the motion of the hyperbolic and elliptic points,
we show that topological changes of the flow field, indicated
by pairwise creation and annihilation of hyperbolic and el-a�Electronic mail: jgollub@haverford.edu.
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liptic points, occur only above a finite Reynolds number for
all three flows considered. This critical driving is greatest for
flows with the greatest forcing symmetry. We also show that
these creation and annihilation events appear to be uncorre-
lated with the forcing structure, occurring at random spatial
locations. Finally, in Sec. IV, we conclude and offer some
suggestions for future research.

II. METHODOLOGY

A. Experimental flow and particle tracking

To generate a quasi-two-dimensional fluid flow, we drive
current through a thin layer of conducting fluid placed over
an array of permanent magnets.10–12,14,15 The Lorentz forces
produced by this arrangement generate body forces in the
fluid and give rise to flows that can be quite complex. By
adjusting the layout of the magnets, we can change the sym-
metry of the forcing; a sketch of our apparatus and of the
three magnet arrays used is shown in Fig. 2. Previous sys-
tems of this type have often used alternating currents; here,
however, we use a controlled direct current. The strength of
the driving is measured by the Reynolds number Re=UL /�,
where U is the root-mean-square fluid velocity, L is an ap-
propriate length scale �equal to the mean magnet spacing for
the random and square magnet arrays and the forcing wave-
length for the Kolmogorov flow�, and � is the kinematic
viscosity. As we vary Re, we can drive the flow through the
transition from a state locked to the magnetic forcing and
into the regime of STC. In Fig. 3, we show sample velocity
and vorticity fields for our three flows at both the lowest and
highest Reynolds numbers measured.

To measure the flow, we track the simultaneous motion
of thousands of 116 �m diameter fluorescent polystyrene

tracer particles.16 The particles are illuminated by blue light-
emitting diodes, and the resulting fluorescence is imaged at a
rate of 30 Hz by a complementary metal oxide semiconduc-
tor camera. Using a Gaussian estimation scheme,16 we locate
the center of each particle to a precision better than 0.1 pixel,
corresponding to roughly 20 �m. The positions are then fed
into a predictive tracking algorithm, and the trajectories of
the particles are determined. We extract the velocity and ac-
celeration of each particle using polynomial fits to short track
sections.10,11 The velocity field is then constructed by inter-
polating between the discrete particle velocities using a
Delaunay-triangulation-based linear interpolation scheme.
We note that all measurements are taken in the center of the
flow so that boundary effects may be neglected.

Our flow is quasi-two-dimensional in that there is essen-
tially no fluid motion in the depth direction, even though the
velocity field is different at different depths. In order to en-
sure that our particles sample only a single plane of the flow,
we trap them at the interface between two miscible, stably
stratified fluids: a bottom layer �6 mm deep� of a 10% by
weight CuSO4 solution and a top layer �5 mm deep� of a 2%
KCl solution. Since the particles are confined to a plane at a
single depth, the variation of the velocity in the depth direc-
tion does not influence our measurements. Finally, we note
that although the two layers are miscible, they remain

FIG. 1. �Color online� Sketch of the local flows around �a� an elliptic point
and �b� a hyperbolic point.

FIG. 2. �Color online� Sketch of �a� the quasi-two-dimensional flow appa-
ratus, as well as the three magnet arrays used in this work: �b� a square
lattice, �c� a random array, and �d� a set of parallel linear magnets generating
shear bands, also known as the Kolmogorov flow �Ref. 13�. As described in
the text, the apparatus contains two fluids: a 6-mm-deep layer of heavy fluid
underneath a 5-mm-deep layer of light fluid. A square area measuring
20.3�20.3 cm2 is driven, of which the central 10�8.5 cm2 is imaged.

FIG. 3. �Color online� Representative velocity and vorticity fields for each
of the three base flows: the square magnet lattice ��a� and �b��, random array
��c� and �d��, and Kolmogorov flow ��e� and �f��. Data are shown for both
“low” �left column� and “high” �right column� Reynolds number: �a�
Re=28, �b� Re=182, �c� Re=21, �d� Re=168, �e� Re=30, and �f� Re=201.
The velocity field is represented by arrows, while the shading shows the
vorticity �counterclockwise rotation is red online�. The spatial resolution of
the velocity field is actually a factor of 15 greater than shown.
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distinct on the time scale of our experiments. The layer mis-
cibility is advantageous for us, since the particles therefore
experience essentially no surface-tension-driven forces.17

B. Locating hyperbolic and elliptic points

In principle, the hyperbolic and elliptic points of the flow
are located at positions where the velocity vanishes �i.e., the
stagnation points�. Experimentally, however, locating zeros
of the velocity field is not possible: since there will always
be some level of noise in the measurements, true zeros can-
not be measured. If one instead searches for local minima of
the velocity field, the results are not robust. To locate the
hyperbolic and elliptic points reliably, we therefore turn to an
approach based on differential geometry.10

Our raw data are particle tracks. In two dimensions, we
can describe each trajectory in a local coordinate system de-
fined by a vector T tangent to the curve and a vector N
normal to it. The Frenet formulas give the equations of mo-
tion of these vectors along the curve as18

dT

ds
= �N,

dN

ds
= − �T , �1�

where s is the arc length and � is the curvature. In principle,
the curvature is a purely geometrical quantity with no dy-
namical significance. We can, however, write the curvature
in terms of easily measurable dynamical quantities as

� =
an

u2 , �2�

where an is the acceleration normal to the direction of motion
and u is the magnitude of the velocity.

Consider now the curvature of the trajectory of a fluid
element passing near a hyperbolic or elliptic point. In both
cases, the fluid element will strongly change its direction of
motion over a very short distance, leading to high curvature.
We therefore construct the curvature field, whose value at
any location in space is the instantaneous curvature of the
fluid element passing through that point; the hyperbolic and
elliptic points are then located at local maxima of this field.

Other types of local flow, however, may also produce
large fluid element curvatures. In particular, as discussed be-
low, regions of high shear often correspond to large curva-
ture, even though they may not contain a hyperbolic or an
elliptic point. To isolate the topologically special curvature
maxima, then, we apply an additional test, based on the work
of Foss.19 Hyperbolic and elliptic points carry topological
charge. This charge can be determined by considering the
rotation of the velocity field vector along a closed path sur-
rounding the candidate hyperbolic or elliptic point. If the
field vector rotates by 2� radians in the same sense as the
rotation along the path, the point is elliptic; if instead it ro-
tates by 2� radians in the opposite sense, the point is hyper-
bolic. If the path does not enclose a �net� hyperbolic or el-
liptic point, the velocity field vector will not undergo a net
rotation.19 By using this test, we can distinguish true hyper-
bolic and elliptic points from high-shear regions. We note
that, as this is a topological test, elliptic points corresponding
to both clockwise and counterclockwise vorticity will both

show a +2� radian vector rotation. To summarize, a local
curvature maximum with a negative topological charge is
identified as a hyperbolic point, while a local curvature
maximum with a positive topological charge is identified as
an elliptic point. Local curvature maxima with no net topo-
logical charge are rejected.

Previously,10 we located hyperbolic and elliptic points
by first looking for local maxima of the curvature field above
some threshold, which we took to be the mean curvature. To
distinguish between hyperbolic and elliptic curvature
maxima, we used the Okubo–Weiss parameter,20,21 defined to
be the difference between the squared strain rate and the
squared vorticity. It therefore has a different sign in vorticity-
dominated and strain-dominated regions of the flow and can
be used to discrimate between elliptic points, which are
found in strongly rotating regions, and hyperbolic points,
which are found in straining regions. This procedure, how-
ever, was unable to handle high-shear regions correctly, since
curvature is often high in these areas even without the pres-
ence of a hyperbolic or elliptic point. To demonstrate this
effect, we show in Fig. 4 the results of the two algorithms
applied to the Kolmogorov flow at low Re. Recall that the
basic pattern of the Kolmogorov flow is a periodic sequence
of parallel shear bands; above a critical Re, the flow passes
through an instability and the pattern changes to a hexagonal
vortex lattice. In Fig. 4, Re is just above its critical value,
and so the flow still contains significant amounts of shear. To
illustrate the flow, Fig. 4�a� shows the shear rate across the
full field. In Fig. 4�b�, we show the results of applying our
previous algorithm, where we choose the mean curvature as
our threshold. Along the lines of high shear, many spurious
hyperbolic and elliptic points are found. In contrast, in Fig.
4�c� we show the results of the new method presented above.

FIG. 4. �Color online� Comparison of our previous �Ref. 10� and new meth-
ods for locating hyperbolic and elliptic points. �a� The instantaneous local
shear strain rate �shown by the shading� and the velocity field �arrows� for
the Kolmogorov flow at Re=30. �b� The logarithm of the curvature field
�shading; red is large online�, with the hyperbolic and elliptic points located
by our previous method, using a threshold curvature and the Okubo–Weiss
parameter �see text for more details�. Hyperbolic points are designated by
squares and elliptic points by circles. �c� The hyperbolic and elliptic points
located by the method of the present paper, which uses both curvature and
topological charge. The new method avoids detecting spurious points in
regions of high shear, where curvature may be large without the presence of
a true hyperbolic or elliptic point.
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Many curvature maxima that were spuriously identified as
hyperbolic and elliptic points in Fig. 4�b� now do not pass
our topological test and are rejected. While we cannot be
certain that all of the spurious points have been eliminated,
the topological charge is clearly a better discriminator than
the Okubo–Weiss parameter.

To further demonstrate the results of our improved algo-
rithm, we show in Fig. 5 the curvature fields, with the hy-
perbolic and elliptic points identified, that correspond to the
velocity fields shown in Fig. 3. In all cases, the large values
of the curvature field are tightly localized spatially: the cur-
vature maxima are very sharp. It is also intriguing to note
that the very small curvatures, corresponding to regions
where fluid elements move in nearly straight lines, form dis-
tinct lines. The density of these lines appears to decrease as
Re increases. Their significance, however, is unclear.

III. RESULTS

A. Curvature probability density functions

The statistics of curvature have previously been studied
in three-dimensional turbulent flow,18,22 and it was shown
that the PDF of the curvature is extremely wide, spanning
nearly ten orders of magnitude. In each of these studies, the
PDF of curvature was found to exhibit power-law tails, with
the low-curvature side scaling linearly in �, while the high-
curvature side scales as �−5/2. Xu et al. explained this behav-

ior by constructing a simple model, where the Lagrangian
velocity and acceleration were assumed to be Gaussian ran-
dom variables.22 In two dimensions, the power laws change;
the model predicts a constant, �0 low-curvature tail, and a
�−2 high-curvature tail.

Our measurements of the curvature PDFs are shown in
Fig. 6 for each of the three flows investigated. In each case,
we scale the curvature by �u

2 /�a, where �u is the standard
deviation of the velocity and �a is the standard deviation of
the acceleration. For each flow, the data do not collapse per-
fectly with this rescaling; instead, there is a weak trend with
Reynolds number. Surprisingly, we find the same �0 and �−2

power-law tails predicted by the two-dimensional version of
the model of Xu et al., even though the velocity and accel-
eration in our flows are certainly not random variables, par-
ticularly at low Re. Since the same PDF shape is found both

FIG. 5. �Color online� Curvature fields for each of the three flows, for the
same data as in Fig. 3. The shading shows the logarithm of the curvature.
Low-curvature regions tend to form linelike structures, while high curva-
tures appear as isolated points. The circles show the located elliptic points,
while the squares mark hyperbolic points. Both are located at maxima of the
curvature.

FIG. 6. �Color online� Curvature probability distributions �black lines� for
each of the three flows; �a� square magnet lattice �28� Re �182�, �b� ran-
dom magnet array �21� Re �168�, and �c� Kolmogorov flow �30� Re
�201�. For each flow and for each Reynolds number, the PDF has a con-
stant low-curvature tail and a high-curvature tail that scales as �−2. Data for
different Reynolds numbers have been scaled by the appropriate combina-
tion of the velocity and acceleration variances, leading to a collapse of the
data except at very small curvatures. The gray curves �right axes� show the
curvature distribution measured only at the located hyperbolic and elliptic
points, but combining data for all Reynolds numbers.
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in our low-Re, time-independent flows and in high-Re turbu-
lence, we conclude that the curvature statistics alone are in-
sensitive to the flow details.

In Fig. 6, we also show the PDFs of the curvature mea-
sured at our located hyperbolic and elliptic points, with data
from all Reynolds numbers averaged together to improve our
statistics. These conditional PDFs show that, while it is more
likely to find hyperbolic and elliptic points with curvature
values in the decreasing, large-curvature tail, these features
need only be local maxima, so some may be found in the flat,
low-curvature part of the PDF. A thresholding-based detec-
tion algorithm, like the one we used previously,10 is therefore
a poor choice for locating hyperbolic and elliptic points. The
improved method used here is significantly more robust.

B. Hyperbolic/elliptic pair interactions

As Re increases, the flow pattern changes and becomes
time dependent; that is, the symmetries of the forcing are
spontaneously broken and the flow becomes spatiotempo-
rally chaotic. If Re becomes high enough, the flow exhibits
turbulence. In either of these cases, the velocity field changes
in time and the locations of the hyperbolic and elliptic points
are not static; rather, they move with the flow pattern. As we
showed previously,10 at low Re, they remain pinned to their
forced locations, although they may move about these pre-
ferred sites. At high Re, however, they break free from these
locations and wander over the flow. As they move, they in-
teract; in particular, hyperbolic and elliptic points may anni-
hilate in pairs, which corresponds physically to the merging
of two vortices. New hyperbolic-elliptic pairs may also be
nucleated when a vortex splits. We found previously with a
square magnet lattice that these processes occur only above a
critical Re. We propose that the presence of dynamically
changing topology can be used as a defining characteristic of
STC.10 Fluctuations that do not change the flow topology
represent a qualitatively weaker form of chaos.

We now consider these pair interactions for three distinct
flows, applying our new methods for locating the hyperbolic
and elliptic points. Once their positions are found, we use the
same tracking algorithm normally used to determine the
tracer-particle tracks to construct the trajectories of the hy-
perbolic and elliptic points. These trajectories then allow us

to find pair creation and annihilation events. Our criteria for
identifying such events are simple. If the trajectories for a
hyperbolic point and an elliptic point end at the same time
step, and if at that time they were closer to each other than to
any other points, we record an annihilation event. Similarly,
if two trajectories start at the same time step and satisfy the
nearness constraint, we record a creation.

The resolution with which we can locate the hyperbolic
and elliptic points will, of course, affect our determination of
creation and annihilation events. We estimate that we cannot
distinguish hyperbolic and elliptic points separated by less
than roughly 1 mm with our current spatial resolution; the
annihilation of two points is therefore indistinguishable from
their coming very close together. This resolution limit is an
issue in our low-Re data from the random magnet array. Due
to the particular magnet configuration, in the time-
independent regime this flow contains hyperbolic and elliptic
points that are very close together, near our resolution limit.
As these nearby points begin to move, they come very close
together, and we record a spurious annihilation event. When
they then separate, we record a spurious creation event. That
these events are not true creation and annihilation events is
clearly shown in Fig. 7, where we plot the spatial distribution
of creation and annihilation events for the random magnet
array for Re�60. The events are highly clustered and are
well correlated with the locations of the nearby hyperbolic
and elliptic points in the steady flow regime. As discussed
above, as Re increases the hyperbolic and elliptic points are
free to move. Since they are therefore no longer forced to be
very close together, the number of spurious events is re-
duced. We note that spurious low-Re detection of creation
and annihilation events is only a problem with our data from
the random magnet array, where hyperbolic and elliptic
points are forced to lie close together. For our other two
forcing configurations, this problem is absent.

Indeed, for the square magnet lattice, pair creation and
annihilation events are decorrelated from the flow forcing, as
shown in Fig. 8 for all Re measured. These results suggest
that the creation or annihilation of a hyperbolic/elliptic pair
is not influenced by the base flow forcing, but instead is due

FIG. 7. Spatial dependence of the locations of creation �triangles� and an-
nihilation �crosses� events for the random magnet array, for Re�60. The
creation and annihilation events are highly clustered and lie preferentially
where the forcing in the time-independent regime produces hyperbolic and
elliptic points that are very close together. Many of the recorded events for
this flow at these low Reynolds numbers are spurious.

FIG. 8. �Color online� Spatial dependence of the locations of creation �tri-
angles� and annihilation �crosses� events for the square magnet lattice, for
all measured Reynolds numbers. The solid clusters show the trajectories of
the hyperbolic and elliptic points at the lowest Reynolds number measured
�Re=28�, as a way to show the flow forcing. The creation and annihilation
events appear to be uncorrelated with the flow forcing, and we believe that
essentially all of them are real.
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to the dynamics of the flow, supporting our proposal that the
changing topology can be regarded as the defining character-
istic of STC.

We also find that the frequency of pairwise interactions
rises as Re increases and the flow fluctuations become more
important. In Fig. 9, we show the rates of pair creation and
annihilation for each of the three flows. For the square mag-
net lattice �Fig. 9�a��, our results are similar to our previous
finding: below a critical Reynolds number Rec, there are no
creation or annihilation events, and above Rec the interaction
rates increase rapidly. The shape of the curve is different
here: whereas our previous results suggested a square-root-
like rise of the interaction rates,10 we here find a linear in-
crease with Re. We attribute this difference to the improved
detection methods presented in this paper. The hyperbolic
and elliptic points become more difficult to locate and track
as Re increases, and our earlier algorithms may not have
resolved all the creation and annihilation events. Regardless

of the shape of the curve, however, the essential conclusion
remains the same: below Rec, the topology of the flow is
fixed, while above Rec it changes continually.

The flow forcing provided by the square magnet lattice
has a considerable degree of symmetry, which is reflected in
the flow pattern below Rec �see, e.g., Fig. 3�a��. Above Rec,
where the dynamics are spatiotemporally chaotic, the flow
spontaneously breaks these symmetries. One might expect
that when the flow forcing is less symmetric, less hydrody-
namic kinetic energy would be required to break these sym-
metries and produce spatiotemporally chaotic flow, leading
to a lower Rec. To test this hypothesis, we measured the
creation and annihilation rates in our other two flows, shown
in Figs. 9�b� and 9�c�. As with the square magnet lattice, the
interaction rates rise linearly above some Rec, as indicated by
fits to the data. For the square magnet lattice, with periodic
symmetry in two directions, we find that Rec=59	6. In
contrast, the Kolmgorov flow has forcing symmetry in only
one direction; its critical Reynolds number is lower,
with Rec=37	6. Finally, the flow generated by the random
magnet array, with no imposed spatial symmetry, has
Rec=23	12. Note that for the random array, we include
only creation and annihilation rates for Re�60, where the
methods are reliable, in determining Rec.

IV. CONCLUSIONS

We have presented a method for locating the hyperbolic
and elliptic points of a quasi-two-dimensional laboratory
flow by using the curvature of tracer-particle trajectories. We
have extended our prior work by studying three different
forcing patterns with varying degrees of spatial symmetry.
For each flow, hyperbolic and elliptic point pairs are nucle-
ated or annihilated only above a critical Reynolds number.
This critical Reynolds number is smaller for flows that are
less symmetric. Apparently, less energy is required for the
hyperbolic and elliptic points to break free from their forced
locations when the flow symmetry is reduced. In contrast, the
statistics �e.g., the PDF� of the curvature are almost identical
for the three flows.

We propose that continually changing topology, repre-
sented by the creation and annihilation of hyperbolic/elliptic
pairs, is an essential ingredient of STC; that is, systems with
static topology are not spatiotemporally chaotic. We suggest
that it might be fruitful to formulate models of STC based on
topological dynamics of the kind discussed here.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation under Grant No. DMR-0405187.

1M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilib-
rium,” Rev. Mod. Phys. 65, 851 �1993�.

2M. C. Cross and P. C. Hohenberg, “Spatiotemporal chaos,” Science 263,
1569 �1994�.

3D. A. Egolf and H. S. Greenside, “Relation between fractal dimension and
spatial correlation length for extensive chaos,” Nature �London� 369, 129
�1994�.

4T. Bohr, E. Bosch, and W. van de Water, “Spatiotemporal chaos,” Nature
�London� 372, 48 �1994�.

5D. A. Egolf, I. V. Melnikov, W. Pesch, and R. E. Ecke, “Mechanisms of

FIG. 9. �Color online� Rates of creation �squares� and annihilation �circles�
of hyperbolic-elliptic point pairs for each of the three flows: �a� square
magnet lattice, �b� random magnet array, and �c� Kolmogorov flow. The
error bars are statistical and were determined by conducting several data
runs and comparing the results. For each plot, the solid straight line is a
linear fit to the data. In �b�, the low Re �Re�60� data are ignored in the fit
to avoid including spurious events.

064104-6 N. T. Ouellette and J. P. Gollub Phys. Fluids 20, 064104 �2008�

Downloaded 18 Jan 2011 to 130.91.117.41. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1126/science.263.5153.1569
http://dx.doi.org/10.1038/369129a0
http://dx.doi.org/10.1038/372048a0
http://dx.doi.org/10.1038/372048a0


extensive spatiotemporal chaos in Rayleigh–Bénard convection,” Nature
�London� 404, 733 �2000�.

6S. W. Morris, E. Bodenschatz, D. S. Cannell, and G. Ahlers, “Spiral defect
chaos in large aspect ratio Rayleigh–Bénard convection,” Phys. Rev. Lett.
71, 2026 �1993�.

7E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent developments in
Rayleigh–Bénard convection,” Annu. Rev. Fluid Mech. 32, 709 �2000�.

8M. Dennin, G. Ahlers, and D. S. Cannell, “Spatiotemporal chaos in elec-
troconvection,” Science 272, 388 �1996�.

9A. E. Perry and M. S. Chong, “A description of eddying motions and flow
patterns using critical-point concepts,” Annu. Rev. Fluid Mech. 19, 125
�1987�.

10N. T. Ouellette and J. P. Gollub, “Curvature fields, topology, and the dy-
namics of spatiotemporal chaos,” Phys. Rev. Lett. 99, 194502 �2007�.

11G. A. Voth, G. Haller, and J. P. Gollub, “Experimental measurements of
stretching fields in fluid mixing,” Phys. Rev. Lett. 88, 254501 �2002�.

12G. A. Voth, T. C. Saint, G. Dobler, and J. P. Gollub, “Mixing rates and
symmetry breaking in two-dimensional chaotic flow,” Phys. Fluids 15,
2560 �2003�.

13J. M. Burgess, C. Bizon, W. D. McCormick, J. B. Swift, and H. L.
Swinney, “Instability of the Kolmogorov flow in a soap film,” Phys. Rev.
E 60, 715 �1999�.

14J. Paret, D. Marteau, O. Paireau, and P. Tabeling, “Are flows electromag-
netically forced in thin stratified layers two dimensional?” Phys. Fluids 9,
3102 �1997�.

15D. Rothstein, E. Henry, and J. P. Gollub, “Persistent patterns in transient
chaotic fluid mixing,” Nature �London� 401, 770 �1999�.

16N. T. Ouellette, H. Xu, and E. Bodenschatz, “A quantitative study of
three-dimensional Lagrangian particle tracking algorithms,” Exp. Fluids
40, 301 �2006�.

17D. Vella and L. Mahadevan, “The Cheerios effect,” Am. J. Phys. 73, 817
�2005�.

18W. Braun, F. De Lillo, and B. Eckhardt, “Geometry of particle paths in
turbulent flows,” J. Turbul. 7, 1 �2006�.

19J. F. Foss, “Surface selections and topological constraint evaluations for
flow field analyses,” Exp. Fluids 37, 883 �2004�.

20A. Okubo, “Horizontal dispersion of floatable particles in the vicinity of
velocity singularities such as convergences,” Deep-Sea Res. 17, 445
�1970�.

21J. B. Weiss, “The dynamics of the enstrophy transfer in two-dimensional
turbulence,” Physica D 128, 169 �1991�.

22H. Xu, N. T. Ouellette, and E. Bodenschatz, “Curvature of Lagrangian
trajectories in turbulence,” Phys. Rev. Lett. 98, 050201 �2007�.

064104-7 Dynamic topology in spatiotemporal chaos Phys. Fluids 20, 064104 �2008�

Downloaded 18 Jan 2011 to 130.91.117.41. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1038/35008013
http://dx.doi.org/10.1038/35008013
http://dx.doi.org/10.1103/PhysRevLett.71.2026
http://dx.doi.org/10.1146/annurev.fluid.32.1.709
http://dx.doi.org/10.1126/science.272.5260.388
http://dx.doi.org/10.1146/annurev.fluid.19.1.125
http://dx.doi.org/10.1103/PhysRevLett.99.194502
http://dx.doi.org/10.1103/PhysRevLett.88.254501
http://dx.doi.org/10.1063/1.1596915
http://dx.doi.org/10.1103/PhysRevE.60.715
http://dx.doi.org/10.1103/PhysRevE.60.715
http://dx.doi.org/10.1063/1.869419
http://dx.doi.org/10.1038/44529
http://dx.doi.org/10.1007/s00348-005-0068-7
http://dx.doi.org/10.1119/1.1898523
http://dx.doi.org/10.1016/S0167-2789(98)00301-7
http://dx.doi.org/10.1103/PhysRevLett.98.050201

