Maximizing and Satisficing in Decision-Making Dyads

by Starry Peng Advisor: Dr. Adam Grant

Wharton Research Scholars Thesis

The Wharton School, University of Pennsylvania

December 29, 2013

1. INTRODUCTION

1.1. Maximizing and Satisficing

The freedom of choice has become deeply ingrained in our social fabric. For decades, psychological researchers have advocated the benefits of providing choice: it enhances feelings of autonomy and freedom (Roets, Schwartz, & Guan, 2012), promotes one's sense of personal control (Rotter, 1996; Taylor, 1989; Taylor & Brown, 1988), and increases feelings of intrinsic motivation (deCharms, 1968; Deci, 1981; Deci & Ryan, 1985). More recently, however, the decision-making literature has undergone a shift in perspective: increased choice may actually be detrimental and unappealing for some decision-makers. Indeed, studies conducted by Iyengar and Lepper (1999, 2000) found that those provided with fewer options in a decision-making task derived greater satisfaction from their decision outcomes.

Rational choice theory is a well-established tenet in economics that rests on the assumption that people are rational agents. Armed with complete information about their choices, rational individuals will always choose the option that maximizes their utility. These "maximizers" approach decision-making with the goal of achieving the best possible decision outcome. In order to accomplish this, they are willing to engage in an exhaustive search of all possible options, investing substantial time and effort in the decision process (Iyengar, Wells, & Schwartz, 2006). However, behavioral economists contend that the assumption of "complete information" in decision-making is unrealistic and that human beings often violate the principles of rational choice theory (Kahneman & Tversky, 1979, 1984).

More than half a century ago, Herbert Simon (1955, 1956) introduced a theory that addressed the limitations of human cognition as well as environmental complexities in the decision-making process. He argued that the goal of utility maximization, as stipulated by rational choice theory, is nearly impossible to achieve in real life. Rather than maximize, people often "satisfice" when making decisions. Satisficers have an internal threshold of acceptability against which they evaluate options, and will choose a decision outcome when it crosses this threshold. Therefore, satisficers are content to settle for a "good enough" option—not necessarily the very best outcome in all respects.

More recently, Schwartz and his colleagues (2002) characterized this tendency to maximize or satisfice into an individual, psychological trait. They developed a 13-item Maximization Scale in order to assess an individual's tendency to seek optimality in decision-making, testing facets related to alternative search, decision difficulty, and high standards (Roets et al., 2012). Compared to satisficers, maximizing individuals are more likely to experience lower levels of happiness, life satisfaction, optimism, and self-esteem. In addition, maximizing tendencies were shown to have significant, positive correlations with regret, perfectionism, and depression (Schwartz et al., 2002). Despite their high-effort decision-making process, maximizers are less satisfied with their final decision outcomes than satisficers.

The negative affect experienced by maximizers can be attributed to the presence and proliferation of choices in the decision-making process. In order to determine their optimal decision outcome, maximizers feel compelled to examine each and every alternative available, which is often infeasible in reality due to the limitations in human cognition (Roets et al., 2012). For maximizers, the excess of options becomes problematic for several reasons. First, it grows increasingly difficult to collect and process the information necessary to construct an informed, complete set of options. Second, choice proliferation makes it more difficult to correctly identify the "best" outcome on an objective basis. This

forces maximizers to rely on external sources of information to evaluate their options (Iyengar et al., 2006). In fact, maximizing individuals are more likely to engage in upward social comparisons in order to gauge the optimality of their decisions. This encourages counterproductive thinking about "what might have been", which perpetuates feelings of regret (Schwartz et al., 2002).

Third, as the number of available choices increase, a maximizer's standards of an acceptable outcome inflates correspondingly. Given the practical constraints on conducting an exhaustive search, a maximizer's high expectations inevitably lead to disappointment and dissatisfaction with his final decision. Fourth, maximizers may be more likely to attribute failures or poor decisions to personal shortcomings rather than situational limitations and environmental complexities. This depressogenic way of thinking causes maximizing individuals to have lower self-esteem than their satisficing counterparts (Schwartz et al., 2002; Polman, 2010).

Finally, more choices imply a higher probability that an individual will make a non-optimal decision. This can indirectly undermine the satisfaction a maximizer derives from his actual choice (Schwartz et al., 2002; Polman, 2010). As Roets et al. argue, "there is always the possibility that there is a better option 'out there', and failing to find it means a failure to optimize personal satisfaction" (Roets et al., 2012). Most recently, Sparks and her colleagues (2012) found that maximizers are more reluctant to commit to their choices. Their reticence to commit robs them of critical, post-decision psychological processes, such as dissonance reduction and rationalization (Sparks, Ehrlinger, & Eibach, 2012). Ultimately, this leaves maximizing individuals feeling less satisfied with their decision outcomes.

The presence of choice contributes to the heightened feelings of regret, unrealistic expectations, and high opportunity costs suffered by maximizers. Satisficers, on the other hand, undergo a fundamentally different, decision-making process. With modest standards for what constitutes an acceptable decision outcome, a satisficing individual does not require a complete information set when making his decisions. Several options may fall within a satisficer's threshold for acceptability, providing greater flexibility and latitude in achieving a desired decision outcome. As soon as he encounters a "good enough" option, the satisficer can easily ignore the addition of new choices to the decision domain. Therefore, a satisficer is less likely to experience regret *even if* a better option presents itself after a decision has already been made (Schwartz et al., 2002).

Given all this, are maximizers rewarded for their troubles by achieving better decision outcomes? Does their high-effort decision-making process result in better decision quality? Iyengar et al. (2006) found that recent college graduates with high maximizing tendencies accepted jobs that paid 20% higher starting salaries than their satisficing peers. Despite higher salaries, however, these maximizing students were less satisfied with the jobs they obtained. They also experienced more negative affect both during and after the job search process (Iyengar et al., 2006). When compared to satisficers, it appears that maximizing individuals generally achieve better outcomes objectively, but perceive them to be worse subjectively for the reasons discussed above (Schwartz et al., 2002; Iyengar et al., 2006).

However, this view has been openly debated in the decision-making literature. Parker, Bruine de Bruin, and Fischhoff (2007) found that self-reported maximizers are more likely to use maladaptive decision-making styles. A tendency to maximize results in less behavioral coping, greater dependence on others for information, increased interpersonal comparisons, avoidance of decision-making in order to search for more information, and more acute feelings of regret (Parker et al., 2007). These findings were consistent with those of Bruine de Bruin et al. (2007): individuals who scored highly on Schwartz's Maximization Scale were poorer decision makers when measured by the Decision-Making Competence survey and self-reported Decision Outcomes Inventory (Bruine de Bruin, Parker, & Fischhoff, 2007).

Contrary to intuition, maximizers are also more likely to engage in spontaneous decision-making (Parker et al., 2007). Overall, satisficing individuals achieved better decision outcomes (cf. Iyengar et al., 2006).

The academic literature on maximizing and satisficing behaviors is still relatively nascent. Most of the current research focuses on the relationship between maximization and various affective states, as well as the construct validity of maximization scales. Presently, it is still unclear whether maximizers or satisficers achieve objectively better, decision outcomes. Researchers treat these two approaches to decision-making as global characteristics at the individual level. However, it is possible that maximizing and satisficing are learned behaviors designed specifically for decision-making tasks.

1.2. Team Effectiveness

In the past half-century, organizational psychologists have produced extensive research on work groups and teams. A team can be defined by the following six criteria (Kozlowski & Ilgen, 2006):

- 1. Two or more individuals;
- 2. Individuals on the team interact socially (face-to-face or virtually);
- 3. They work together on organizationally relevant tasks;
- 4. Members are interdependent with respect to goals, outcomes, and workflow;
- 5. They take on different roles and responsibilities;
- 6. The group is embedded in a larger organizational system, with linkages to the broader task environment.

The literature on team effectiveness is based on the input-process-output (I-P-O) model proposed by McGrath (1964). In this framework, the contributions of individuals and teams within the organization are defined as inputs. Processes refer to the activities of decision-making that mediate the translation of inputs into outcomes (Gladstein, 1984). As team members interact and work together, these processes develop over time as "emergent states" (Marks, Mathieu, & Zaccaro, 2001). A team's effectiveness can be judged by its outputs: performance evaluated by individuals external and relevant to the team, the meeting of team-member needs, and whether team members are willing to remain on the team (Hackman, 1987; Kozlowski & Ilgen, 2006).

Hackman (1987) developed a normative model for group effectiveness that uses the I-P-O model as a basis for analyzing group behavior and team performance. He proposed that team effectiveness is a function of three critical process criteria: a) the knowledge and skillset each team member contributes to the team; b) the degree of alignment between tasks and performance strategies used by team members; and c) the team's overall level of effort. By pulling on the levers of team design, organizational context, and work process, teams can be managed in a way that maximizes effectiveness and boosts performance (Hackman, 1987; Campion, Medsker, & Higgs, 1993; Campion, Papper, & Medsker, 1996).

The factors underlying team effectiveness are rooted in the processes that mediate the transformation of inputs into outputs (McGrath, 1964; Kozlowski & Ilgen, 2006). During the past decade, scholars have developed a new conceptualization of team processes and effectiveness that is dynamic in nature—an extension and refinement of the original I-P-O model. Within this new framework, teams are embedded in a multilevel system with individual, team, and organizational components. The organization's overall task environment is ever-changing and teams must adapt to shifting demands. Linkages between teams and the encompassing organizational context are taken into account, as are task-relevant processes and temporal dynamics (Kozlowski & Ilgen, 2006). Thus, team processes and effectiveness are characterized as emergent phenomena that not only evolve within a team's task and

social contexts, but also interact with the larger organizational or environmental context (Kozlowski & Ilgen, 2006; Kozlowski & Bell, 2003; Arrow, McGrath, & Berdahl, 2000; Kozlowski, Gully, Nason, & Smith, 1999; Ilgen, Hollenbeck, Johnson, & Jundt, 2005; Marks et al, 2001; Kozlowski, Gully, McHugh, Salas, & Cannon-Bowers, 1996)

1.3. The Present Research

Teams have become nearly ubiquitous in modern-day organizations. Companies increasingly rely on teams and work groups to develop initiatives, advance organizational goals, and shape workplace culture. Critical to the success of teams are their decision-making processes and the outcomes achieved. The existing literature has been devoted to studying how maximizing and satisficing tendencies influence an individual's decision-making behavior and affect. However, little is currently known about how maximizers and satisficers make decisions in a team setting.

Our goal is to study the relationship between maximizing-satisficing behaviors and team effectiveness. Using the I-P-O model, we evaluate a team's effectiveness based on its outputs or outcomes. Accordingly, we define the first facet of team effectiveness to be the quality and accuracy of decision outcomes. The second component describes whether the individual needs of team members are being met, which includes member satisfaction, team morale, and commitment to the group. The third factor of team effectiveness is future viability: the willingness of members to remain on the team and work together in the future. We designed a study to answer the following question: does the composition of maximizers and satisficers on a team influence the group's decision-making behavior and process? More specifically, does team composition affect the team's decision quality, satisfaction levels, and future viability?

Different theories make conflicting predictions about the benefits of similarity versus complementarity in teams. A highly homogenous team is likely to exhibit high cohesion and low relationship conflict, whereas highly diverse teams may be less vulnerable to groupthink. A team comprised entirely of maximizers is likely to exhibit reduced team satisfaction as well as delayed decision-making and longer deliberation time. Conversely, satisficing teams may suffer from insufficient analysis during the decision-making process, which could decrease decision quality. Teams that exhibit high satisficing tendencies will likely experience higher levels of team morale and satisfaction.

The insights gained from this study may have significant practical importance. Our findings could help managers and organizational stakeholders design more effective teams and improve team decision-making processes based on the decision-making styles of individual members.

2. METHOD

2.1. Participants

Subjects were recruited for this study through the Wharton Behavioral Lab (WBL) at the University of Pennsylvania. The WBL used its online registration portal to recruit 244 people, of which 226 participated in this study. Each subject earned \$10 for their participation. During the first two days of the study, we encountered significant issues related to timing the decision-making task, which rendered the data inadmissible. Our subsequent analysis therefore only includes the data collected in the last three days of the study. A total of 132 people participated, of which 87.1% were undergraduate students. The remaining 12.9% of subjects was comprised of graduate students, faculty, staff, and others. Of this sample, 32.6% were male. The median age of participated in this study was affiliated with the University of Pennsylvania.

2.2. Materials and Procedure

When characterized as a psychological trait, maximizing-satisficing can be viewed on three levels: global, contextual, or situational (Vallerand, 1997). In this study, we focus on the contextual level, which describes how a person's decision-making orientation applies to a specific life domain—in this case, on a team in a work-related environment. Teams of two people ("dyads") were given the decision-making task of hiring a job candidate. The absence of coalitions and other interaction complexities make dyadic teams easier to observe. However, dyads exhibit the same, underlying work processes critical to team effectiveness as larger-sized teams. Subjects were randomly assigned to a dyad. Each dyad belonged to one of four conditions representing our manipulation of team composition: 1) two maximizers (MM); 2) two satisficers (SS); 3) mixed, consisting of one maximizer and one satisficer (MS); and 4) control group (CC). Decision-making orientations were privately assigned to participants, who had no knowledge of their partners' orientations.

Subjects assigned to the first three conditions were primed to emulate either maximizing or satisficing behaviors. To achieve this, we adopted the approach used by Grant, Gino, and Hofmann (2011). We primed subjects to imitate maximizing behaviors by having them read a summary of why maximizing is beneficial in decision-making as well as a description of what a maximizing decision-making process entails. Afterwards, subjects wrote short paragraphs about a time they engaged in maximizing behaviors that ultimately led them to a successful decision outcome. Subjects who were assigned satisficing roles were asked to perform a similar exercise. In order to enhance the effectiveness of the priming exercise, subjects were given one minute afterwards to relax and reflect on what they had read and written. The priming exercise was omitted for subjects in the control group.

In addition to assigning decision-making styles, we collected information about each participant's intrinsic tendency towards maximizing or satisficing. At the beginning of the study, all subjects completed a survey with items borrowed from Schwartz's Maximization Scale (Schwartz et al., 2002). Each item was rated on a scale from 1 (completely disagree) to 7 (completely agree). All subjects completed this survey and their priming exercises (if assigned) independently, prior to meeting their partners.

For the decision-making task, we adapted materials from the Insight Enterprise Software case prepared by David Hofmann (University of North Carolina) and Randall Peterson (London Business School). Given the profiles of three job candidates, participants must decide whom they should promote to the CFO position in a traditional organization structure. Because the case was originally prepared for five participants, we modified the materials to accommodate only two decision-makers. This case also contained a hidden profile, in which some of the information is shared across all participants, whereas other information is known by only one individual prior to a group discussion. When the candidate profiles are read independently, one version favors the hiring of Dana while the other prefers Pat. When all information is shared and compiled, however, the completed profiles indicate that the third candidate, Terry, is actually the best person for the job. This aspect of the Insight case was preserved for this study. A hidden profile task could make the differences in decision-making process between maximizers and satisficers particularly clear. For example, a group of satisficers may be more likely to focus on the shared information, whereas maximizers might engage in an exhaustive discussion in order to unearth unique information.

Subjects were randomly assigned one of the two decision-making roles. Unaware of the hidden profile, participants were given 10 minutes to read and take handwritten notes on the candidates' qualifications. Each participant then made an independent hiring decision based solely on their version of the candidate profiles. At this point, subjects met their partners in person for the first time. Each dyad was asked to deliberate until it reached a unanimous hiring decision. To ensure the integrity of discussions, dyads were required to discuss the case materials for a minimum of 7 minutes. Beyond this, teams could take as long as they needed to make a decision. Each team's final hiring decision was recorded, along with the amount of time it took them to reach consensus.

Dyads were disbanded upon completion of the Insight decision-making task. We then asked participants to complete a 30-question Post-Experimental Questionnaire (PEQ), with questions adapted from Jehn and Shah (1997). Subjects self-reported on items regarding decision speed and quality, team cohesion and conflict, team satisfaction, future viability, and post-decision emotions.

3. HYPOTHESES

The existing literature presents conflicting views on whether maximizing or satisficing individuals achieve better decision outcomes. As an objective measure of dyad performance, decision quality represents our first criteria of team effectiveness. When a team discusses the candidate profiles together in person, they should eventually realize that both team members were given different information. Individual maximizers are more willing to expend extra resources, such as time and effort, in order to determine the best decision outcome. We thus expect maximizing dyads to use more care and time to uncover the complete profiles of candidate qualifications. Furthermore, prior to team discussion, individual members are more inclined to favor either Dana or Pat. In order to reach a unanimous team decision, members of maximizing dyads are more likely to discuss the pros and cons of the job candidates in a thorough, comprehensive manner in order to reconcile these opposing views. Through this process, we predict that maximizing teams will achieve higher-quality team decisions—accurately hiring Terry, regardless of initial decisions made individually.

Hypothesis 1a. Maximizing dyads will achieve better decision outcomes.

Hypothesis 1b. In order to consider more options and make better decisions, maximizing dyads will spend more time in discussion.

Maximizers are more susceptible to escalation of commitment, a term coined by Barry Staw in 1976 to describe a decision-maker's tendency to "throw good money after bad" (Staw, 1976; Garland, 1990). That is, when the resources committed to an initial course of action yield undesirable results, the decision-maker increases his investment in his original decision, rather than withdrawing or changing course. He essentially commits to a losing position, even after he has learned that the costs of his original decision outweigh the benefits, at this point and into the future (Moon, 2001). Researchers describe this tendency as the "sunk-cost fallacy": the individual believes that the only way to recover his sunk costs is to "fix" the original situation by spending more resources to obtain the desired outcome. Instead of changing his behavior upon encountering negative consequences, the decision-maker defies rationality by cognitively distorting the negative outcomes into more positive ones (Staw, 1976). The likelihood of escalation of commitment occurring is influenced by project, psychological, social, and organizational determinants (Ross & Staw, 1993).

In this study, individuals are first asked to submit their independent hiring decisions, prior to meeting their partners. Made with partial information, these individual hiring decisions are likely to be incorrect. Because maximizers are more prone to experiencing escalation of commitment, they are more likely to stick to their original decision, even after realizing that their partners have new and unique information about the job candidates. Once committed, maximizing individuals may be less open towards changing their independent decisions at the dyadic level.

Hypothesis 2: *Maximizing dyads are less likely to change their decisions from the individual level to the team level, despite increased information.*

The other two criteria of team effectiveness are member satisfaction and team viability. To study this, we extrapolate the impact of maximizing-satisficing on affect felt by individuals to the team level. Affective states develop in teams through three general processes: the attraction-selection-attrition model (ASA), emotional contagion, and contextual conditions (Kozlowski & Ilgen, 2006). Emotional contagion, a bottom-up process, is perhaps the most applicable to our study. Contagion occurs when one individual's moods and emotions are transferred to other proximal, team members (Kelly & Barsade, 2001). Schwartz and his colleagues (2002) have already shown that maximizing individuals experience more negative affect during and after the decision-making process, while satisficers enjoy higher levels of satisfaction. Thus, this positive or negative affectivity may transfer from one member to the other, and impact the collective affect felt by the dyad. Our manipulation of team composition may allow us to observe this process of emotional contagion more clearly.

Hypothesis 3a. A satisficing dyad will experience a greater level of satisfaction about its final decision outcome.

Hypothesis 3b. Post-decision, a maximizing dyad will feel more regret.

For satisficing dyads, higher levels of satisfaction about their decision outcomes may extend and translate into stronger satisfaction about their overall team experiences. Compared to maximizers and their impossibly high standards for decision-making excellence, satisficers use far less rigid standards to evaluate the desirability of their options. As a result, satisficing dyads may experience less team conflict, foster a more open and collaborative environment for discussion, and exhibit a greater degree of agreeableness in their group dynamics. This, coupled with the positive affect associated with the decision outcome, could engender a stronger sense of team commitment and future viability in satisficing dyads.

Hypothesis 4. Satisficing dyads experience greater team satisfaction.

Hypothesis 5. Satisficing dyads feel a stronger commitment to their teams. Members are more likely to want to work with each other in the future.

4. **RESULTS**

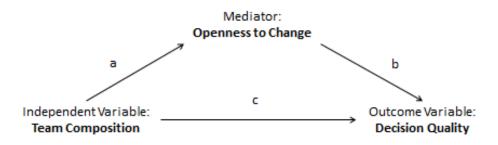
4.1. Decision Quality

We used a contingency table and chi-square analysis to determine if a significant relationship existed between team composition and decision quality. Contrary to Hypothesis 1a, satisficing dyads made the correct hiring decision 68.8% of the time, compared to 47.1% by maximizing dyads (see Appendix 1). However, this result was statistically insignificant at the 95% confidence interval (p = 0.341). We observed that the cross-tabulation results for the control group (CC) and mixed teams (MS) were nearly identical. Therefore, both conditions can be treated as control groups. In subsequent analyses, we filter out all teams belonging to the mixed and control group conditions (unless otherwise stated) to better observe the effects of pure maximizing and satisficing teams.

When we reran the above analysis on pure maximizing (MM) and satisficing (SS) teams, the p-value returned by the Pearson chi-square test nearly achieves statistical significance (p = 0.075). Overall, we cannot conclusively accept Hypothesis 1a. These results imply that the higher-quality hiring decisions made by satisficing dyads can only be attributed to random chance, rather than our experimental manipulation of team composition (see Appendix 2).

4.2. Intrinsic Orientation as a Moderator

To determine their intrinsic decision-making styles, all participants were required to complete the Schwartz Maximization Scale survey. Subjects rated themselves from 1 (completely disagree) to 7 (completely agree). After administering this survey to thousands of subjects, Schwartz found that individuals who scored an average rating greater than 4 were considered to be maximizers. The top third of subjects scored higher than 4.75, and the bottom third scored lower than 3.25 (Schwartz, 2004).


Our pool of 132 subjects intrinsically favored maximizing as a decision-making orientation (M = 4.567, SD = 0.749). On average, maximizing dyads scored highest on the Schwartz scale (M = 4.692, SD = 0.704), followed by control groups (M = 4.606, SD = 0.773) and satisficing dyads (M = 4.541, SD = 0.779). Mixed teams scored the lowest on average (M = 4.429, SD = 0.759). Scores across all participants ranged from 3.00 to 6.62 (see Appendix 3).

Given this, we were interested in whether the intrinsic, decision-making orientations of individuals contributed as a moderating process in the relationship between team composition and decision quality. Using the approach developed by Aiken and West (1991), we analyzed the interaction effects between a dyad's composition (primed) and the Schwartz scores of its individual members (intrinsic). We used a binary logistic regression to determine if these effects significantly influenced the accuracy of hiring decisions (see Appendices 4 and 5). We ran regressions on all teams as well as filtered teams (pure maximizing and satisficing dyads). In both cases, the interaction terms did not contribute significantly to the main effects model, implying that an individual's innate, decision-making orientation did not act as a moderator variable.

4.3. Openness to Change

To test Hypothesis 2, we characterized the tendency of escalating commitment into the construct, "Openness to Change", which is represented by two variables: Net Decision Change and Positive Decision Change. Net Decision Change describes the directional change of a team's decision from its members' individual decisions. If a participant correctly chose to hire Terry in her individual decision, but changed her answer to an incorrect candidate (Dana or Pat) for the team decision, this participant received a Net Decision Change score of -1. Conversely, if an individual changed an incorrect, independent decision into a correct, team decision, her Net Decision Change score was +1. We coded no change with a score of 0. Similarly, the Positive Decision Change variable assigns +1 to those who made a favorable decision change, equivalent to a Net Decision Change score of +1. All other situations were coded with 0.

We treated Openness to Change as a potential mediator in the relationship between team composition and decision quality. We used Baron and Kenny's test for mediation (1986) in the following analysis.

First, we wanted to determine if variations in team composition would significantly affect the openness to change exhibited by teams (Path A). Again, we used contingency tables and the Pearson chisquare test (see Appendices 6 and 7). Cross-tabulating filtered team composition against Net Decision Change and Positive Decision Change respectively, we observed that satisficing individuals made a favorable decision change in a positive direction more frequently compared to maximizers (SS = 11 vs. MM = 7, respectively). On the other hand, maximizers were more likely to negatively alter their decisions (MM = 7 vs. SS = 4) or stubbornly refuse to modify individual decisions (MM = 20 vs. SS = 17). While these data appear to support Hypothesis 2, our chi-square tests indicate statistical insignificance for both the Net Decision Change and Positive Decision Change variables (p = 0.388 and p = 0.209, respectively).

To further test this, we ran a binary logistic regression to determine if changes in team composition (the covariate) significantly affected levels of Positive Decision Change (see Appendix 8). That is, are satisficers more likely to make a favorable decision change when new information is presented during the team discussion? Adding the team composition variable to the model reduced the -2 Log Likelihood statistic by 75.758 (df = 1), but was statistically insignificant (p = 0.208). The odds that a satisficing dyad will make a positive decision change is 2.02 times the odds of a maximizing dyad (B = 0.703, exp(B) = 2.020). However, this was statistically insignificant as well (p = 0.213).

Since varying the team composition failed to account for differences in Openness to Change, the latter could not be a mediating process between team composition and decision quality. Thus, we reject Openness to Change as a valid mediator and Hypothesis 2.

4.4. Effects of Time

We recorded the amount of time required by each dyad to reach a unanimous, hiring decision. We expected maximizing dyads to spend more time uncovering and discussing the qualifications of job candidates in the hidden profile task. We used an independent samples t-test to determine whether the time required for a team decision differed significantly based on team composition (see Appendix 9). Maximizing dyads spent more time discussing the candidates' profiles before reaching a unanimous, team decision (M = 8.091, SD = 1.311), compared to satisficing dyads (M = 7.478, SD = 0.882). This result was statistically significant at the 95% confidence interval (p = 0.029), which partially validates Hypothesis 1b.

As discussed earlier, there is no significant relationship between team composition and the accuracy of hiring decisions made by dyads. However, does team composition indirectly affect decision quality? That is, does the amount of time spent deliberating options influence the accuracy of hiring decisions? Using a point bi-serial correlation test, we found that time and team decisions were not correlated in a statistically significant way (r = 0.074, p = 0.557, see Appendix 10). We also ran a binary logistic regression with team decision as the dependent variable, and the following covariates: team composition, time, and an interaction term between both variables (see Appendices 11 and 12). However, these predictors did not identify statistically significant relationships. Thus, time is neither correlated nor predictive of decision quality for our dyads.

These combined findings suggest that while team composition influences the amount of time a team spends in the decision-making process, the amount of time expended does not actually affect the accuracy of decisions. More specifically, the extra time that maximizing dyads spent conferring about the candidate profiles yielded no additional benefits related to decision quality (i.e. hiring the right person). Thus we can accept Hypothesis 1b with a caveat: maximizing dyads failed to achieve significantly better decision outcomes to compensate for the additional, time-related costs they incurred.

4.5. Principal Components Analysis

The self-reported Post-Experimental Questionnaire (PEQ) fulfilled measures of sampling adequacy (KMO = 0.795, Bartlett's p < 0.0001). This allowed us to perform a principal components analysis (see Appendix 13). An orthogonal rotation produced an eight-component solution, on the basis of having eigenvalues above 1.0. To form our components, we accepted factor loadings exceeding 0.4.

The first component included eight items that measured positive affect experienced by individuals post-decision. Two items were reverse coded to represent positive emotions ("I wish I could change our final decision" and "I regret our final decision"). The Cronbach's alpha for this component was 0.913 (see Appendix 14). By deleting two items from this component, we were able to achieve a higher Cronbach's alpha of 0.918 and 0.915 ("I did my best with this decision-making task" and "I felt comfortable voicing my opinions to my teammate", respectively). The final version of Component 1 consisted of six items (see Appendix 21). We labeled this component as Positive Post-Decision Emotions.

Open Communication was represented by the second component, which consisted of five items after the principal components analysis. Kozlowski and Bell (2003) found communication to be an important, team behavioral process. Not only does it help teams maintain their coordination behaviors, but open communication also supports task work and teamwork processes (Glickman et al., 1987; Morgan, Salas, & Glickman, 1993; Kozlowski & Ilgen, 2006). In this component, two items were reverse coded to reflect positive communication dynamics ("My teammate was overbearing during the discussion, which

made me feel overpowered" and "I suspect that my teammate hid certain information from me"). The Cronbach's alpha for this component was 0.831 (see Appendix 15), which could be increased to 0.854 if one item was deleted ("I felt committed to our team and wanted us to reach the best decision"). The final version of Component 2 consisted of four items, which capture transparent communication and active listening in the team setting—both critical to information sharing in a hidden profile experiment (see Appendix 21).

The third component reflected participants' satisfaction towards their team experience as well as their willingness to remain on the team in the future (e.g. "If given the opportunity, I would want to work with my teammate in the future" and "I enjoyed working with my teammate"). This component scored a Cronbach's alpha of 0.835 and retained all four of its original items (see Appendices 16 and 21). We defined Component 3 to represent Team Satisfaction and Viability, which are two important factors of team effectiveness.

The fourth component consisted of five items and one reverse-coded question, which reflect aspects of team cohesion including cooperation, collaboration, and trust. Although the literature presents multiple definitions of it, team cohesion generally describes the mutual attraction of members to the group as well as commitment towards the team's task (Kozlowski & Ilgen, 2006; Festinger, 1950; Evans & Jarvis, 1980; Goodman, Ravlin, & Schminke, 1987). An underlying dimension of team cohesion is interpersonal cohesiveness, which enables teams to exhibit better coordination and communication skills (Evans & Jarvis, 1980). Researchers have found cooperation to be an important behavioral process linked to team performance, and trust between members helps to manage team conflict (Kozlowski & Bell, 2003; Simons & Peterson, 2000; Kozlowski & Ilgen, 2006). Thus, we labeled this component as Team Cohesion, with a Cronbach's alpha of 0.825 (see Appendix 17). Deleting one item from this component achieved a higher Cronbach's alpha of 0.836 ("There was a lot of disagreement between my teammate and me during our discussion"). Five items were included in the final version of Component 4, including "My teammate was very cooperative during the exercise" and "I believe my teammate trusted my judgment" (see Appendix 21).

Components 5 to 7 had Cronbach's alphas lower than 0.70 ($\alpha = 0.489$, $\alpha = 0.293$, $\alpha = 0.168$, respectively), and only one item loaded onto Component 8 (see Appendices 18 - 20). Thus, these components were dropped in further analysis.

4.6. Team Composition and Final Components

Our principal components analysis yielded four components: Positive Post-Decision Emotions, Open Communication, Team Satisfaction and Viability, as well as Team Cohesion. The first component reflects the differences in affect experienced by maximizers and satisficers after the decision-making process. The second and fourth components describe constructs of emergent, behavioral team processes (Kowlowski & Ilgen, 2006). The third component captures two criteria of team effectiveness.

In order to produce an aggregate composite score for each component, we averaged the ratings of its individual items for each participant. To determine whether any of these components differed significantly based on team composition, we ran independent samples t-tests using each component's composite scores as the dependent variable and team composition as the predictor. We also conducted this analysis using the individual PEQ items unbundled from their components.

The first component, describing positive affect experienced post-decision, yielded a higher mean score for satisficing dyads (SS = 6.172 vs. MM = 6.108). This result, however, was insignificant (p =

0.736, see Appendix 22a). Furthermore, when tested individually, none of the six items belonging to Component 1 yielded significantly different means for maximizing versus satisficing dyads (see Appendix 22b). Most notably, the two items directly measuring satisfaction levels related to the decision outcome failed to produce significantly higher means for satisficing teams ("I feel happy about our final decision" and "I feel satisfied about our final decision", with p = 0.559 and p = 0.230 respectively). Similarly, maximizing dyads did not exhibit greater levels of regret as predicted. Two items in this component directly reflected regret about the decision outcome ("I regret our final decision" and "I wish I could change our final decision"). However, these two items also produced statistically insignificant results (p = 0.952 and p = 0.935, respectively). This allows us to reject both parts of Hypothesis 3.

On average, satisficing dyads scored higher on the second component of Open Communication (SS = 6.227 vs. MM = 6.037). This result was insignificant at the aggregate component level (p = 0.323, see Appendix 23a). When the four individual items of Component 2 were tested, satisficing dyads appeared to be better communicators and more open about sharing their information during the team discussion. However, these results were not statistically significant at the 95% confidence interval, with p-values ranging from 0.209 to 0.708 (see Appendix 23b).

The third component described Team Satisfaction and Viability, which are two elements of team effectiveness that we are interested in. Maximizing dyads scored higher on this component (MM = 5.596 vs. SS = 5.516), but this result was statistically insignificant (p = 0.685, see Appendix 24a). The t-tests using this component's individual PEQ items also failed to produce statistically significant results (see Appendix 24b). Two items directly measured team satisfaction ("I enjoyed working with my teammate" and "I would speak positively about this team experience to my friends"). However, satisficing dyads did not score significantly higher on either question (p = 0.486 and p = 0.502, respectively). The remaining two items of Component 3 measured team viability ("If given the opportunity, I would want to work with my teammate in the future" and "I given the opportunity, I think that my teammate would want to work with me again in the future"). We did not observe statistically significant results (p = 0.752 and p = 0.737, respectively). Therefore, we can reject Hypotheses 4 and 5.

Satisficing dyads scored slightly higher on the last component of Team Cohesion (SS = 6.206 vs. MM = 6.000). At the aggregate level, this was statistically insignificant (p = 0.106, see Appendix 25a). One of the individual PEQ items belonging to Component 4 produced significantly different means for maximizing and satisficing dyads ("I trusted my teammate's judgment", see Appendix 25b). Members of satisficing dyads self-reported feeling greater trust in their partners than maximizing individuals (SS = 6.190 vs. MM = 5.820, with p = 0.046). Other individual items did not produce significant results.

Earlier in this section, we used Component 3 (Team Satisfaction and Viability) to reject Hypothesis 5, which predicts that satisficing dyads will derive greater satisfaction from their team experience. In light of this result, however, we should consider the validity of Hypothesis 5 more carefully. Simons and Peterson (2000) proposed that team trust plays a critical role as a conflictmanagement tool used in teams. Therefore, we postulate that higher levels of trust in satisficing dyads may result in decreased team conflict and more positive team dynamics, compared to maximizing dyads. Although there are conflicting theories in the literature regarding its benefits and disadvantages, team conflict has been found to undermine team-member satisfaction and impede performance (Lau & Murnighan, 1998). Additionally, high conflict exhibited in teams "indicates variance among members that may create negative affect" (Kozlowski & Ilgen, 2006). Thus, we propose the following: because satisficing dyads show greater levels of team trust, they exhibit decreased team conflict, which could indirectly boost team-member satisfaction. However, further research and analyses are needed to validate this hypothesis.

5. DISCUSSION

The existing literature has been focused on studying maximizing-satisficing behaviors at the individual level, as a decision-making orientation. Our study extends this to the team level in an effort to understand how these cognitive processes fit within group decision-making processes and dynamics. Overall, the formation of teams on the basis of decision-making styles does not impact our criteria of team effectiveness: decision quality, team satisfaction, and future viability.

We did not observe a significant relationship between team composition and the quality of hiring decisions made by dyads. At the individual level, the literature presents conflicting views on whether a maximizing or satisficing orientation produces objectively better decision outcomes (Iyengar et al., 2006; cf. Parker et al., 2007; Bruine de Bruin et al., 2007). Parker et al. (2007) found that maximizing individuals were more vulnerable to using maladaptive decision-making processes, which includes decision avoidance in order to search for more options. We observed decision avoidance insofar that maximizing dyads required significantly more time to reach unanimous hiring decisions. However, this extra time spent did not produce more accurate hiring decisions, suggesting that maximizing teams engage in more decision avoidance at no additional benefit.

Maximizing individuals are more likely to succumb to escalation of commitment. Our findings failed to corroborate this at the team (dyad) level, since the relationship between team composition and openness towards decision change was not statistically significant. That is, maximizing members did not appear to be significantly more committed, or "stuck", to their individual hiring decisions. A possible explanation is that the task of hiring a job candidate did not adequately represent an investment decision in which sunk costs were perceived to be substantial. Additionally, the social and psychological determinants of this decision-making task were perhaps not conducive to motivating the escalation of commitment.

Schwartz et al. (2002) made one of the most fascinating findings in the maximizing-satisficing literature. Satisficers are more likely to experience higher levels of satisfaction, happiness, and self-esteem after making a decision, whereas maximizing individuals are more prone to feeling regret. These differences in affect determined by one's decision-making tendencies failed to translate to the team level. Satisficing dyads did not report significantly higher levels of satisfaction regarding their decision outcomes. Similarly, we did not observe maximizing dyads to feel more regret collectively post-decision. Furthermore, satisficing dyads failed to demonstrate greater levels of team satisfaction, team commitment, and future viability.

We are cognizant of the limitations of our study's design. Dyads were only required to discuss the Insight case for a minimum of 7 minutes. On average, teams spent 7.82 minutes on the decision-making process. This, coupled with the fact that dyads were immediately disbanded once a team decision had been made, suggests that participants did not spend enough time within their dyads. Team processes require time to develop and unfold (McGrath, 1991). For example, affective bonds between team members and towards the collective group form over time (Hackman, 1976; Kozlowski & Ilgen, 2006). After the decision-making process, participants returned to their own workstations to complete the Post-Experimental Questionnaire. Deprived of time, the emotional contagion process could not take place within these dyads. The positive affect experienced by satisficing individuals and the negative emotions felt by maximizers therefore remained relegated to the individual level. This may explain why satisficing dyads did not feel more team satisfaction or commitment. Constrained by the study's design, participants

may not have had adequate time to form dyads that demonstrated the necessary team processes. In other words, subjects simply did not spend enough time on their teams. Future iterations of this study should consider allocating different lengths of time to the decision-making process. At different levels, time may serve as a moderating process in the relationship between team composition and decision quality.

This study was also limited by its small sample size (N = 132). Overall, the sample skewed towards an innate tendency to maximize, which may have adversely influenced the behaviors of those primed for satisficing roles. Ideally, dyads would be formed on the basis of intrinsic decision-making styles, instead of relying on a priming exercise. However, this would be logistically more difficult to implement. Furthermore, team effectiveness is an "emergent result" that develops across levels, from individual to dyadic to team (Kozlowski & Ilgen, 2006). We chose dyads for their simplicity. To fully observe and understand how maximizing-satisficing behaviors impact team processes and influence team effectiveness, larger sized teams should be used.

Future research efforts are needed to develop the literature on maximizing and satisficing decision-making processes in a team setting. Although our preliminary findings suggest that maximizing-satisficing effects at the individual level fail to translate to the dyad level, this study is only an initial foray and should be improved upon. Additionally, it may be a worthwhile endeavor to explore the effects of satisficing on team conflict and trust. While we focused on a very limited definition of team effectiveness, there are a plethora of highly nuanced and complex team processes that may be worth studying with respect to decision-making styles. For example, Marks et al. (2001) describe the following constructs as emergent measures of important team processes: team cohesion, group potency, team affect, and team conflict. The literature is abundant with studies examining the relationship between such processes and team performance, but the role of decision-making tendencies at the team level is presently unknown.

Behavioral economists and organizational psychologists have largely established maximizingsatisficing as an individual, psychological trait. However, as organizations and companies increasingly structure jobs in terms of teams and work groups, it becomes ever more important to situate this critical facet of decision-making behavior within the context of teams.

Acknowledgements: This research was generously supported by Dr. Adam Grant and the Wharton Management Department, Dr. Martin Asher and the Wharton Undergraduate Division, as well as the Wharton Behavioral Lab at the University of Pennsylvania.

6. APPENDIX

Appendix 1. Contingency Table and Chi-Square Analysis

Variables: Decision Quality vs. Team Composition (all)

		Cases							
	Valid		Missing		Total				
	Ν	Percent	N	Percent	N	Percent			
teamchoice * condition	132	100.0%	0	0.0%	132	100.0%			

Case Processing Summary

teamchoice * condition Crosstabulation

				condition				
			MM	SS	MS	СС	Total	
teamchoice	Correct	Count	16	22	18	18	74	
		% within condition	47.1%	68.8%	52.9%	56.3%	56.1%	
	Wrong	Count	18	10	16	14	58	
		% within condition	52.9%	31.3%	47.1%	43.8%	43.9%	
Total		Count	34	32	34	32	132	
		% within condition	100.0%	100.0%	100.0%	100.0%	100.0%	

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.345 ^a	3	.341
Likelihood Ratio	3.404	3	.333
Linear-by-Linear Association	.110	1	.740
N of Valid Cases	132		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 14.06.

Appendix 2. Contingency Table and Chi-Square Analysis

Variables: Decision Quality vs. Team Composition (filtered)

Case Processing Summary

		Cases						
	Valid		Missing		Total			
	Ν	Percent	N	Percent	N	Percent		
teamchoice * condition	66	100.0%	0	0.0%	66	100.0%		

teamchoice * condition Crosstabulation

			condition		
			MM	SS	Total
teamchoice	Correct	Count	16	22	38
		% within condition	47.1%	68.8%	57.6%
	Wrong	Count	18	10	28
		% within condition	52.9%	31.3%	42.4%
Total		Count	34	32	66
		% within condition	100.0%	100.0%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	3.175 ^a	1	.075		
Continuity Correction ^b	2.349	1	.125		
Likelihood Ratio	3.209	1	.073		
Fisher's Exact Test				.087	.062
Linear-by-Linear Association	3.127	1	.077		
N of Valid Cases	66				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 13.58.

b. Computed only for a 2x2 table

Appendix 3. Maximization Scale Means

Descriptive Statistics

	Ν	Range	Minimum	Maximum	Mean	Std. Deviation
schwartz_mean	132	3.62	3.00	6.62	4.5669	.74967
Valid N (listwise)	132					

Report

Ν Mean Std. Deviation Median Minimum Maximum condition MM 4.6922 .70448 4.7690 6.62 34 3.46 SS 4.5407 .77860 4.5765 5.92 32 3.31 MS 5.85 4.4298 34 .75285 4.6150 3.08 СС 4.6057 32 .77261 4.6150 3.00 6.23 Total 4.5669 132 .74967 4.6150 6.62 3.00

schwartz_mean

Appendix 4. Moderated Binary Logistic Regression

Dependent Variable: Decision Quality

Covariates: Team Composition (all), Schwartz Maximization Scores (standardized), Interaction terms

Case Processing Summary

Unweighted Case	s ^a	Ν	Percent
Selected Cases Included in Analysis		66	100.0
	Missing Cases	0	.0
	Total	66	100.0
Unselected Case	Unselected Cases		
Total		66	100.0

 a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
Correct	0
Wrong	1

Categorical Variables Codings

			Pai	Parameter coding			
		Frequency	(1)	(2)	(3)		
condition	MM	17	.000	.000	.000		
	SS	16	1.000	.000	.000		
	MS	17	.000	1.000	.000		
	CC	16	.000	.000	1.000		

Block 0: Beginning Block

Classification Table^{a,b}

				Predicted				
			teamchoice		Percentage			
	Observed		Correct	Wrong	Correct			
Step 0	teamchoice	Correct	37	0	100.0			
		Wrong	29	0	.0			
	Overall Percentage				56.1			

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

	В	S.E.	Wald	df	Sig.	Exp(B)
Step 0 Constar	t244	.248	.965	1	.326	.784

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	condition	1.673	3	.643
		condition(1)	1.381	1	.240
		condition(2)	.090	1	.764
		condition(3)	.000	1	.986
	Overall Stat	tistics	1.673	3	.643

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	1.702	3	.636
	Block	1.702	3	.636
	Model	1.702	3	.636

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	88.821 ^a	.025	.034

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted				
			teamchoice		Percentage		
	Observed		Correct	Wrong	Correct		
Step 1	teamchoice	Correct	29	8	78.4		
		Wrong	20	9	31.0		
	Overall Perce	ntage			57.6		

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	condition			1.639	3	.651			
	condition(1)	906	.726	1.558	1	.212	.404	.097	1.676
	condition(2)	236	.687	.118	1	.732	.790	.205	3.038
	condition(3)	369	.700	.278	1	.598	.691	.175	2.726
	Constant	.118	.486	.059	1	.808	1.125		

a. Variable(s) entered on step 1: condition.

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	.119	2	.942
	Block	.119	2	.942
	Model	1.821	5	.873

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	88.702 ^a	.027	.036

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Classification Table^a

-			Predicted			
			teamc	hoice	Percentage	
Observed		Correct	Wrong	Correct		
Step 1	teamchoice	Correct	29	8	78.4	
		Wrong	20	9	31.0	
	Overall Perce	ntage			57.6	

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	condition			1.558	3	.669			
	condition(1)	879	.730	1.449	1	.229	.415	.099	1.737
	condition(2)	205	.701	.086	1	.770	.814	.206	3.219
	condition(3)	369	.705	.274	1	.601	.691	.174	2.752
	Zperson1	.088	.257	.117	1	.732	1.092	.660	1.807
	Zperson2	.014	.259	.003	1	.956	1.014	.610	1.687
	Constant	.103	.491	.044	1	.834	1.108		

a. Variable(s) entered on step 1: Zperson1, Zperson2.

Block 3: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	3.668	3	.300
	Block	3.668	3	.300
	Model	5.489	8	.704

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	85.034 ^a	.080	.107

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

-			Predicted			
			teamc	hoice	Percentage	
	Observed		Correct	Wrong	Correct	
Step 1	teamchoice	Correct	31	6	83.8	
		Wrong	16	13	44.8	
	Overall Perce	ntage			66.7	

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	condition			1.495	3	.683			
	condition(1)	854	.750	1.298	1	.255	.426	.098	1.850
	condition(2)	126	.724	.031	1	.861	.881	.213	3.642
	condition(3)	357	.745	.229	1	.632	.700	.162	3.017
	Zperson1	.555	.661	.707	1	.401	1.743	.477	6.363
	Zperson2	.993	.846	1.377	1	.241	2.699	.514	14.174
	Interaction1	221	.259	.727	1	.394	.802	.483	1.332
	Interaction2	349	.285	1.500	1	.221	.706	.404	1.233
	Interaction3	.201	.128	2.464	1	.116	1.222	.951	1.570
	Constant	.010	.514	.000	1	.984	1.010		

a. Variable(s) entered on step 1: Interaction1, Interaction2, Interaction3.

Appendix 5. Moderated Binary Logistic Regression

Dependent Variable: Decision Quality

Covariates: Team Composition (filtered), Schwartz Maximization Scores (standardized), Interaction terms

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	33	100.0	
	Missing Cases	0	.0
	Total	33	100.0
Unselected Case	s	0	.0
Total		33	100.0

 a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
Correct	0
Wrong	1

Categorical Variables Codings

			Parameter coding
		Frequency	(1)
condition	MM	17	.000
	SS	16	1.000

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted				
			teamc	hoice	Percentage		
	Observed		Correct	Wrong	Correct		
Step 0	teamchoice	Correct	19	0	100.0		
		Wrong	14	0	.0		
	Overall Perce	ntage			57.6		

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	305	.352	.752	1	.386	.737

Variables not in the Equation

		Score	df	Sig.
Step 0	Variables condition(1)	1.588	1	.208
	Overall Statistics	1.588	1	.208

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	1.604	1	.205
	Block	1.604	1	.205
	Model	1.604	1	.205

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	43.383 ^a	.047	.064

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted				
			teamc	Percentage			
Observed			Correct	Wrong	Correct		
Step 1	teamchoice	Correct	11	8	57.9		
		Wrong	5	9	64.3		
	Overall Perce	ntage			60.6		

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	r EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	condition(1)	906	.726	1.558	1	.212	.404	.097	1.676
	Constant	.118	.486	.059	1	.808.	1.125		

a. Variable(s) entered on step 1: condition.

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	1.133	2	.568
	Block	1.133	2	.568
	Model	2.737	3	.434

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	42.250 ^a	.080	.107

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

				Predicte	d
			teamc	hoice	Percentage
	Observed		Correct	Wrong	Correct
Step 1	teamchoice	Correct	14	5	73.7
		Wrong	10	4	28.6
	Overall Percentage				54.5

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	r EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	condition(1)	819	.741	1.222	1	.269	.441	.103	1.883
	Zperson1	.359	.364	.972	1	.324	1.431	.702	2.921
	Zperson2	.213	.437	.237	1	.626	1.238	.525	2.917
	Constant	.032	.503	.004	1	.949	1.033		

a. Variable(s) entered on step 1: Zperson1, Zperson2.

Block 3: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	2.448	3	.485
	Block	2.448	3	.485
	Model	5.185	6	.520

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	39.803 ^a	.145	.195

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

				Predicted				
			teamc	hoice	Percentage			
Observed		Correct	Wrong	Correct				
Step 1	teamchoice	Correct	13	6	68.4			
		Wrong	5	9	64.3			
	Overall Perce	ntage			66.7			

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	condition(1)	721	.849	.721	1	.396	.486	.092	2.568
	Zperson1	261	1.247	.044	1	.834	.770	.067	8.874
	Zperson2	1.950	2.025	.928	1	.335	7.031	.133	372.091
	Interaction1	.487	.807	.364	1	.546	1.627	.334	7.918
	Interaction2	-1.020	1.247	.669	1	.413	.361	.031	4.153
	Interaction3	.129	.372	.120	1	.729	1.138	.549	2.359
	Constant	061	.561	.012	1	.913	.940		

a. Variable(s) entered on step 1: Interaction1, Interaction2, Interaction3.

Appendix 6. Contingency Table and Chi-Square Analysis

Variables: Net Decision Change vs. Team Composition (filtered)

Case Processing Summary

	Cases						
	Va	lid	Missing		Total		
	Ν	Percent	N	Percent	Ν	Percent	
decisionchange * condition	66	100.0%	0	0.0%	66	100.0%	

decisionchange * condition Crosstabulation

Count

		cond	ition	
		MM	SS	Total
decisionchange	Negative Change	7	4	11
	No Change	20	17	37
	Positive Change	7	11	18
Total		34	32	66

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.891 ^a	2	.388
Likelihood Ratio	1.908	2	.385
Linear-by-Linear Association	1.815	1	.178
N of Valid Cases	66		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.33.

Appendix 7. Contingency Table and Chi-Square Analysis

Variables: Positive Decision Change vs. Team Composition (filtered)

Case Processing Summary

	Cases						
	Va	lid	Missing		Total		
	Ν	Percent	N	Percent	Ν	Percent	
positivechange * condition	66	100.0%	0	0.0%	66	100.0%	

positivechange * condition Crosstabulation

			condition		
			MM	SS	Total
positivechange	FALSE	Count	27	21	48
		% within condition	79.4%	65.6%	72.7%
	TRUE	Count	7	11	18
		% within condition	20.6%	34.4%	27.3%
Total		Count	34	32	66
		% within condition	100.0%	100.0%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.580 ^a	1	.209		
Continuity Correction ^b	.961	1	.327		
Likelihood Ratio	1.588	1	.208		
Fisher's Exact Test				.272	.164
Linear-by-Linear Association	1.556	1	.212		
N of Valid Cases	66				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.73.

b. Computed only for a 2x2 table

Appendix 8. Binary Logistic Regression

Dependent Variable: Positive Decision Change Covariates: Team Composition (filtered)

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	66	100.0	
	Missing Cases	0	.0
	Total	66	100.0
Unselected Case	s	0	.0
Total		66	100.0

 a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
FALSE	0
TRUE	1

Categorical Variables Codings

			Parameter coding
		Frequency	(1)
condition	MM	34	.000
	SS	32	1.000

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted			
			positivechange		Percentage	
	Observed		FALSE	TRUE	Correct	
Step 0	positivechange	FALSE	48	0	100.0	
		TRUE	18	0	.0	
Overall Percentage					72.7	

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	981	.276	12.594	1	.000	.375

Variables not in the Equation

		Score	df	Sig.
Step 0	Variables condition(1)	1.580	1	.209
	Overall Statistics	1.580	1	.209

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	1.588	1	.208
	Block	1.588	1	.208
	Model	1.588	1	.208

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	75.758 ^a	.024	.034

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
			positivechange		Percentage	
Observed		FALSE	TRUE	Correct		
Step 1	positivechange	FALSE	48	0	100.0	
		TRUE	18	0	.0	
Overall Percentage					72.7	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	condition(1)	.703	.564	1.553	1	.213	2.020
	Constant	-1.350	.424	10.130	1	.001	.259

a. Variable(s) entered on step 1: condition.

Appendix 9. Independent Samples t-test

Independent Variable: Team Composition (filtered) Dependent Variable: Time

Group Statistics

	condition	Ν	Mean	Std. Deviation	Std. Error Mean
time	MM	34	8.0912	1.31148	.22492
	SS	32	7.4775	.88235	.15598

Independent Samples Test

Levene's Test for Equality of Variances			t-test for Equality of Means							
							Mean	Std. Error	95% Confidence Differ	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
time	Equal variances assumed	7.614	.008	2.216	64	.030	.61368	.27690	.06050	1.16685
	Equal variances not assumed			2.242	58.075	.029	.61368	.27371	.06580	1.16155

Appendix 10. Bivariate Correlation (Point Bi-Serial)

Variables: Time, Team Composition (filtered)

Descriptive Statistics

	Mean	Std. Deviation	Ν
time	7.7936	1.15760	66
teamchoice	.42	.498	66

Correlations

		time	teamchoice
time	Pearson Correlation	1	.074
	Sig. (2-tailed)		.557
	Ν	66	66
teamchoice	Pearson Correlation	.074	1
	Sig. (2-tailed)	.557	
	Ν	66	66

Appendix 11. Binary Logistic Regression

Dependent Variable: Decision Quality Covariate: Time

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	Included in Analysis	66	100.0
	Missing Cases	0	.0
	Total	66	100.0
Unselected Case	s	0	.0
Total		66	100.0

 a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
Correct	0
Wrong	1

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted			
		teamchoice		Percentage		
	Observed		Correct	Wrong	Correct	
Step 0	teamchoice	Correct	38	0	100.0	
		Wrong	28	0	.0	
	Overall Percentage				57.6	

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	305	.249	1.503	1	.220	.737

Variables not in the Equation

		Score	df	Sig.
Step 0	Variables time	.358	1	.550
Overall Statistics		.358	1	.550

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	.355	1	.551
	Block	.355	1	.551
	Model	.355	1	.551

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	89.620 ^a	.005	.007

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
			teamc	hoice	Percentage	
	Observed		Correct	Wrong	Correct	
Step 1	teamchoice	Correct	36	2	94.7	
		Wrong	26	2	7.1	
	Overall Percentage				57.6	

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	r EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	time	.128	.216	.355	1	.552	1.137	.745	1.735
	Constant	-1.307	1.702	.590	1	.443	.271		

a. Variable(s) entered on step 1: time.

Appendix 12. Binary Logistic Regression

Dependent Variable: Decision Quality

Covariates: Team Composition (filtered), Time, Interaction (Team Composition x Time)

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	Included in Analysis	66	100.0
	Missing Cases	0	.0
	Total	66	100.0
Unselected Case	s	0	.0
Total		66	100.0

 a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
Correct	0
Wrong	1

Categorical Variables Codings

			Parameter coding
		Frequency	(1)
condition	MM	34	.000
	SS	32	1.000

Block 0: Beginning Block

Classification Table^{a,b}

				Predicte	d
			teamc	hoice	Percentage
	Observed		Correct	Wrong	Correct
Step 0	teamchoice	Correct	38	0	100.0
		Wrong	28	0	.0
	Overall Perce			57.6	

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	305	.249	1.503	1	.220	.737

Variables not in the Equation

		Score	df	Sig.
Step 0	Variables condition(1)	3.175	1	.075
	Overall Statistics	3.175	1	.075

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	3.209	1	.073
	Block	3.209	1	.073
	Model	3.209	1	.073

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	86.766 ^a	.047	.064

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Classification Table^a

				Predicted	d
			teamc	hoice	Percentage
	Observed		Correct	Wrong	Correct
Step 1	teamchoice	Correct	22	16	57.9
		Wrong	10	18	64.3
	Overall Perce	ntage			60.6

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	r EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	condition(1)	906	.513	3.117	1	.077	.404	.148	1.105
	Constant	.118	.344	.118	1	.732	1.125		

a. Variable(s) entered on step 1: condition.

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	.016	1	.898
	Block	.016	1	.898
	Model	3.225	2	.199

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	86.749 ^a	.048	.064

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Classification Table^a

				Predicte	d
			teamc	hoice	Percentage
Observed			Correct	Wrong	Correct
Step 1	teamchoice	Correct	22	16	57.9
		Wrong	10	18	64.3
	Overall Perce	ntage			60.6

a. The cut value is .500

Variables in the Equation

								95% C.I.fo	r EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	condition(1)	889	.531	2.797	1	.094	.411	.145	1.165
	time	.029	.227	.016	1	.898	1.030	.660	1.607
	Constant	118	1.870	.004	1	.950	.889		

a. Variable(s) entered on step 1: time.

Block 3: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	.671	1	.413
	Block	.671	1	.413
	Model	3.896	3	.273

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	86.078 ^a	.057	.077

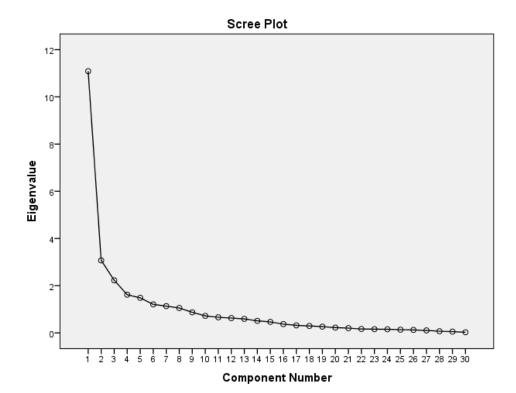
a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

				Predicted			
			teamc	hoice	Percentage		
	Observed		Correct	Wrong	Correct		
Step 1	teamchoice	Correct	24	14	63.2		
		Wrong	10	18	64.3		
	Overall Perce	ntage			63.6		

a. The cut value is .500

Variables in the Equation


								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	condition(1)	-4.015	3.846	1.090	1	.296	.018	.000	33.879
	time	086	.266	.105	1	.746	.917	.544	1.546
	condition(1) by time	.407	.495	.678	1	.410	1.502	.570	3.961
	Constant	.816	2.183	.140	1	.708	2.262		

a. Variable(s) entered on step 1: condition * time .

Appendix 13. Principal Components Analysis

Kaiser-Mever-Olkin Me	asure of Sampling Adequacy.	.795
Bartlett's Test of	Approx. Chi-Square	1440.051
Sphericity	df	435
	Sig.	.000

KMO and Bartlett's Test

		Initial Egenval	ues	Rotatio	n Sums of Squar	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	11.088	36.960	36.960	6.301	21.004	21.004
2	3.072	10.241	47.201	4.184	13.946	34.950
3	2.228	7.426	54.626	2.906	9.686	44.635
4	1.617	5.392	60.018	2.887	9.622	54.257
5	1.485	4.948	64.966	1.911	6.370	60.627
6	1.207	4.023	68.989	1.787	5.958	66.585
7	1.135	3.784	72.773	1.539	5.131	71.716
8	1.055	3.516	76.289	1.372	4.573	76.289
9	.873	2.910	79.199			
10	.720	2.401	81.599			
11	.660	2.200	83.799			
12	.627	2.090	85.889			
13	.594	1.978	87.868			
14	.511	1.703	89.570			
15	.464	1.548	91.119			
16	.373	1.243	92.362			
17	.318	1.061	93.423			
18	.294	.981	94.404			
19	.264	.879	95.283			
20	.223	.742	96.025			
21	.200	.668	96.694			
22	.165	.550	97.243			
23	.158	.528	97.771			
24	.153	.511	98.282			
25	.135	.451	98.734			
26	.126	.419	99.153			
27	.105	.349	99.502			
28	.069	.231	99.733			
29	.053	.175	99.908			
30	.028	.092	100.000			

Total Variance Explained

Extraction Method: Principal Component Analysis.

				Comp	onent			
·	1	2	3	4	5	6	7	8
Q24	.881	.089	.109	.126	.087	.127	068	045
Q25	.856	.064	026	.191	.179	.036	047	172
Q29	836	329	151	104	060	129	.061	.018
Q4	.816	.054	.148	.098	.125	.279	.014	144
Q26	.779	.036	.288	.170	.087	.080	093	.015
Q27	758	530	033	.009	044	134	070	.083
Q30	.574	.252	.227	.114	.431	032	177	208
Q12	.464	.351	.371	.101	.140	.424	009	.243
Q16	131	854	007	074	.002	162	.180	013
Q17	.378	.817	.172	.119	050	.097	.007	056
Q14	.182	.786	.101	.305	.063	.058	066	.046
Q13	005	561	.257	225	083	276	.418	.170
Q20	.354	.506	.428	036	.293	060	080	183
Q23	.094	072	.781	022	.098	.057	014	150
Q18	.471	.133	.638	.184	.121	.104	138	.046
Q21	.468	.261	.629	.140	.245	.048	.002	.014
Q22	030	.564	.615	.015	.298	039	.111	032
Q8	.129	.059	.063	.841	.099	.232	118	.022
Q7	.487	.126	050	.702	.095	025	170	037
Q9	.018	.487	.118	.666	028	.046	.085	220
Q10	.417	.246	.274	.512	025	048	202	377
Q15	.399	.145	.194	.493	077	.468	.064	.374
Q6	127	396	.263	411	246	.125	.245	.339
Q28	.236	.064	.166	.022	.819	.051	090	.087
Q19	.197	.004	.388	.175	.658	.009	.324	.023
Q3	.228	.094	.052	.010	080	.723	016	017
Q2	071	186	.042	330	237	595	.036	.265
Q11	043	222	.031	251	.169	.130	.767	079
Q5	.264	020	.256	068	.264	.338	613	139
Q1	328	067	212	135	.114	173	024	.751

Rotated Component Matrix^a

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 11 iterations.

	Components							
	1	2	3	4	5	6	7	8
24. I feel happy about our final decision	0.881	0.089	0.109	0.126	0.087	0.127	-0.068	-0.045
25. I feel satisfied about our final decision	0.856	0.064	-0.026	0.191	0.179	0.036	-0.047	-0.172
29. I wish I could change our final decision	-0.836	-0.329	-0.151	-0.104	-0.060	-0.129	0.061	0.018
4. I feel confident in our decision outcome	0.816	0.054	0.148	0.098	0.125	0.279	0.014	-0.144
26. I am proud of our final decision	0.779	0.036	0.288	0.170	0.087	0.080	-0.093	0.015
27. I regret our final decision	-0.758	-0.530	-0.033	0.009	-0.044	-0.134	-0.070	0.083
30. I did my best with this decision-making task	0.574	0.252	0.227	0.114	0.431	-0.032	-0.177	-0.208
12. I felt comfortable voicing my opinions to my teammate	0.464	0.351	0.371	0.101	0.140	0.424	-0.009	0.243
16. My teammate was overbearing during the discussion, which made me feel overpowered	-0.131	-0.854	-0.007	-0.074	0.002	-0.162	0.180	-0.013
17. My teammate was a good listener during the discussion	0.378	0.817	0.172	0.119	-0.050	0.097	0.007	-0.056
14. My teammate was very open and collaborative throughout the discussion	0.182	0.786	0.101	0.305	0.063	0.058	-0.066	0.046
13. I suspect that my teammate hid certain information from me	-0.005	-0.561	0.257	0.225	-0.083	-0.276	0.418	0.170
20. I felt committed to our team and wanted us to reach the best decision	0.354	0.506	0.428	-0.036	0.293	-0.060	-0.080	-0.183
23. If given the opportunity, I think that my teammate would want to work with me again in the future	0.094	-0.072	0.781	-0.022	0.098	0.057	-0.014	-0.150
18. I enjoyed working with my teammate	0.471	0.133	0.638	0.184	0.121	0.104	-0.138	0.046
21. I would speak positively about this team experience to my friends	0.468	0.261	0.629	0.140	0.245	0.048	0.002	0.014
22. If given the opportunity, I would want to work with my teammate in the future	-0.030	0.564	0.615	0.015	0.298	-0.039	0.111	-0.032
8. I was very cooperative during the discussion	0.129	0.059	0.063	0.841	0.099	0.232	-0.118	0.022
7. My teammate was very cooperative during the exercise	0.487	0.126	-0.050	0.702	0.095	-0.025	-0.170	-0.037
9. I trusted my teammate's judgment	0.018	0.487	0.118	0.666	-0.028	0.046	0.085	-0.220
10. I believe my teammate trusted my judgment	0.417	0.246	0.274	0.512	-0.025	-0.048	-0.202	-0.377
15. I was very open and collaborative throughout the discussion	0.399	0.145	0.194	0.493	-0.077	0.468	0.064	0.374
6. There was a lot of disagreement between my teammate and me during our discussion	-0.127	-0.396	0.263	-0.411	-0.246	0.125	0.245	0.339
28. We reached a better final decision than other teams	0.236	0.064	0.166	0.022	0.819	0.051	-0.090	0.087
19. I felt intellectually stimulated and challenged during our discussion	0.197	0.004	0.388	0.175	0.658	0.009	0.324	0.023
3. We spent enough time going over the objective facts given in the case	0.228	0.094	0.052	0.010	-0.080	0.723	-0.016	-0.017
2. I wish we were more thorough in analyzing the information given to us	-0.071	-0.186	0.042	-0.330	-0.237	-0.595	0.036	0.265
11. There was a lot of tension on our team	-0.043	-0.222	0.031	-0.251	0.169	0.130	0.767	-0.079
5. The hiring of a job candidate is an important decision to make	0.264	-0.020	0.256	-0.068	0.264	0.338	-0.613	-0.139
1. We spent too much time deliberating and coming to a final decision	-0.328	-0.067	-0.212	-0.135	0.114	-0.173	-0.024	0.751

Appendix 14. Cronbach's Alpha for Component 1

Case Processing Summary

		Ν	%
Cases	Valid	132	100.0
	Excluded ^a	0	.0
	Total	132	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

	Cronbach's Alpha Based	
Cronbach's Alpha	on Standardized Items	N of Items
.913	.916	8

Item Statistics

	Mean	Std. Deviation	Ν
Q24	6.08	.853	132
Q25	6.16	.750	132
Q4	6.05	.841	132
Q26	5.83	.974	132
Q30	5.95	.987	132
Q12	6.14	.689	132
Q29_new	6.02	1.048	132
Q27_new	6.19	.926	132

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Q24	42.35	23.923	.836	.817	.892
Q25	42.27	24.975	.812	.760	.896
Q4	42.37	24.327	.794	.657	.896
Q26	42.59	23.816	.721	.640	.902
Q30	42.47	25.259	.543	.378	.918
Q12	42.28	27.241	.542	.326	.915
Q29_new	42.41	22.885	.761	.690	.899
Q27_new	42.23	23.647	.790	.712	.896

Appendix 15. Cronbach's Alpha for Component 2

Case Processing Summary

		Ν	%
Cases	Valid	132	100.0
	Excluded ^a	0	.0
	Total	132	100.0

 a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.831	.836	5

Item Statistics

	Mean	Std. Deviation	Ν
Q16_new	6.20	1.024	132
Q13_new	6.20	.826	132
Q17	6.11	.970	132
Q14	6.22	.713	132
Q20	5.77	.921	132

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Q16_new	24.31	7.010	.731	.598	.766
Q13_new	24.31	8.567	.573	.440	.812
Q17	24.40	7.173	.752	.631	.759
Q14	24.30	8.500	.725	.561	.781
Q20	24.74	8.849	.424	.223	.854

Appendix 16. Cronbach's Alpha for Component 3

Case Processing Summary

		Ν	%
Cases	Valid	132	100.0
	Excluded ^a	0	.0
	Total	132	100.0

 a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.835	.845	4

Item Statistics

	Mean	Std. Deviation	Ν
Q23	5.40	1.025	132
Q18	5.95	.794	132
Q21	5.65	1.091	132
Q22	5.52	1.201	132

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Q23	17.12	7.069	.629	.424	.808
Q18	16.58	7.773	.710	.531	.789
Q21	16.87	6.541	.684	.523	.783
Q22	17.00	6.031	.691	.482	.785

Appendix 17. Cronbach's Alpha for Component 4

Case Processing Summary

		Ν	%
Cases	Valid	132	100.0
	Excluded ^a	0	.0
	Total	132	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.825	.845	6

Item Statistics

	Mean	Std. Deviation	Ν
Q8	6.14	.753	132
Q7	6.18	.809	132
Q9	5.98	.886	132
Q10	5.89	.831	132
Q15	6.20	.718	132
Q6_new	5.63	1.339	132

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Q8	29.89	11.811	.700	.658	.780
Q7	29.85	11.717	.655	.497	.786
Q9	30.05	11.135	.689	.588	.776
Q10	30.14	11.676	.639	.479	.788
Q15	29.83	12.954	.490	.346	.817
Q6_new	30.40	9.708	.539	.337	.836

Appendix 18. Cronbach's Alpha for Component 5

Case Processing Summary

		Ν	%
Cases	Valid	132	100.0
	Excluded ^a	0	.0
	Total	132	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.489	.506	2

Item Statistics

	Mean	Std. Deviation	Ν
Q28	4.88	1.105	132
Q19	4.78	1.500	132

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Q28	4.78	2.249	.338	.115	
Q19	4.88	1.222	.338	.115	

Appendix 19. Cronbach's Alpha for Component 6

Case Processing Summary

		Ν	%
Cases	Valid	132	100.0
	Excluded ^a	0	.0
	Total	132	100.0

 a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.293	.331	2

Item Statistics

	Mean	Std. Deviation	Ν
Q3	5.93	.812	132
Q2_new	5.41	1.409	132

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Q3	5.41	1.984	.198	.039	
Q2_new	5.93	.659	.198	.039	

Appendix 20. Cronbach's Alpha for Component 7

Case Processing Summary

		Ν	%
Cases	Valid	132	100.0
	Excluded ^a	0	.0
	Total	132	100.0

 a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.168	.172	2

Item Statistics

	Mean	Std. Deviation	Ν
Q5_new	1.56	.680	132
Q11	1.73	.857	132

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Q5_new	1.73	.734	.094	.009	
Q11	1.56	.462	.094	.009	

Appendix 21. Final Components & Individual PEQ Items

Component 1: Positive Post-Decision Emotions

- Q4. I feel confident in our decision outcome.
- Q24. I feel happy about our final decision.
- Q25. I feel satisfied about our final decision.
- Q26. I am proud of our final decision.
- Q27. I regret our final decision.
- Q29. I wish I could change our final decision.

Component 2: Open Communication

Q13. I suspect that my teammate hid certain information from me.

- Q14. My teammate was very open and collaborative throughout the discussion.
- Q16. My teammate was overbearing during the discussion, which made me feel overpowered.
- Q17. My teammate was a good listener during the discussion.

Component 3: Team Satisfaction and Viability

Q18. I enjoyed working with my teammate.

- Q21. I would speak positively about this team experience to my friends.
- Q22. If given the opportunity, I would want to work with my teammate in the future.
- Q23. If given the opportunity, I think that my teammate would want to work with me again in the future.

Component 4: Team Cohesion

Q7. My teammate was very cooperative during the exercise.

- Q8. I was very cooperative during the exercise.
- Q9. I trusted my teammate's judgment.

Q10. I believe my teammate trusted my judgment

Q15. I was very open and collaborative throughout the discussion.

Appendix 22a. Independent Samples t-test

Dependent Variable: Component 1 (aggregate: average score across all included items) Independent Variable: Team Composition (filtered)

Group Statistics

	condition	Ν	Mean	Std. Deviation	Std. Error Mean
Factor1	MM	34	6.1078	.73269	.12566
	SS	32	6.1719	.80487	.14228

	Levene's Test for Equality of Variances				t-test for Equality of Means							
							Mean	Std. Error	95% Confidence Differ			
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
Factor1	Equal variances assumed	.566	.455	338	64	.736	06403	.18928	44216	.31410		
	Equal variances not assumed			337	62.499	.737	06403	.18983	44343	.31536		

Appendix 22b. Independent Samples t-test Dependent Variable: Component 1 (individual items) Independent Variable: Team Composition (filtered)

	condition	Ν	Mean	Std. Deviation	Std. Error Mean
Q24	MM	34	6.06	.919	.158
	SS	32	6.19	.859	.152
Q25	MM	34	6.12	.844	.145
	SS	32	6.34	.653	.115
Q29	MM	34	1.76	.741	.127
	SS	32	1.78	.906	.160
Q4	MM	34	6.06	.776	.133
	SS	32	6.22	.906	.160
Q26	MM	34	5.88	.977	.168
	SS	32	5.78	1.099	.194
Q27	MM	34	1.71	.871	.149
	SS	32	1.72	.851	.150

Group Statistics

		Levene's Test Varia					t-test for Equality	of Means		
							Mean	Std. Error	95% Confidenc Differ	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Q24	Equal variances assumed	.000	.998	587	64	.559	129	.219	567	.310
	Equal variances not assumed			588	63.998	.559	129	.219	566	.309
Q25	Equal variances assumed	.001	.978	-1.211	64	.230	226	.187	599	.147
	Equal variances not assumed			-1.221	61.730	.227	226	.185	596	.144
Q29	Equal variances assumed	.924	.340	081	64	.935	017	.203	423	.390
	Equal variances not assumed			081	59.972	.936	017	.205	426	.393
Q4	Equal variances assumed	2.576	.113	771	64	.443	160	.207	574	.254
	Equal variances not assumed			768	61.181	.446	160	.208	576	.257
Q26	Equal variances assumed	.630	.430	.395	64	.694	.101	.256	410	.612
	Equal variances not assumed			.394	62.032	.695	.101	.257	412	.614
Q27	Equal variances assumed	.002	.966	061	64	.952	013	.212	437	.411
	Equal variances not assumed			061	63.906	.952	013	.212	437	.411

Appendix 23a. Independent Samples t-test

Dependent Variable: Component 2 (aggregate: average score across all included items) Independent Variable: Team Composition (filtered)

Group Statistics

	condition	Ν	Mean	Std. Deviation	Std. Error Mean
Factor2	MM	34	6.0368	.85087	.14592
	SS	32	6.2266	.68203	.12057

		Levene's Test Varia			t-test for Equality of Means						
							Mean	Std. Error	95% Confidence Differ		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Factor2	Equal variances assumed	.006	.939	996	64	.323	18980	.19056	57049	.19089	
	Equal variances not assumed			-1.003	62.452	.320	18980	.18929	56812	.18853	

Appendix 23b. Independent Samples t-test Dependent Variable: Component 2 (individual items) Independent Variable: Team Composition (filtered)

	condition	N	Mean	Std. Deviation	Std. Error Mean
Q13	MM	34	1.88	.808	.139
	SS	32	1.69	.592	.105
Q14	MM	34	6.06	.776	.133
	SS	32	6.28	.634	.112
Q17	MM	34	5.88	1.200	.206
	SS	32	6.13	1.040	.184
Q16	MM	34	1.91	1.138	.195
	SS	32	1.81	.998	.176

Group Statistics

		Levene's Test Varia					t-test for Equality	ofMeans		
							Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Q13	Equal variances assumed	.151	.699	1.112	64	.270	.195	.175	155	.545
	Equal variances not assumed			1.122	60.468	.266	.195	.174	152	.542
Q14	Equal variances assumed	.595	.443	-1.270	64	.209	222	.175	572	.127
	Equal variances not assumed			-1.278	62.789	.206	222	.174	570	.125
Q17	Equal variances assumed	.005	.946	876	64	.385	243	.277	796	.311
	Equal variances not assumed			879	63.576	.382	243	.276	794	.309
Q16	Equal variances assumed	.110	.741	.376	64	.708	.099	.264	428	.627
	Equal variances not assumed			.377	63.693	.707	.099	.263	426	.625

Appendix 24a. Independent Samples t-test

Dependent Variable: Component 3 (aggregate: average score across all included items) Independent Variable: Team Composition (filtered)

Group Statistics

	condition	Ν	Mean	Std. Deviation	Std. Error Mean
Factor3	MM	34	5.5956	.70982	.12173
	SS	32	5.5156	.87744	.15511

		Levene's Test Varia			t-test for Equality of Means						
							Mean	Std. Error	95% Confidence Differ		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Factor3	Equal variances assumed	.374	.543	.408	64	.685	.07996	.19591	31142	.47134	
	Equal variances not assumed			.406	59.680	.687	.07996	.19718	31449	.47442	

Appendix 24b. Independent Samples t-test Dependent Variable: Component 3 (individual items) Independent Variable: Team Composition (filtered)

	condition	Ν	Mean	Std. Deviation	Std. Error Mean
Q18	MM	34	6.00	.696	.119
	SS	32	5.88	.751	.133
Q21	MM	34	5.65	.981	.168
	SS	32	5.47	1.164	.206
Q22	MM	34	5.47	1.161	.199
	SS	32	5.38	1.289	.228
Q23	MM	34	5.26	.963	.165
	SS	32	5.34	.937	.166

Group Statistics

		Levene's Test Varia					t-test for Equality	ofMeans		
							Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Q18	Equal variances assumed	.500	.482	.701	64	.486	.125	.178	231	.481
	Equal variances not assumed			.700	62.816	.487	.125	.179	232	.482
Q21	Equal variances assumed	1.722	.194	.674	64	.502	.178	.264	350	.706
	Equal variances not assumed			.671	60.796	.505	.178	.266	353	.710
Q22	Equal variances assumed	.777	.381	.317	64	.752	.096	.302	507	.698
	Equal variances not assumed			.316	62.294	.753	.096	.303	509	.700
Q23	Equal variances assumed	.019	.889	338	64	.737	079	.234	547	.389
	Equal variances not assumed			338	63.926	.737	079	.234	546	.388

Appendix 25a. Independent Samples t-test

Dependent Variable: Component 4 (aggregate: average score across all included items) Independent Variable: Team Composition (filtered)

Group Statistics

	condition	Ν	Mean	Std. Deviation	Std. Error Mean
Factor4	MM	34	6.0000	.45394	.07785
	SS	32	6.2063	.56451	.09979

		Levene's Test for Equality of Variances		t-test for Equality of Means						
							Mean	95% Confidence Interval Std. Error Difference		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Factor4	Equal variances assumed	2.976	.089	-1.640	64	.106	20625	.12573	45743	.04493
	Equal variances not assumed			-1.630	59.509	.108	20625	.12657	45946	.04696

Appendix 25b. Independent Samples t-test Dependent Variable: Component 4 (individual items) Independent Variable: Team Composition (filtered)

	condition	N	Mean	Std. Deviation	Std. Error Mean
Q7	MM	34	6.09	.753	.129
	SS	32	6.34	.545	.096
Q8	MM	34	6.09	.570	.098
	SS	32	6.28	.581	.103
Q9	MM	34	5.82	.626	.107
	SS	32	6.19	.821	.145
Q10	MM	34	5.82	.716	.123
	SS	32	6.06	.619	.109
Q15	MM	34	6.18	.459	.079
	SS	32	6.16	.884	.156

Group Statistics

		Levene's Test Varia	t-test for Equality of Means							
							Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Q7	Equal variances assumed	.301	.585	-1.570	64	.121	256	.163	581	.070
	Equal variances not assumed			-1.585	60.128	.118	256	.161	578	.067
Q8	Equal variances assumed	1.729	.193	-1.361	64	.178	193	.142	476	.090
	Equal variances not assumed			-1.361	63.590	.178	193	.142	476	.090
Q9	Equal variances assumed	.779	.381	-2.033	64	.046	364	.179	722	006
	Equal variances not assumed			-2.017	57.943	.048	364	.180	725	003
Q10	Equal variances assumed	.140	.709	-1.446	64	.153	239	.165	569	.091
	Equal variances not assumed			-1.452	63.548	.151	239	.165	568	.090
Q15	Equal variances assumed	6.305	.015	.118	64	.907	.020	.172	323	.364
	Equal variances not assumed			.116	45.931	.908	.020	.175	332	.372

WORKS REFERENCED

Aiken, L. S., & Stephen, G. West (1991). *Multiple regression: Testing and interpreting interactions*, 75-87.

Arrow, H., McGrath, J.E., & Berdahl, J.L. (2000). Small groups as complex systems: Formation, coordination, development, and adaptation. Thousand Oaks, CA: Sage.

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. *Journal of personality and social psychology*, *51*(6), 1173.

Barrick, M. R., Mount, M. K., & Judge, T. A. (2001). Personality and performance at the beginning of the new millennium: what do we know and where do we go next?. *International Journal of Selection and Assessment*, 9(1-2), 9-30.

Bruine de Bruin, W., Parker, A. M., & Fischhoff, B. (2007). Individual differences in adult decisionmaking competence. *Journal of personality and social psychology*, 92(5), 938.

Campion, M.A., Papper, E.M., & Medsker, G.J. (1996). Relations between work team characteristics and effectiveness: A replication and extension. Personnel Psychology, 49, 429–452.

Campion, M. A., Medsker, G. J., & Higgs, A. C. (1993). Relations between work group characteristics and effectiveness: Implications for designing effective work groups. *Personnel psychology*, *46*(4), 823-847.

deCharms, R. (1968). Personal causation. New York: Academic Press.

Deci, E. L. (1981). The psychology of self-determination. Lexington, MA: Health.

Deci, E. L., & Ryan, R. M. (1985). *Intrinsic motivation and self-determination in human behavior*. New York: Plenum.

Diab, D. L., Gillespie, M. A., & Highhouse, S. (2008). Are maximizers really unhappy? The measurement of maximizing tendency. *Judgment and Decision Making*, *3*(5), 364-370.

Evans, C.R., & Jarvis, P.A. (1980). Group cohesion: A review and reevaluation. Small Group Behavior, 11, 359–370.

Festinger, L. (1950). Informal social communication. Psychological Review, 57, 271-282.

Garland, H. (1990). Throwing good money after bad: The effect of sunk costs on the decision to esculate commitment to an ongoing project. *Journal of Applied Psychology*, 75(6), 728.

Gladstein, C.R., & Day, D.V. (1984). Groups in context: A model of task group effectiveness. Administrative Science Quarterly, 29, 499–517.

Glickman, A.S., Zimmer, S., Montero, R.C., Guerette, P.J., Campbell, W.J., Morgan, B.B., & Salas, E. (1987). The evolution of teamwork skills: An empirical assessment with implications for training (Tech.Rep. No. Tr-87-016). Orlando, FL: Naval Training Systems Center.

Goodman, P.S., Ravlin, E., & Schminke, M. (1987). Understanding groups in organizations. In L.L. Cummings & B.M. Staw (Eds.), Research in organizational behavior (Vol. 9, pp. 121–173). Greenwich, CT: JAI Press.

Grant, A. M., Gino, F., & Hofmann, D. A. (2011). Reversing the extraverted leadership advantage: The role of employee proactivity. *Academy of Management Journal*, *54*(3), 528-550.

Hackman, J.R. (1976). Group influences on individuals. In M.D. Dunnette (Ed.), Handbook of industrial and organizational psychology (pp. 1455–1525). Chicago: Rand McNally.

Hackman, J.R. (1987). The design of work teams. In J. Lorsch (Ed.), Handbook of organizational behavior (pp. 315–342). New York: Prentice Hall.

Hackman, J. R. (1992). Group influences on individuals in organizations. Consulting Psychologists Press.

Hofmann, D.A., & Peterson, R. (n.d.). Insight Enterprise Software.

Ilgen, D.R., Hollenbeck, J.R., Johnson, M., & Jundt, D. (2005). Teams in organizations: From inputprocess-output models to IMOI models. Annual Review of Psychology, 56, 517–543.

Iyengar, S. S., & Lepper, M. R. (1999). Rethinking the value of choice: a cultural perspective on intrinsic motivation. *Journal of personality and social psychology*,76(3), 349.

Iyengar, S. S., & Lepper, M. R. (2000). When choice is demotivating: Can one desire too much of a good thing?. *Journal of personality and social psychology*,79(6), 995.

Iyengar, S. S., Wells, R. E., & Schwartz, B. (2006). Doing Better but Feeling Worse Looking for the "Best" Job Undermines Satisfaction. *Psychological Science*, *17*(2), 143-150.

Jehn, K. A., & Shah, P. P. (1997). Interpersonal relationships and task performance: An examination of mediation processes in friendship and acquaintance groups. *Journal of Personality and Social Psychology*, *72*(4), 775.

John, O. P., & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspectives. *Handbook of personality: Theory and research*, *2*, 102-138.

Johnson, M. D., Hollenbeck, J. R., Humphrey, S. E., Ilgen, D. R., Jundt, D., & Meyer, C. J. (2006). Cutthroat cooperation: Asymmetrical adaptation to changes in team reward structures. *Academy of Management Journal*, *49*(1), 103-119.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. *Econometrika*, 47, 263–291.

Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39, 341–350.

Kelly, J.R., & Barsade, S.G. (2001). Mood and emotions in small groups and work teams. Organizational Behavior & Human Decision Processes, 86, 99–130.

Kozlowski, S.W.J., Gully, S.M., McHugh, P.P., Salas, E., & Cannon-Bowers, J.A. (1996). A dynamic theory of leadership and team effectiveness: Developmental and task contingent leader roles. In G.R. Ferris (Ed.), Research in personnel and human resource management (Vol. 14, pp. 253–305). Greenwich, CT: JAI Press.

Kozlowski, S.W.J., Gully, S.M., Nason, E.R., & Smith, E.M. (1999). Developing adaptive teams: A theory of compilation and performance across levels and time. In D.R. Ilgen & E.D. Pulakos (Eds.), The changing nature of work performance: Implications for staffing, personnel actions, and development (pp. 240–292). San Francisco: Jossey-Bass.

Kozlowski, S.W.J., & Bell, B.S. (2003). Work groups and teams in organizations. In W.C. Borman, D.R. Ilgen, & R.J. Klimoski (Eds.), Handbook of psychology: Vol. 12. Industrial and organizational psychology (pp. 333–375). London: Wiley.

Kozlowski, S. W., & Ilgen, D. R. (2006). Enhancing the effectiveness of work groups and teams. *Psychological science in the public interest*, 7(3), 77-124.

Ku, G. (2008). Learning to de-escalate: The effects of regret in escalation of commitment. *Organizational Behavior and Human Decision Processes*, *105*(2), 221-232.

Lau, D.C., & Murnighan, J.K. (1998). Demographic diversity and faultlines: The compositional dynamics of organizational groups. Academy of Management Review, 23, 325–340.

LePine, J. A., Buckman, B. R., Crawford, E. R., & Methot, J. R. (2011). A review of research on personality in teams: Accounting for pathways spanning levels of theory and analysis. *Human Resource Management Review*, 21(4), 311-330.

Marks, M.A., Mathieu, J.E., & Zaccaro, S.J. (2001). A temporally based framework and taxonomy of team processes. Academy of Management Review, 26, 356–376.

McGrath, J.E. (1964). Social psychology: A brief introduction. NewYork: Holt, Rinehart, & Winston.

McGrath, J.E. (1991). Time, interaction, and performance (TIP): A theory of groups. Small Group Research, 22, 147–174.

Mojzisch, A., & Schulz-Hardt, S. (2010). Knowing others' preferences degrades the quality of group decisions. *Journal of personality and social psychology*,98(5), 794.

Moon, H. (2001). Looking forward and looking back: Integrating completion and sunk-cost effects within an escalation-of-commitment progress decision. *Journal of Applied Psychology*, 86(1), 104.

Morgan, B.B., Salas, E., & Glickman, A.S. (1993). An analysis of team evolution and maturation. Journal of General Psychology, 120, 277–291.

Parker, A. M., Bruine de Bruin, W., & Fischhoff, B. (2007). Maximizers versus satisficers: Decisionmaking styles, competence, and outcomes. *Judgment and Decision Making*, *2*(6), 342-350.

Polman, E. (2010). Why are maximizers less happy than satisficers? Because they maximize positive and negative outcomes. *Journal of Behavioral Decision Making*, 23(2), 179-190.

Roets, A., Schwartz, B., & Guan, Y. (2012). The tyranny of choice: a cross-cultural investigation of maximizing-satisficing effects on well-being. *Judgment and Decision Making*, 7(6), 689-704.

Ross, J., & Staw, B. M. (1993). Organizational escalation and exit: Lessons from the Shoreham nuclear power plant. *Academy of Management Journal*, *36*(4), 701-732.

Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. *Psychological Monographs: General and Applied*, 80, 1-28.

Salas, E., Dickinson, T.L., Converse, S.A., & Tannenbaum, S.I. (1992). Toward an understanding of team performance and training. In R.W. Swezey & E. Salas (Eds.), Teams: Their training and performance (pp. 3–29). Norwood, NJ: Ablex.

Schwartz, B. (2004, April). The tyranny of choice. Scientific American, 71-75.

Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White, K., & Lehman, D. R. (2002). Maximizing versus satisficing: happiness is a matter of choice. *Journal of personality and social psychology*, *83*(5), 1178.

Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 59, 99-118.

Simon, H. A. (1956). Rational choice and the structure of the environment. *Psychological Review*, 63, 129–138.

Simons, T.L., & Peterson, R.S. (2000). Task conflict and relationship conflict in top management teams: The pivotal role of intragroup trust. Journal of Applied Psychology, 85, 102–111.

Sparks, E. A., Ehrlinger, J., & Eibach, R. P. (2012). Failing to commit: Maximizers avoid commitment in a way that contributes to reduced satisfaction.*Personality and Individual Differences*, 52(1), 72-77.

Stasser, G., Taylor, L. A., & Hanna, C. (1989). Information sampling in structured and unstructured discussions of three-and six-person groups. *Journal of Personality and Social Psychology*, *57*(1), 67.

Stasser, G., & Titus, W. (2003). Hidden profiles: A brief history. *Psychological Inquiry*, *14*(3-4), 304-313.

Staw, B. M. (1976). Knee-deep in the big muddy: A study of escalating commitment to a chosen course of action. *Organizational behavior and human performance*, *16*(1), 27-44.

Taylor, S. E. (1989). *Positive illusions: Creative self-deception and the healthy mind*. New York: Basic Books.

Taylor, S. E., & Brown, J. D. (1988). Illusion and well-being: A social psychological perspective on mental health. *Psychological Bulletin*, *103*, 193-210.

Tett, R. P., & Murphy, P. J. (2002). Personality and situations in co-worker preference: Similarity and complementarity in worker compatibility. *Journal of Business and Psychology*, *17*(2), 223-243.

Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. *Advances in experimental social psychology*, 29, 271-360.

Virk, J., Aggarwal, Y. P., & Bhan, R. N. (1983). Similarity versus complementarity in clique formation. *The Journal of Social Psychology*, *120*(1), 27-34.

Weinhardt, J. M., Morse, B. J., Chimeli, J., & Fisher, J. (2012). An item response theory and factor analytic examination of two prominent maximizing tendency scales. *Judgment and Decision Making*, 7(5), 644-658.