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ABSTRACT 

 

CELLULAR AND MOLECULAR ANALYSES OF NEURAL AND 

SYNAPTIC DEVELOPMENT IN ZEBRAFISH 

Yuanquan Song 

Thesis advisor:  Rita J. Balice-Gordon 

Proper function of the nervous system requires the precise wiring of neuronal 

circuitry, which is established during development via mechanisms that guide cells to 

establish a correct identity, direct axons to navigate to and make synaptic connections 

with appropriate targets, and establish and maintain the function of synaptic circuits.  

Dysfunction of genes implicated in one or more of these processes has been linked to 

human neurological disorders with behavioral and cognitive manifestations.  However, 

our understanding of how specific gene defects affect circuitry formation, function and in 

turn behavior remains fragmentary. 

 I have used zebrafish as a genetic model system to begin to address some aspects 

of this central question.  I performed in vivo imaging and cellular analyses of the 

formation of a peripheral neural circuit, synapses between motor neurons and muscle 

fibers, called neuromuscular junctions.  I then characterized two zebrafish mutants, 

identified from a small-scale genetic screen for neuromuscular synaptic defects, slytherin 

(srn) and xavier (xav).  Analyses of srn uncovered a previously underappreciated role for 

protein fucosylation in several aspects of neural development.  Analyses of xav suggest 
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critical roles for mitochondria during neural development.  Given that the corresponding 

mutations in humans result in disorders with poorly explored neural defects, the 

molecular and cellular characterization of these mutants may shed light on our 

understanding of the neural and synaptic phenotypes in human patients. 
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Chapter 1 

 

Introduction 

 

This chapter is published in 
 
International Anesthesiology Clinics: 
Spring 2006 - Volume 44 - Issue 2 - pp 145-178 

Formation and Plasticity of Neuromuscular Synaptic Connections 

Song, Yuanquan BS; Panzer, Jessica A. MD, PhD; Wyatt, Ryan M. BS; Balice-Gordon, 

Rita J. PhD 

 

The nervous system becomes wired into circuits that are fine tuned to subserve 

particular functions and behaviors through a series of events including neurogenesis and 

differentiation; cell migration, axon guidance and synapse formation; synaptic pruning 

and circuit maturation and maintenance.  Perturbation of any of these steps results in 

neurodevelopmental, cognitive or behavioral abnormalities, as well as neurological and 

psychiatric disorders.  My thesis project utilized zebrafish as a model organism to 

characterize some of the cellular and molecular mechanisms underlying synapse 

formation, and also revealed several mechanisms that impact other aspects of neural 

development.  Here I review our current understanding of mechanisms underlying 

synapse formation, as a basis for my dissertation. 
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The specificity of synaptic connections that is essential for nervous system 

function arises during development through a series of events, including axon outgrowth 

and guidance, target selection, synaptogenesis and synapse elimination.  Neuromuscular 

synapses between spinal motor neurons and skeletal muscle fibers have become one of 

the most widely used model systems to study these events due to its relatively large size, 

accessibility and the wealth of molecular and functional information about their 

formation, maintenance and plasticity (Goda and Davis, 2003; Sanes and Lichtman, 

1999). 

Neuromuscular synapses are established through complex multi-directional 

signaling among presynaptic motor neurons, postsynaptic muscle fibers (Burden, 2002; 

Luo et al., 2003; Sanes and Lichtman, 2001) and perisynaptic glia (Koenig et al., 1998).  

These synapses consists of specialized regions of the presynaptic membrane, termed 

active zones, at which clustered synaptic vesicles fuse and release the neurotransmitter 

acetylcholine (ACh), as well as peptides such as calcitonin gene related peptide (CGRP) 

and other signaling molecules.  Directly apposed to the presynaptic active zones are 

acetylcholine receptors (AChRs) which cluster at the crests of junctional folds in the 

muscle fiber membrane.  These AChRs bind ACh that has diffused across the synaptic 

cleft, leading to subsequent depolarization, which, if above threshold, leads to contraction 

of the muscle fiber (Sanes and Lichtman, 1999).  The temporal and spatial extent of ACh 

signaling is regulated by acetycholinesterase (AChE), which is located within the basal 

lamina that invaginates the synaptic cleft, and cleaves ACh, thereby terminating the 

signal (Rotundo, 2003).  Surrounding the neuromuscular synapses are perisynaptic 
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Schwann cells, specialized glia that have been found to modulate synaptic structure, 

activity, and response to injury (Koenig et al., 1998; Son et al., 1996).  

 

The role of the Agrin – MuSK – Lrp4 –Rapsyn pathway in neuromuscular synaptogenesis 

Neuromuscular synaptic function depends critically on the precise spatial 

apposition of presynaptic motor neuron acetylcholine release sites with high-density 

clusters of AChRs in the postsynaptic muscle fiber membrane.  During neuromuscular 

synaptogenesis, AChRs are clustered before innervation, prepatterning a central muscle 

region where synapses will later be established.  Motor neuron signals refine the muscle 

prepattern by clustering AChRs beneath terminals and dispersing uninnervated clusters so 

that AChRs become localized to, and are stably maintained, at nascent synapses.  Over 

the last 15 years, work from a number of groups has uncovered the basic signaling 

mechanisms that underlie these events (reviewed in Sanes and Licthman 2001).  Muscle 

specific kinase (MuSK), a receptor tyrosine kinase expressed by postsynaptic muscle 

fibers, is essential for the formation of aneural, prepatterned AChR clusters as well as for 

the formation and maintenance of later, innervated AChR clusters (Lin et al., 2001; Yang 

et al., 2001).  The presynaptically released proteoglycan Agrin, that activates MuSK 

signaling, is now more fully understood to be important as an anti-declustering, AChR 

cluster maintenance factor.  A role for the neurotransmitter ACh as a cluster dispersion 

factor for non-innervated AChR clusters has also recently come to be appreciated 

(Misgeld et al. 2005). 
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A third protein shown to be crucial for the clustering of AChRs is the cytoskeletal 

linker protein rapsyn.  Following activation by MuSK, Rapsyn, which binds both AChRs 

and β-dystroglycan, clusters at synapses, resulting in the synaptic clustering of AChRs 

(Gautam et al., 1995).  Although AChR clustering is completely absent in Rapsyn mutant 

mice (Gautam et al., 1995), many aspects of synaptic differentiation, including 

concentration of MuSK at synapses and selective transcription of AChR genes by 

synaptic nuclei, are unaffected (Apel et al., 1997; Gautam et al., 1995). Thus, although 

necessary for neuromuscular synaptogenesis, it may be that Rapsyn plays a role in a 

relatively late step in the Agrin-MuSK signaling cascade.  The understanding of Rapsyn’s 

role in directing synaptic AChRs clustering is further complicated by recent findings that 

AChRs themselves are necessary to direct Rapsyn clusters to synapses (Grow and 

Gordon, 2000; Huh and Fuhrer, 2002; Missias et al., 1997; Ono et al., 2001). 

 While a wealth of genetic evidence supports the Agrin-MuSK hypothesis, 

evidence for a protein-protein interaction between Agrin and MuSK has been lacking.  

Earlier work had proposed that an additional protein complex that directly bind Agrin and 

was expressed specifically in muscle cells, called myotube-associated specificity 

component (MASC), was required to constitute a fully functional receptor complex that 

both binds and responds to Agrin (Glass et al., 1996).  Recently mice lacking Lrp4 

expression was reported to display neuromuscular synaptic defects strikingly similar to 

those present in mice lacking MuSK expression (DeChiara et al., 1996), namely the 

absence of postsynaptic AChR clusters, extensive aberrant presynaptic branching and 

reduced formation of presynaptic terminals (Weatherbee et al., 2006).  Prompted by this 

observation, latest work from Steve Burden’s and Lin Mei’s labs, proved that Lrp4 is the 



 

5 

long sought MASC, and that it binds, clusters and works in concert with Agrin to activate 

MuSK (Kim et al., 2008; Zhang et al., 2008).  These observations raise the question of 

whether Lrp4 clustering precedes and in turn leads to MuSK clustering, priming 

transcriptional mechanisms in sub-synaptic nuclei and protein-protein interactions that 

lead to the formation of aneural AChR clusters and ultimately the formation of functional 

neuromuscular synapses.   

 

Intracellular signaling mechanisms downstream of MuSK activation 

Although the roles of Agrin, MuSK, and Rapsyn in neuromuscular synaptogenesis 

have been relatively well established, much less is known about the identity and role of 

effectors downstream of MuSK activation.  Recent work, however, has begun to fill in 

some of these gaps (Luo et al., 2003).  The activity of several muscle enzymes, including 

Rho-family GTPases, NO synthetases (NOS), and geranylgeranyl-transferase I, has been 

shown to increase in response to Agrin (Luo et al., 2002), and both NO and cGMP have 

been implicated in the regulation of AChR clustering (Jones and Werle, 2000; Luck et al., 

2000).  AChRs are tightly associated with cytoskeletal proteins, and since Rho GTPases 

are well-known regulators of the cytoskeleton, they may play a role in translating MuSK 

activation into the cytoskeletal reorganization required to cluster AChRs synaptically 

(Luo et al., 2003).  One Rho-family GTPase, Rac1 has been implicated in initial 

induction of small AChR clusters by Agrin, and Rho itself appears to be required to then 

condense these “microclusters” into full size AChR clusters (Weston et al., 2003). 
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Given MuSK’s importance in neuromuscular synapse formation, much attention 

has focused on identifying its downstream interactors.  Recent work has identified 

Disheveled (Dvl) as a MuSK binding protein (Luo et al., 2002).  Dvl was originally 

identified in Drosophila as a molecule that is activated by the Wingless (Wnt) receptor 

Frizzled (Dierick and Bejsovec, 1999).  Interestingly, MuSK shares a conserved 

extracellular domain with Wnt receptors (Saldanha et al., 1998).  MuSK activation of Dvl 

signaling may result in AChR clustering through the function of the Rho GTPases 

discussed above, as it is known that Dvl activation results in activation of Rho GTPases 

(Habas et al., 2001).  In addition, Dvl is also known to inhibit phosphorylation of β-

catenin (Cadigan and Nusse, 1997), and β-catenin itself has been shown to bind Rapsyn 

(Luo et al., 2003) and inhibit the clustering activity of Agrin (Zhang et al., 2001). These 

data are consistent with a model in which Dvl signaling results in reduced binding of β-

catenin to Rapsyn, allowing Rapsyn to cluster AChRs (Luo et al., 2003), although this 

model remains to be tested. Interestingly, Wnt signaling has been implicated in the 

development of both CNS synapses (Hall et al., 2000) and of the glutamatergic 

neuromuscular synapses in Drosophila.  Thus, it may be that this evolutionarily 

conserved pathway is involved in the formation of a diverse array of structurally and 

functionally distinct synapses. 

 

The role of Agrin – MuSK – Lrp4 signaling in presynaptic differentiation 

In addition to lacking postsynaptic specializations, Agrin, MuSK and Lrp4 mutant 

mice also display aberrant presynaptic differentiation.  Motor axons are not confined to a 
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discrete endplate band, but instead branch extensively throughout the muscle.  Thus, 

Agrin, MuSK and Lrp4 signaling must induce a retrograde signal that instructs axons to 

stop and undergo presynaptic differentiation (DeChiara et al., 1996; Gautam et al., 1996).  

In vitro experiments have demonstrated that Agrin inhibits neurite outgrowth (Bixby et 

al., 2002; Campagna et al., 1995; Chang et al., 1997; Halfter et al., 1997; Mantych and 

Ferreira, 2001), and can initiate some aspects of presynaptic differentiation at sites of 

neurite contact with Agrin expressing cells (Campagna et al., 1995).  The current 

understanding of the cellular and molecular events underlying presynaptic development, 

however, is much less advanced than that of postsynaptic differentiation.  

 

The role of prepatterned AChR clusters in neuromuscular synaptogenesis  

The presence of prepatterned (aneural) AChR clusters was not well appreciated 

until recently.  That muscle might be patterned independent of motor innervation was 

first strongly suggested in studies of the mouse topisomerase IIβ knockout (Yang et al., 

2000).  In these mutants, although motor axons fail to branch within muscles, a band of 

AChR clusters is observed within the central region of the muscle (Yang et al., 2000).  

These AChR clusters are present in an area ca. two-fold wider than the normal endplate 

zone (Yang et al., 2000).  This finding has been confirmed in additional mouse mutants in 

which motor nerves are disrupted (Lin et al., 2000) or fail to form (Lin et al., 2001; Yang 

et al., 2001), or in which motor neurons are ablated (Yang et al., 2001). 
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In light of these findings, researchers have re-examined the early embryonic 

stages of neuromuscular synaptogenesis and found that AChR clusters are present in wild 

type muscle along the endplate band prior to the formation of neuromuscular synapses in 

a distribution similar to that seen in the genetically manipulated animals discussed above 

(Feng et al., 2000; Lin et al., 2001; Lupa and Hall, 1989; Morris et al., 1999).  These 

phenomena have been extensively examined in the mouse, where AChR clusters appear 

1-2 days after the first motor axons reach the muscle, at approximately the same time that 

motor axon branches first contact myotubes (Lin et al., 2001; Misgeld et al., 2002). 

Moreover, recent studies in zebrafish have demonstrated that AChR clusters are also 

present in myotomal muscles, but well before motor axons extend from the spinal cord 

(Flanagan-Steet et al., 2005; Panzer et al., 2005; Panzer et al., 2006).  Thus postsynaptic 

specializations are prepatterned in vertebrate muscles well in advance of innervation.  

Less well studied then the mechanisms underlying the formation of prepatterned 

AChR clusters is their actual role in synapse formation.  In vitro studies of nerve-muscle 

co-cultures demonstrated that motor axon growth cones did not preferentially contact 

“hot spots,” but rather appeared to contact myotubes at random, inducing new AChR 

clusters at sites of contact (Anderson and Cohen, 1977; Frank and Fischbach, 1979). 

These and related studies (Kuromi and Kidokoro, 1984; Role et al., 1985; Ziskind-

Conhaim et al., 1984) further showed that “hot spots” are stable in the absence of nerves, 

but rapidly disperse following synaptogenesis.  It may be that, in vivo, motor axons 

similarly ignore prepatterned AChR clusters.   
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In contrast, during axon regeneration in adult muscle, pre-existing AChR clusters 

are selectively reinnervated (Bennett and Pettigrew, 1976).  Similarly, during 

development, motor axons might contact prepatterned AChR clusters, either via an as-yet 

unidentified attractive cue or via random exploration, and incorporate them into newly 

formed synapses.  In mutant mice in which motor axons branch extensively and grow 

beyond the confines of the endplate zone, synaptic terminals are still restricted to the 

central region of the muscle, indicating that the prepattern may play a key role in defining 

the location of future synapses (Yang et al., 2001).   

Further supporting the idea that motor axons might selectively innervate 

prepatterned AChR clusters is the fact that no uninnervated AChR clusters are observed 

in ChAT knockout mice in which prepattern dispersal is theoretically absent (Brandon et 

al., 2003; Misgeld et al., 2002).  If prepattern dispersal is indeed disrupted in ChAT 

mutants, the observed lack of uninnervated AChR clusters must indicate that random 

exploration by growth cones is sufficient to result in contact with and innervation of all 

prepatterned AChR clusters, or that there is a cue attracting motor axon growth cones to 

AChR clusters.  In support of the latter hypothesis, it is thought that muscle-intrinsic cues 

are present at future postsynaptic sites on drosophila muscle fibers, and that these cues 

trigger axon termination and synaptogenesis (Broadie and Bate, 1993).   

Recent work in zebrafish, however, has provided direct evidence revealing a 

critical role of postsynaptic muscle prepatterning during neuromuscular synaptogenesis.  

In vivo time lapse studies have shown that some prepatterned AChR clusters are directly 

incorporated into synapses (Flanagan-Steet et al., 2005; Panzer et al., 2006); and that 



 

10 

selective outgrowth of growth cones and filopodia towards prepatterned AChR clusters 

have been observed, suggesting that one function of the muscle prepattern is to determine 

the sites of future synapses (Panzer et al., 2006).  Although the underlying mechanism 

remains unclear, pharmacological and genetic analysis have demonstrated that AChR 

activity, overall excitability and AChR protein itself are dispensable for these events to 

occur, suggesting that other cues that are co-patterned with AChR clusters may play this 

instructive role (Panzer et al., 2006).  One candidate is MuSK or a downstream signaling 

component.  In mouse, MuSK has been shown to be colocalized with prepatterned AChR 

clusters (Burden, 2002), and defects in motor axon outgrowth, branching and initial 

neuromuscular synaptogenesis are observed in MuSK mutant mice (Sanes and Lichtman, 

1999) and in unplugged mutant zebrafish in which the zebrafish MuSK homolog is 

absent (Zhang et al., 2004).    

Taken together, two distinct modes of synaptogenesis can be proposed.  In the 

first mode, initial synapses are formed at sites that contain preexisting neurotransmitter 

receptor clusters.  In a second and possibly contemporaneous mode, additional synapses 

are formed by the clustering of receptors beneath presynaptic nerve terminals (Flanagan-

Steet et al., 2005; Panzer et al., 2006).  These latter events are mediated by Agrin-MuSK 

and other signaling (Sanes and Lichtman, 1999). 

 

Mutagenesis in zebrafish to study neuromuscular synapse formation 

As discussed above, several of the molecular events underlying the differentiation 

of postsynaptic specializations are known.  However, many of the molecules connecting 
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these events into a coherent signaling pathway remain to be elucidated.  In addition, the 

cell-cell signaling mechanisms mediating the differentiation of presynaptic nerve 

terminals and regulating synapse number, size and location are poorly understood. The 

technical limitations inherent in studying early embryonic development in a mammalian 

system and the difficulty of performing forward genetic screens in mammals has limited 

our understanding of the cellular events that take place during neuromuscular 

synaptogenesis and hampered the discovery of the molecules which underlie them. 

Zebrafish is a useful model system in which to address these issues.  The 

development of spinal motor neurons and myotomal muscle targets has been described in 

detail (Eisen, 1998; Westerfield and Eisen, 1988).  The optical transparency, external 

fertilization and rapid development of embryos facilitate the cellular analysis of early 

stages in neuromuscular synaptogenesis.  These advantages, combined with the large 

number of embryos produced per clutch, has allowed performing mutagenesis screens 

which have revealed genetic, molecular and cellular mechanisms underlying many 

aspects of neural development.  

Towards this goal, our lab previously performed a small-scale forward 

mutagenesis screen to identify genes important for neuromuscular synaptogenesis 

(Panzer et al., 2005).  Form this screen, six novel mutants were identified that display 

defects including axon outgrowth, branching, pathfinding, AChR clustering and 

synaptogenesis.  Uncovering the genetic mutations underlying these mutants and 

characterization of the responsible signaling events will provide valuable insights towards 
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a more complete understanding of the establishment and function of neuromuscular as 

well as central synapses. 

 

Summary of Dissertation Chapters 

 Although the mechanisms underlying the formation of neuromuscular synapses 

remain amongst the most well-understood of any synapse, it is clear that many questions 

still remain.  The identity of the repertoire of molecules that mediate and modulate the 

clustering of AChRs at synapses, as well as the molecular mediators and modulators of 

presynaptic differentiation, remain unknown.  In addition, the events initiating the 

dynamic clustering and dispersal of prepatterned AChRs, as well as their role in 

neuromuscular synaptogenesis, remains poorly understood.   

 To begin to address these questions, I examined neuromuscular synaptogenesis in 

live zebrafish embryos, and established a potential role for prepatterned AChRs in the 

formation of mature neuromuscular connectivity (see Chapter 2, published as Panzer, 

Song et al., 2006).  I then characterized two mutants identified in a small-scale genetic 

screen (Panzer et al., 2005), that provided insight into several of the mechanisms 

underlying synapse formation, in muscle as well as in the central nervous system.  

Analyses of one of these mutants, slytherin (srn), whose mutation we found resides in 

GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein 

fucosylation, including that of Notch, demonstrated that defects in protein fucosylation 

leads to defects in neuronal differentiation, maintenance, axon branching, and synapse 

formation, due, at least in part, to malfunction of the Notch signaling pathway (see 
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Chapter 3, Song et al., in revision in Development).  Analyses of a second mutant, xavier 

(xav), that we found has a nonsense mutation in electron transfer flavoprotein 

dehydrogenase (etfdh) critical for fatty acid metabolism and electron transport in 

mitochondria, demonstrated that defects in electron transfer flavoprotein genes cause 

fatty acid metabolism and mitochondrial dysfunction, unbalanced oxidative 

phosphorylation leading to an increase in glycolysis, in turn leading to severe neural 

defects in zebrafish and humans, at least in part, due to perturbation of the pparγ-ERK 

pathway (see Chapter 4, Song et al., in preparation). 
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Abstract 

Little is known about the spatial and temporal dynamics of pre- and postsynaptic 

specializations that culminate in synaptogenesis.  Here we imaged presynaptic vesicle 

clusters in motor axons and postsynaptic acetylcholine receptor (AChR) clusters in 

embryonic zebrafish to study the earliest events in synaptogenesis in vivo.  Prepatterned 

AChR clusters are present on muscle fibers in advance of motor axon outgrowth from the 

spinal cord.  Motor axon growth cones and filopodia are selectively extended toward and 

contact prepatterned AChR clusters, followed by the rapid clustering of presynaptic 

vesicles and insertion of additional AChRs, hallmarks of synaptogenesis.  All initially 

formed neuromuscular synapses contain AChRs that were inserted into the membrane at 

the time the prepattern is present.  Examination of embryos in which AChRs were 

blocked or clustering is absent showed that neither receptor activity or receptor protein is 

required for these events to occur.  Thus during initial synaptogenesis, postsynaptic 

differentiation precedes presynaptic differentiation, and prepatterned neurotransmitter 

clusters mark sites destined for synapse formation. 
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Introduction 

 Neuronal circuitry becomes wired during development via mechanisms that direct 

axons to make synaptic connections with appropriate postsynaptic targets.  However, the 

spatial and temporal dynamics of these events are poorly understood.  Some studies have 

suggested that presynaptic differentiation precedes and initiates postsynaptic 

differentiation (Rao et al., 1998; Friedman et al., 2000; Okabe et al., 2001; Washbourne 

et al., 2002), whereas others have suggested that the opposite occurs (Cooper et al., 1992; 

Saito et al., 1992).  These questions remain unresolved in large part because, to date, few 

studies have simultaneously imaged both presynaptic terminals and postsynaptic 

specializations in vivo (Javaherian and Cline, 2005), and none have examined the 

dynamism of both pre- and postsynaptic specializations simultaneously in living animals 

over time.   

 Neuromuscular synapses between motor neurons and muscle fibers have been 

used for studies of synaptogenesis in several invertebrate and vertebrate species (Sanes 

and Lichtman, 1999; Jin, 2002; Goda and Davis, 2003).  Over the last 2 decades, studies 

of neuromuscular synaptogenesis in rodents, amphibians and fish have suggested that the 

clustering of postsynaptic acetylcholine receptors (AChRs) is induced by motor axon 

contact with muscle fibers by presynaptic release of the proteoglycan agrin and signaling 

through the tyrosine kinase receptor, MuSK, in the muscle fiber membrane (Sanes and 

Lichtman, 1999).  In contrast, work in nerve-muscle cocultures has shown that small, 

non-synaptic AChR clusters were present in the absence of neurite contact.  These 

clusters, however, were not targeted for innervation, but were dispersed and receptors 
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clustered de novo at sites of neurite contact with muscle fiber membranes (Fischbach and 

Cohen, 1973; Sytkowski et al., 1973; Anderson and Cohen, 1977; Frank and Fischbach, 

1979; Bloch, 1988).   

 More recently, observations made in rodents during early stages of 

synaptogenesis and in mutant mice lacking motor neurons showed that, prior to and in the 

absence of innervation, AChR clusters are present on central region of muscle fibers 

(endplate band) through which the ingrowing nerve normally extends (Harris et al., 1981; 

Lupa and Hall, 1989; Morris et al., 1999; Feng et al., 2000; Yang et al., 2000; Lin et al., 

2001; reviewed in Arber et al., 2002).  We recently showed that AChR clusters are 

present in myotomal muscle of zebrafish, well before motor axons extend from the spinal 

cord (Panzer et al., 2005; see also Flanagan-Steet et al., 2005).  Thus postsynaptic 

specializations are prepatterned in vertebrate muscles well in advance of innervation. 

Contrary to the prevailing belief that AChR clustering was dependent on the activation of 

a muscle-specific kinase (MuSK) via agrin released from motor axon growth cones 

(Sanes and Lichtman, 1999), in mice, prepatterned AChR clusters are formed in an agrin-

independent, although MuSK-dependent fashion (Lin et al., 2001; Yang et al., 2001).  

Similarly, non-synaptic neurotransmitter receptor clusters are present on the dendrites 

and soma of CNS neurons prior to axon contact both in vivo and in vitro (Aoki et al., 

1994; Rao et al., 1998; Washbourne et al., 2002).  However, the fate of prepatterned 

neurotransmitter receptor clusters and their role in subsequent synaptogenesis remain 

poorly understood.   
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 Here we report observations made using in vivo imaging of the spatial and 

temporal dynamics of motor axon growth cones and nascent terminals, and of the fate of 

prepatterned AChR clusters in zebrafish embryos.  The optical transparency and rapid 

development of zebrafish embryos facilitate studies of neuromuscular synaptogenesis at 

developmental stages that are inaccessible in mammals.  These observations show that 

motor axon growth cones preferentially contact prepatterned AChR clusters and form 

synapses at those sites.  Thus, prepatterning of postsynaptic targets determines the spatial 

location of initial synaptogenesis in muscle, and may play a similar role during 

synaptogenesis in the CNS. 
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Materials and Methods 

Zebrafish strains 

 Wild type, HuC:GFP (Park et al., 2000) and sofa potato (Ono et al., 2001) 

embryos were obtained from crosses between adult zebrafish.  The HuC promoter drives 

GFP expression in all neurons, and was used here to visualize motor axons in some 

experiments. 

 

Generation of transient transgenic embryos expressing VAMP-GFP 

A plasmid encoding UAS-VAMP2-GFP (Jontes et al., 2004) was co-injected with 

a plasmid encoding a-tubulin-GAL4 (7.5-15 ng/ml) in Yamamoto Ringers (in mM:  17 

NaCl, 0.4 KCl, 0.27 CaCl2, 0.5 Mg Cl2, 2.4 NaHCO3, pH 7.3 plus 0.05% Phenol red) into 

embryos at the 1-4 cell stage.  Thus GAL4 activation of UAS drove VAMP2-GFP 

expression in all cells in a mosaic fashion.  Embryos were then raised to 18-20 hours post 

fertilization (hpf) at 28.5° C in E3 medium (in mM:  5 NaCl, 0.17 KCl, 0.33 CaCl2, 0.33 

MgSO4) and evaluated for GFP expression in the spinal cord.  Embryos in which primary 

motor neurons were VAMP-GFP+ were selected for rhodamine a-bungarotoxin (αBTX) 

staining and subsequent imaging as described below. 

 VAMP-GFP expression was observed in many types of neurons, including 

primary motor neurons CaP, MiP, RoP, and VaP.  Motor neuron identity was determined 

by the location and size of the neuronal cell body and the territory innervated by the 

outgrowing motor axon (Myers et al., 1986), and was confirmed by post-imaging 
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immunostaining.  Diffuse VAMP-GFP within axons and punctate VAMP-GFP clusters 

were observed in motor neuron axons, growth cones, and fine filopodia during early 

stages of axon outgrowth and synaptogenesis, as previously reported for VAMP-GFP and 

other synaptic vesicle proteins during early neural development (Sabo and McAllister, 

2003; Jontes et al., 2004).  Colocalization of VAMP-GFP with the synaptic vesicle 

protein SV2 after immunostaining (see immunostaining section below) confirms that 

VAMP-GFP accurately marks the location of synaptic vesicle clusters in zebrafish 

(Supplemental Fig. 1A; (Panzer et al., 2005)).  In addition, VAMP-GFP expression did 

not affect motor axon outgrowth or synaptogenesis (Supplemental Fig. 1B). 

 

Fluorescent αBTX staining in live embryos 

 At ca. 18-24 hpf, wild type, HuC:GFP or transient transgenic embryos were 

briefly anesthetized in 0.02% Tricaine (Sigma, St. Louis, MO) in Hank's solution (in 

mM: 137 NaCl, 5.4 KCl, 0.25 mM Na2HPO4, 0.44 KH2PO4, 1.3 CaCl2, 1.0 MgSO4, 4.2 

NaHCO3).  The most caudal 1 to 2 segments of the tail were removed using a scalpel.  

Embryos were rinsed in Hank's solution, and incubated in rhodamine αBTX (15 mg/ml; 

Molecular Probes, Eugene, OR) for 1.5 hours at room temperature followed by extensive 

washing in Hank’s solution.  We empirically determined that this αBTX staining protocol 

resulted in labeling of AChRs that was optically saturating but non-paralytic.  Absence of 

paralysis was determined by normal response of embryos to head or tail tap.  Optical 

saturation of AChRs was defined as failure of Cy5 αBTX, applied immediately after the 

initial rhodamine αBTX application, to result in Cy5 αBTX labeling of receptors that 
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could be detected optically, even with the highest gain settings of the confocal 

photomultiplier tube.  Optically saturating but non-paralytic labeling of AChR receptors 

did not significantly alter motor axon outgrowth or neuromuscular synapse formation.  

Embryos were then rinsed with Hank's solution prior to imaging.  Using this technique, 

AChRs inserted into the muscle fiber membrane after αBTX application are unlabeled, 

and therefore not detectable during in vivo imaging. 

 To examine the localization of newly inserted receptors, in one series of 

experiments, the location of AChRs that were inserted in the muscle fiber membrane at 

the time of initial rhodamine αBTX labeling (old AChRs) was compared to the location 

of subsequently inserted AChRs (new AChRs) that were labeled with Cy5 αBTX after a 

2, 4 or 7 hour delay.  Embryos were then processed for immunostaining.   

 

In vivo imaging 

Embryos were placed in 1.2% low melting temperature agarose (SeaPlaque; 

Cambrex) in Hank's solution in a modified imaging chamber (Warner Instrument Co.) 

perfused with Hank’s solution at 28.5 °C.  In transient transgenic VAMP-GFP embryos, 

confocal z-stacks of images were obtained approximately every 10-20 minutes for 2-8 

hours (Leica TCS 4D or SP2 system).  In HuC:GFP embryos, confocal z-stacks were 

obtained every 1 hour for 6 hours.  Unless otherwise stated, each movie panel is a single 

plane projection of a z-stack of 20-60 1 µm thick planes taken at the indicated time 

interval.  Z-stacks of up to 60 microns were necessary in some embryos because the 

initial path of outgrowing motor axons is not flat and because, in older embryos, motor 

axon arbors becomes elaborate in three dimensions (c.f. Fig. 1, Panzer et al. (2005)).  
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Spontaneous movements and blood cell circulation, indicators of embryo viability, were 

observed throughout the duration of movies that were subsequently analyzed.  At the 

conclusion of the imaging session, embryos were re-anesthetized, fixed and processed for 

immunostaining. 

 In transient transgenic embryos expressing VAMP-GFP at ca. 24 hpf, relatively 

few motor axon branches or neuromuscular synapses are present, whereas by 72 hpf 

axons have branched into their appropriate, cell specific territory and many 

neuromuscular synapses are present (Supplemental Fig. 1C).  In vivo imaging of VAMP-

GFP+ primary motor neurons showed that motor axons were extended at a rate of 10.1 ± 

0.8 µm / hour (mean ± s.e.m; N = 10 22-30 hpf embryos, 10 neurons), similar to that 

observed in previous in vivo analyses using single cell fills (Eisen et al., 1986; Myers et 

al., 1986; Westerfield et al., 1986).  Thus the imaging procedures used in the present 

study do not interfere with axon outgrowth or neuromuscular synaptogenesis.    

 

AChR blockade  

 Rhodamine αBTX was diluted to 0.25 mM in Yamamoto Ringers with 0.05% 

Phenol red and injected directly into the yolk of 12-14 hpf embryos (Lefevre et al., 2004).  

This approach was used to achieve sustained paralysis, since it likely achieves a higher 

concentration of αBTX within embryonic muscle than bath application does, both by 

bypassing the skin, a natural barrier to toxins, and by providing sustained exposure to 

αBTX released by the yolk sac over many hours.  At 24 hpf, embryos were scored for 



 

30 

motility by evaluating responses to head and tail tap, and only those embryos that were 

completely paralyzed were collected, fixed and immunostained. 

 

Sodium channel blockade 

 Embryos were raised from 10 to 21 hpf in 0.01% tricaine in E3.  At 21 hpf, 

embryos were scored for motility by evaluating spontaneous tail movements, and only 

those embryos that were completely immotile were collected, fixed and immunostained. 

 

Whole mount immunostaining of zebrafish embryos 

Embryos were anesthetized, fixed and immunostained as described previously 

(Panzer et al., 2005) using antibodies against SV2 (Developmental Studies Hybridoma 

Bank (DSHB)) and/or GFP (Chemicon, Inc.) and a fluorescently conjugated secondary 

antibody (Jackson Labs, Inc.).  Immunostained embryos were examined using confocal 

microscopy.  Unless otherwise stated, each figure panel showing immunostaining is a 

single plane projection of a z-stack of 20-60 1 µm thick planes.   

 

Analyses of prepatterned AChR clusters, presynaptic vesicle clusters and synapse 

formation 

 AChR or presynaptic vesicle cluster number and area were measured from single 

plane projections of confocal image stacks using interactive software (Metamorph, 

Molecular Dynamics, Inc.).  The number and intensity of pixels in a line parallel to the 
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longest axis of a cluster were measured to analyze changes in AChR cluster length and 

intensity over time.  Pre- and postsynaptic clusters were scored as synapses if there was at 

least 30% pixel overlap between presynaptic and postsynaptic labeling.   

 To quantify the contribution of prepatterned AChR clusters to synapses, each 

cluster present in the first frame of a time lapse movie was analyzed and placed into one 

of three categories:  Present but subsequently disappeared; present with a VAMP-GFP+ 

cluster overlying at least 30% of the AChR cluster, and thus innervated (synaptic); and 

present throughout the movie but not innervated during the imaging interval (non-

synaptic).  Preliminary analyses suggested that the 30% colocalization criteria is the 

minimum for reliable identification of a synapse at the early embryonic ages examined 

here (see also Panzer et al., 2005).  Synapses were confirmed after subsequent 

immunostaining of presynaptic vesicles with antibodies against SV2.  The percentage of 

events in which an AChR cluster was present in advance of a presynaptic vesicle cluster 

and in which a presynaptic vesicle cluster was present followed by appearance of an 

AChR cluster was also determined.   

  

Quantification of growth cone and filopodia dynamics 

 To quantify axon and growth cone outgrowth with respect to prepatterned AChR 

clusters, the position of a growth cone was determined from a point in its geometric 

center.  The closest AChR cluster in advance of the growth cone was defined as a 

potential target AChR cluster.  Three angles were then measured:  angle 1, the angle 

between the actual growth cone trajectory and the AChR cluster; angle 2, the angle 
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between the actual trajectory and the initial trajectory if the growth cone were to grow in 

a straight line; and angle 3, the angle between the initial trajectory and the target AChR 

cluster (see Fig. 3D).  The distribution of angles 1 and 2 was evaluated, and the 

relationship between angle 2 and angle 3 was analyzed by linear regression.  In some 

cases, more than one time interval of axon outgrowth was analyzed per neuron, and this 

number is reported as an outgrowth event. 

 To quantify the direction of filopodial extension with respect to prepatterned 

AChR clusters, only filopodia extended near AChR clusters that were not along the direct 

path of axon extension were analyzed.  This is because we wished to avoid a bias in the 

quantification that would have arisen if filopodia tended to grow out in the direction of 

axon extension, and AChR clusters happened to be along this pathway.  All filopodia 

within a 5 µm radius of an axon or growth cone region nearest the target AChR cluster 

were analyzed.  The mean distance from an axon or growth cone to a target AChR cluster 

was 15 µm.  The presence of multiple AChR clusters that were an equal distance from an 

axon or filopodia was rare, and these cases were not analyzed.   

 The length of the filopodia, the actual trajectory of the filopodia and the 

straightest, shortest trajectory between the base of the filopodia at the axon and an AChR 

cluster were determined in each movie frame (see Fig. 4D).  The length of the filopodia 

and the angle between its actual trajectory and the straightest trajectory with respect to an 

AChR cluster were plotted using polar coordinates where each line segment represents 

filopodia length.  Similarly, the length of filopodia, and the angles between the filopodia 

and a control region, defined as an area 15 µm from an axon or growth cone with no 
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AChR clusters in the vicinity were also measured and plotted.  The cumulative percent of 

filopodia extended at various angles with respect to an AChR cluster or control region 

was plotted and differences assessed (Komolgorov-Smirnoff test). 

 

Acknowledgements 

 We thank A. Kugath, M. Scott and H.-Y. Zhou for technical assistance, Dr. P. 

Brehm for providing heterozygous carriers of the sofa potato mutation, Dr. S. Smith for 

providing the UAS-VAMP-GFP construct, and Dr. S. Gibbs for helpful discussions.  

Supported by grants from the NIH to R. B. G. (NS45919, NS50524) and a Howard 

Hughes Medical Institute predoctoral fellowship to J. A. P.



 

34 

Results 

Prepatterned AChR clusters are dynamic 

Each of the three primary motor neurons per spinal cord hemisegment (CaP, MiP, 

and RoP) sends an axon out of the spinal cord between 16-24 hours post-fertilization 

(hpf).  Primary motor axons then grow ventrally along the lateral surface of the notochord 

to the so-called choice point at the horizontal myosepta (midline) of the somite.  Axons 

pause at the choice point for several hours, then grow out across the medial surface (CaP, 

MiP), or branch near the midline (RoP, VaP) of the myotome, and subsequently all axons 

branch extensively (Eisen et al., 1986).  Neuromuscular synapses are formed en passant 

along the axon shaft and branches (Eisen et al., 1986; Myers et al., 1986; Westerfield et 

al., 1986; Panzer et al., 2005).  Approximately 5 hours after initiation of primary motor 

axon outgrowth, the axons of secondary motor axons (ca. 20-30 per hemisegment) begin 

to extend into the periphery along the pathways pioneered by primary motor axons and 

also form en passant synapses (Myers et al., 1986; Westerfield et al., 1986).   

In fixed and immunostained embryos at 24 hpf, AChR clusters are present on 

each muscle fiber along the medial surface of the myotome (Fig. 1A, caudal most 

segments, Fig. 1D), on many muscle fibers in lateral muscle layers, and along the lateral 

myosepta, well in advance of motor axon outgrowth from the spinal cord (Panzer et al., 

2005).  These AChR clusters are thus prepatterned on muscle fibers in advance of 

innervation (Yang et al., 2000; Lin et al., 2001; Yang et al., 2001).  Prepatterned AChR 

clusters are elongated and diffuse in caudal and thus younger myotomes, but are small, 

punctate, and reduced in number in more rostral, older myotomes (Fig. 1A-D).  The 
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largest prepatterned AChR clusters are present at the choice point; these clusters persist 

as motor axons enter the myotome and the first neuromuscular synapses are made at these 

prepatterned AChR clusters (Fig. 1B, bracket; Panzer et al., 2005).  These observations 

suggest that initially diffuse, elongated prepatterned AChR clusters coalesce, and some 

AChR clusters disappear, as innervation occurs.   

To directly determine the fate of prepatterned AChR clusters as motor axons grow 

into the myotome, AChRs were labeled with a non-paralyzing dose of rhodamine αBTX 

in HuC:GFP embryos, in which all neurons including primary motor neurons and axons 

express GFP, and confocal z-stacks were obtained over time (N = 4 20-26 hpf embryos, 

19 myotome segments).  At the beginning of imaging, motor axons had not exited the 

spinal cord (Fig. 2A, panel 0:00).  Prepatterned AChR clusters are initially elongated and 

diffuse, and over several hours, most if not all clusters coalesce (Fig. 2A; compare panel 

1:00 with panel 3:00).  During a 6 hour interval, AChR cluster width is reduced (Fig. 2F) 

and fluorescence intensity increases (Fig. 2G), consistent with the coalescing of each 

cluster.  During this interval, 20% of all prepatterned AChR clusters disappear, as 

demonstrated both by comparing subsequent images qualitatively (Fig. 2B, arrow) as 

well as quantifying changes in individual cluster length and intensity (Fig. 2C, F-H).  

This dynamic redistribution of AChRs usually begins in advance of motor axon 

outgrowth into the myotome.  Thirty percent of all prepatterned AChR clusters persist 

and become innervated during a 6 hour interval (Fig. 2D, arrow), as demonstrated by the 

presence of GFP+ axons apposed to AChR clusters (Fig. 2D, panel 5:00, asterisk) as well 

as by post-imaging immunostaining for presynaptic vesicles (Fig. 2D, last panel).  As 

stated above, 20% of prepatterned AChR clusters that are not innervated disappear.  
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However, about half of the prepatterned AChR clusters are neither dispersed nor 

innervated during a 6 hour imaging interval.  Given the absence of uninnervated AChR 

clusters in older embryos (Panzer et al., 2005), these clusters must either be innervated or 

disappear over longer intervals.  These observations show that prepatterned AChR 

clusters are highly dynamic before and during motor axon outgrowth into the myotome, 

and that some of these clusters are incorporated into synapses, whereas others are 

dispersed or persist in an uninnervated state. 

 

Motor axon outgrowth occurs along prepatterned AChR clusters 

 In vivo imaging of VAMP-GFP+ primary motor axon outgrowth in transiently 

transgenic embryos was used to examine the spatial and temporal dynamics of these 

events with respect to prepatterned AChR clusters over time (N = 20 20-30 hpf embryos, 

29 growth cones, 44 outgrowth events).  In vivo imaging showed that, at any given time, 

AChR clusters are observed in advance, or within 2-3 muscle fibers, of ca. 75% (33 / 44) 

of outgrowing motor axons (c.f. Fig. 1C; Fig. 3A; Fig. 4A; Fig. 6A, E).   Motor axon 

growth cones grow directly towards, then along and eventually innervate, prepatterned 

AChR clusters (Fig. 3B).  Continual growth towards, and innervation of, prepatterned 

AChR clusters result in motor axon extension across the medial surface of the myotome 

(Fig. 3B).  Thus, motor axons appear to follow a pathway across the medial surface of the 

myotome that is spatially coincident with prepatterned AChR clusters.  These results 

contrast with previous reports that AChR clustering and motor axon outgrowth are 

simultaneous in zebrafish (Luo and Westerfield, 1992), and raise the possibility that, in at 
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least some cases, prepatterned AChR clusters themselves, or cues that are co-patterned 

with such clusters, might direct motor axon outgrowth.     

These possibilities are further supported by the observation that the location of 

prepatterned AChR clusters predicts growth cone turning.  For example, in Fig. 3B, 

prepatterned, previously uncontacted, AChR clusters are located ca. 15 µm rostral (and 

somewhat lateral) to the motor axon growth cone in panel 2:20, and in the subsequent 2 

hours, the growth cone turns 65° toward and contacts these AChR clusters.  Sixty-three 

percent of growth cones are extended with an angle ≤ 10º, and 95% are extended at an 

angle of ≤ 30º, with respect to a prepatterned, previously uncontacted, AChR cluster (Fig. 

3E, black bars).  Growth cones were observed to turn toward a prepatterned AChR cluster 

over a wide range of angles, from 10º to 130º (Fig. 3E, grey bars).  For the population of 

growth cones that were observed over time, a significant correlation exists between the 

location of a prepatterned AChR cluster with respect to the motor axon’s initial 

trajectory, and the angle that the growth cone eventually turns toward that cluster (Fig. 

3F).  These observations show that the direction of motor axon outgrowth is dynamically 

altered so that axons continually extend along a pathway that is spatially coincident with 

prepatterned AChR clusters that they will eventually contact. 

 

Motor axon filopodia are preferentially extended toward prepatterned AChR clusters 

In the course of time lapse imaging of motor axon outgrowth to, and interactions 

with, prepatterned AChR clusters, many examples were observed of filopodia that were 



 

38 

rapidly extended toward and touched prepatterned AChR clusters (Fig. 4A-C).  In some 

cases, filopodia were extended toward a prepatterned AChR cluster (Fig. 4B, arrow), 

touched it (Fig. 4B, panels 0:10 and 3:30, asterisk), and retracted.  In other cases, 

filopodia were observed that contacted a prepatterned AChR cluster (Fig. 4C, 

arrowhead), dilated (Fig. 4C, panel 4:20), and subsequently persisted as an axon branch 

for the duration of the imaging interval (Fig. 4C, panel 5:10).    

Quantitative analyses showed that filopodia were preferentially extended toward 

prepatterned AChR clusters.  When the direction of all of the filopodia extended from a 

single motor axon was plotted using polar coordinates, the majority were extended ≤ 30° 

with respect to a target prepatterned AChR cluster (Fig. 4E).  In contrast, when the 

direction of filopodial extension was analyzed with respect to a control region without an 

AChR cluster in the vicinity, extension was random (Fig. 4F).  For all filopodia from all 

motor neurons imaged over time, approximately 30% of filopodia were extended at an 

angle ≤ 10° with respect to a prepatterned AChR cluster located a mean of 15 µm away, 

and 54% of filopodia were extended at an angle ≤ 30° of such clusters (Fig. 4G, gray 

line).  In contrast, when no AChR cluster was present, filopodia extension was non-

directional (Fig. 4G, black line).  These results show that motor axon filopodia are 

preferentially extended toward prepatterned AChR clusters. 

 Time lapse imaging demonstrated that filopodia are not extended with equal 

frequency from all areas of the motor axon.  The majority of filopodia (90%) were 

extended from axon locations that contained VAMP-GFP+ clusters of synaptic vesicles.  

70% of the VAMP-GFP+ clusters from which filopodia extended were also apposed to 
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AChR clusters (63% of all filopodia) and were thus synaptic sites (Fig. 5A-A”, D).  Only 

10% of filopodia were extended from locations on the axon shaft that lacked VAMP-

GFP+ clusters (Fig. 5C-C”, D).  These results show that filopodia are preferentially 

extended from synaptic sites on axons, consistent with observations of axon branch 

formation in Xenopus laevis tadpoles (Javaherian and Cline, 2005). 

 

Prepatterned AChR clusters determine the location of initial neuromuscular synapses

 The results described above show that prepatterned AChR clusters play an 

important role in determining the direction of motor axon outgrowth.  We next asked 

whether initial neuromuscular synapses are established at prepatterned AChR clusters (N 

= 19 20-30 hpf embryos, 34 motor neurons, 75 synapse formation events).   

In 81% of synapse formation events, a motor axon growth cone or filopodia was 

observed to reach a prepatterned AChR cluster and subsequently extend beyond it.  In 

these cases, a VAMP-GFP+ cluster, at least 2 µm in length, was subsequently formed 

over the AChR cluster (Fig. 6A, E).  The formation of VAMP-GFP+ clusters occurred 

rapidly, within 20 minutes to 1.5 hours after contact (Fig. 6B, panel 1:00; 6F, panel 4:00, 

asterisk) and persisted for several hours, or until the end of the imaging session (Fig. 6B, 

panel 1:40; 6F 4:40).  These results show that in ca. 80% of cases, clustering of 

presynaptic material, a requisite step in neuromuscular synapse formation, occurs at 

prepatterned AChR clusters. 
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In 11% of synapse formation events, a motor axon growth cone or filopodia was 

observed that had extended over one or more AChR clusters at the beginning of the 

imaging session.  In these cases, we were unable to establish whether AChR clusters were 

indeed prepatterned, i.e., present prior to motor axon contact.  However, in these cases 

VAMP-GFP+ clusters subsequently appeared over AChR clusters (see Fig. 3B, panel 

0:40, asterisks).  Taken together with the results above, theses results indicate that in ca. 

90% of cases, AChR clusters are present prior to clustering of VAMP.   

Prior to ca. 24 hpf, in only 5% of events did motor axons appear to initiate 

neuromuscular synaptogenesis.  In these cases, a motor axon or growth cone was present 

first, followed by the appearance of an AChR cluster (Fig. 6F, G, arrowhead), and 

subsequently, a VAMP-GFP+ cluster appeared at this site (Fig. 6F, panel 4:40, empty 

arrowhead).  In 2/75 events (3%), VAMP-GFP+ and AChR clusters appeared 

simultaneously (data not shown).  Out of 75 synapses formation events, VAMP-GFP+ 

clusters were never observed to form prior to AChR clustering.  Together with synapse 

formation at prepatterned AChR clusters, these results show that, in the vast majority of 

cases of initial synaptogenesis in muscle, postsynaptic AChR clusters are formed before 

presynaptic clusters of synaptic vesicles accumulate. 

 

Redistribution of AChRs from prepatterned clusters and preferential insertion of new 

receptors at synaptic sites 
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To determine the location of newly inserted AChRs during initial stages of 

synaptogenesis, all AChRs were optically saturated with rhodamine αBTX at 20 hpf, and 

2, 4 or 7 hours later, newly inserted AChRs were labeled with Cy5 αBTX.  The location 

of existing (old) AChRs and receptors inserted since the initial rhodamine αBTX labeling 

(new) was compared to the location of motor axons and terminals visualized after 

immunostaining. 

After a 2-4 hour interval after initial labeling of old AChRs, all prepatterned 

AChRs coalesced and some disappeared, consistent with immunostaining and in vivo 

imaging observations (compare Fig. 7A’ with 7B’).  Moreover, the majority of AChR 

clusters beneath SV2+ terminals, and thus at synapses, were composed of both old and 

new AChRs (Fig. 7A-B”), while the majority of non-synaptic sites (Fig. 7B, arrows) were 

composed only of old AChRs (Fig. 7D).  Few if any AChR clusters are observed that 

contain only newly inserted AChRs (Fig. 7B”, D).  This result suggests that new AChRs 

are preferentially inserted at synapses and not at sites of non-synaptic AChR clusters.    

Strikingly, after a 7 hour interval, old AChRs labeled at 20 hpf were observed to 

be located in clusters beneath presynaptic nerve terminals throughout the myotome 

(compare Fig. 7A, A’, B, B’ to C, C’).  This observation suggests that, even though some 

prepatterned AChR clusters disappear, receptors in those clusters may be re-clustered 

beneath synapses (Fig. 7C, C’).  We cannot rule out the possibility that some old AChRs 

contained within synaptic clusters at 27 hpf may have been originally diffusely 

distributed in the muscle membrane at 20 hpf and not present in prepatterned clusters per 

se.  Moreover, in vivo imaging observations showed that non-synaptic AChR clusters, 
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containing old AChRs labeled several hours earlier, occasionally appeared on muscle 

fibers 10-20 microns in advance of or beneath motor axons or growth cones (data not 

shown, see Fig. 6F, G).  Thus, some non-synaptic AChR clusters are primarily formed 

via redistribution of AChRs that were in the membrane at an earlier time.  These data 

show that AChRs that are present in the muscle fiber membrane prior to motor axon 

outgrowth into the myotome are redistributed, such that all synapses formed by 27 hpf 

contain at least some of this original population of receptors. 

 

AChR activity or AChR clusters are not required for initial neuromuscular 

synaptogenesis 

 In mouse, both presynaptic release of ACh and the depolarization of muscle fibers 

have been proposed as signals that lead to the dispersion of prepatterned AChR clusters 

and their redistribution beneath nascent motor nerve terminals (Lin et al., 2001; Yang et 

al., 2001; Misgeld et al., 2002; Lin et al., 2005).   Moreover, given that growth cones and 

filopodia are preferentially extended toward prepatterned AChR clusters, we wondered 

whether AChRs might detect presynaptic ACh release, leading to signaling that 

culminated in synapse formation.  These possibilities were tested by examining 

prepatterned AChR clusters, motor axon outgrowth and neuromuscular synapse 

formation in wild type zebrafish in which AChRs were blocked with αBTX from 12-24 

hpf.   
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 In caudal and thus younger segments of paralyzed embryos at 24 hpf, the number 

and total area of prepatterned AChR clusters, and the dispersion of some prepatterned 

AChR clusters, were similar to control embryos (Fig. 8A”, B”, G).  Thus AChR activity 

is not required for the formation or dispersion of prepatterned AChR clusters. 

 In both rostral (Fig. 8A, B) and middle (Fig. 8A’, B’) segments, the outgrowth of 

primary motor neurons is similar in paralyzed and control embryos (Fig. 8D).  Moreover, 

the number and total area of SV2+ presynaptic vesicle clusters, postsynaptic AChR 

clusters and of synapses are similar (Fig. 8E), although the distribution of areas of 

individual SV2+ clusters was shifted to larger values in paralyzed compared to control 

embryos (Fig. 8F), probably reflecting enlargement of the 3-4 choice point synapses in 

some myotomes.   

 In addition to using αBTX to block signaling through AChRs, we also blocked 

activity with the sodium channel blocker tricaine and found that prepatterned AChR 

cluster dispersal and motor axon outgrowth were similarly unaffected (Supp. Fig. 2).  

Blockade of sodium channels with tetrodotoxin (TTX) provided similar results (data not 

shown).  Consistent with previous work in zebrafish, chicken and rodents, these results 

show that neither AChR activity nor neuronal activity is required for motor axon 

outgrowth or initial neuromuscular synapse formation.   

Although only those embryos that were completely paralyzed following αBTX 

application were selected for analysis in the above experiments, it remains possible that 

this technique might not completely abolish signaling through AChRs.  Thus, we next 

examined neuromuscular synaptogenesis in sofa potato (sop) mutants, in which AChRs 
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are absent due to a mutation in the AChR d subunit (Ono et al., 2001).  As reported 

previously, no AChR clusters were observed in sop mutant embryos (Fig. 8C-C”; (Ono et 

al., 2001)).  Moreover, at 24 hpf, the extent of primary motor axon outgrowth is similar 

between sop mutants and normal siblings (Fig. 8D).  However, in many segments, the 

first formed presynaptic SV2+ vesicle clusters, at the choice point, are enlarged in sop 

mutant embryos compared to normal siblings (Fig. 8A, C, brackets).  While the number 

and total area of SV2+ vesicle clusters are similar (Fig. 8E), the distribution of individual 

SV2+ cluster area was shifted to larger values in sop mutant compared to normal siblings 

(Fig. 8F), probably reflecting the enlargement of the 3-4 presynaptic terminals at the 

choice point in each myotome.  Taken together with the results of αBTX blockade, these 

experiments suggest that, perhaps via a negative feedback loop, AChR signaling limits 

the size of presynaptic vesicle clusters.  However, it is clear from these experiments that 

AChR activity, and indeed AChRs themselves, are dispensable for motor axon 

outgrowth.  Thus, it may be that cues colocalized with prepatterned AChR clusters, but 

not the receptors themselves, determine motor axon outgrowth, branching and initial 

neuromuscular synaptogenesis. 
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Discussion 

The observations we report here provide fundamentally new insights into the 

initial steps of synapse formation.  We show that AChR clusters are prepatterned in 

myotomal muscle prior to motor axon outgrowth from the spinal cord, and that 

prepatterned AChR clusters are localized to the pathway of motor axon outgrowth along 

the myotome.  Moreover, motor axon growth cones and filopodia are preferentially 

extended toward and contact prepatterned AChR clusters.  After contact, presynaptic 

vesicles cluster at these sites, resulting in the formation of neuromuscular synapses.  

AChR blockade and examination of sop AChR mutants showed that neither receptor 

activity or receptor protein is required for these events to occur.  Thus cues that are 

colocalized with prepatterned AChR clusters, but not the clusters themselves, must 

regulate motor axon outgrowth, branching and initial neuromuscular synaptogenesis.   

Complementary work in zebrafish to that reported here was recently published 

(Flanagan-Steet et al., 2005).  Flanagan-Steet et al. used time lapse imaging to show that 

prepatterned AChR clusters on adaxial slow muscle fibers are incorporated into 

neuromuscular synapses as axons advance.  In a transgenic line in which motor axon 

outgrowth occasionally did not occur normally, axons were observed to be required for 

the subsequent stabilization of prepatterned AChR clusters.  Together, these studies show 

that postsynaptic differentiation precedes presynaptic differentiation and that the 

formation of initial postsynaptic specializations does not require motor axons (see also 

Panzer et al., 2004).  Conversely, initial motor axon outgrowth and clustering of 

presynaptic vesicles does not require AChR activity or protein.  Thus while work in 
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zebrafish (Zhang et al., 2004) and mice (Lin et al., 2001; Yang et al., 2001) shows that 

MuSK is required for the formation of prepatterned AChR clusters, cell-cell signals that 

are colocalized with prepatterned AChR clusters mediate initial neuromuscular 

synaptogenesis.   

 

Formation and fate of prepatterned AChR clusters 

 Our previous observations in zebrafish embryos showed that initially diffuse, 

elongated prepatterned AChR clusters are present throughout the myotome prior to motor 

axon outgrowth from the spinal cord (Panzer et al., 2005).  The mechanism by which 

AChRs are clustered in the absence of innervation has been the subject of much 

speculation.  Prepatterned AChR clusters are able to form in mice lacking motor neurons 

and thus muscle fiber innervation, as well as in mice lacking agrin, but do not form in 

mice lacking MuSK or rapsyn (Lin et al., 2001; Burden, 2002).  Thus MuSK signaling 

may be activated independently of agrin, perhaps by an alternate, muscle derived ligand, 

in order to establish prepatterned AChRs.  Alternatively, sufficient MuSK activation that 

leads to the formation of prepatterned AChR clusters might not require ligand binding.  

In the absence of agrin, MuSK is active at low levels (Gillespie et al., 1996; Apel et al., 

1997; Watty et al., 2000) and activated MuSK can recruit and cluster additional MuSK 

molecules (Jones et al., 1999).  Thus, prepatterned AChR clusters may be formed by 

early expression and activation of MuSK in muscle fibers.   

Initially diffuse prepatterned AChR clusters then coalesce and become more 

punctate.  Some clusters are innervated, whereas others are not.  Many of the 
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uninnervated AChR clusters disappear, while others persist for at least several hours.  

Interestingly, all neuromuscular synapses present at the completion of motor axon 

outgrowth across the myotome contain AChRs that can be labeled at the time of the 

original prepattern.  This result suggests that AChRs from dispersed clusters may, in fact, 

be redistributed and eventually incorporated into newly formed synapses.  It is unclear 

why many uninnervated AChR clusters are dispersed, whereas others persist 

uninnervated for at least several hours.  Previous studies have suggested that prepatterned 

clusters are dispersed in a neuron and activity dependent manner, and that AChRs are 

subsequently reclustered beneath nascent motor nerve terminals via agrin-MuSK 

signaling (Misgeld et al., 2002; Brandon et al., 2003).  In mice, AChR clusters are larger 

and more numerous in the absence of motor axons or in the absence of motor axons and 

agrin (Yang et al., 2001), compared to the absence of agrin alone (Lin et al., 2001; Lin et 

al., 2005).  This suggests that axons may provide signals that disperse AChR clusters that 

are not stabilized by agrin (Lin et al., 2001; Yang et al., 2001; Lin et al., 2005; Misgeld et 

al., 2005).  One such signal has been proposed to be presynaptic ACh release.  In mutant 

mice lacking choline acetyltransferase and thus ACh release, neuromuscular synapses are 

distributed over a wider region of the muscle compared to wild type littermates (Misgeld 

et al., 2002; Brandon et al., 2003).  This suggests that ACh release may lead to the 

dispersion of prepatterned AChR clusters.  In recent work in which neuromuscular 

synapses were examined in mutant mice lacking agrin and choline acetyltransferase, 

synapses formed normally in the absence of agrin and ACh release.  This suggested that 

ACh destabilizes postsynaptic AChR clusters, and that agrin counteracts this action, 

functioning as an anti-declustering signal. (Misgeld et al., 2005; see also Lin et al., 2005).  
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However, our results show that, in zebrafish, AChR blockade with αBTX does not affect 

prepatterned AChR cluster number, size or incorporation into synapses.  In addition, 

blockade of activity with tricaine or TTX does not affect overall neuromuscular 

synaptogenesis.  Thus, although presynaptic synthesis of ACh has been shown to be 

necessary for normal neuromuscular synapse formation in mice (Misgeld et al., 2002, 

2005; Brandon et al., 2003, Lin et al., 2005), AChR mediated signaling and activity may 

not be essential for these early events in zebrafish.   

 

Motor axon growth cones and filopodia preferentially contact prepatterned AChR 

clusters 

Previous work in vitro showed that motor axon growth cones do not preferentially 

contact preexisting AChR clusters, but rather these are dispersed and new clusters are 

induced (Anderson and Cohen, 1977; Frank and Fischbach, 1979).  We observed that 

motor axon growth cones and filopodia are preferentially extended toward prepatterned 

receptor clusters, demonstrating that the initial contact between motor axon growth cones 

and prepatterned receptor clusters is not random.  Our observations further show that 

such receptor clusters are targeted by motor axons for subsequent synapse formation, 

because presynaptic synaptic vesicle clusters subsequently formed over prepatterned 

AChR clusters.  As motor axon growth cones have been shown to release ACh in vivo 

(Hume et al., 1983), the fact that presynaptic terminals are formed over prepatterned 

AChR clusters would allow for synaptic transmission to begin rapidly after pre- and 

postsynaptic contact.   
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Our results show that motor axon outgrowth and neuromuscular synaptogenesis 

are not altered when AChRs are blocked or absent.  This suggests that signaling through 

postsynaptic AChRs is not required for these events to occur.  Similar results have been 

obtained in nic-1 mutant zebrafish that lack AChRs (Westerfield et al., 1990) and in 

twitch once mutants in which rapsyn is defective and AChRs do not cluster (Ono et al., 

2002).  It seems likely that other cues are necessary to attract motor axon growth cones 

and filopodia, and our data suggest that such cues are patterned appropriately in the 

absence of AChR activity and in the complete absence of AChR clusters.  One obvious 

candidate is MuSK or a downstream signaling component.  In mouse, MuSK has been 

shown to be colocalized with prepatterned AChR clusters (Burden, 2002), and defects in 

motor axon outgrowth, branching and initial neuromuscular synaptogenesis are observed 

in MuSK mutant mice (Sanes and Lichtman, 1999) and in unplugged mutant zebrafish in 

which the zebrafish MuSK homolog is absent (Zhang et al., 2004).  Alternatively, motor 

axon pathfinding might not require MuSK itself, but rather one of the many signaling 

components downstream of MuSK activation.   

One might also argue that motor axon pathfinding is pre-programmed and that the 

muscle prepatterning reported here might simply be coincident with the future path of 

motor axons, but neither critical nor instructive.  Given the precise contacts we observe 

between motor axon growth cones, their filopodia, and prepatterned AChR clusters, we 

feel that this explanation is highly unlikely.  In addition, work from several groups 

supports the existence of prepatterned cues in muscle fibers that instruct motor axon 

pathfinding decisions (c.f. Zeller et al., 2002; Zhang et al., 2004).  The striking 

pathfinding abnormalities in the zebrafish unplugged mutant further support the idea that 
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signaling molecules co-patterned with AChR clusters might play a key role in shaping the 

innervation of myotomal muscles (Zhang et al., 2004). 

 

Temporal order of synapse assembly 

The temporal order of pre- and postsynaptic differentiation during synaptogenesis 

has been the subject of much debate, largely because, to date, the imaging analyses 

required to definitively address these questions have not been performed in vivo.  In 

zebrafish, previous time lapse observations in vivo have suggested that AChRs are 

clustered after motor axon contact, but these data have limited optical and temporal 

resolution (Liu and Westerfield, 1992).  There is no evidence that motor axons extend 

into the myotome, induce AChR clusters and then retract, growing out again at later times 

(Liu and Westerfield, 1992; Zhang et al., 2004; Flanagan-Steet et al., 2005).  Although 

we do observe rare instances where motor axon filopodia appear to induce AChR 

clusters, these represent a small minority of initial neuromuscular synapse formation 

events.  This remains true even when the dynamics of this process are examined at finer 

temporal resolution than reported here (Y. Song, J. Panzer and R. Balice-Gordon, 

unpublished observations).  Thus, it seems unlikely that axons or filopodia that might 

initially induce AChR clusters were underestimated.  Rather, our data indicate that 

postsynaptic muscle fibers, by virtue of the existence of cues prepatterned with AChR 

clusters, determine the spatial location of initial synapses, and that postsynaptic AChR 

clustering temporally precedes synaptic vesicle clustering during initial synaptogenesis.  

It is likely that the accumulation of synaptic vesicles over AChR clusters represents the 
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formation of a functional synapse, as motor axon growth cones containing synaptic 

vesicles have been shown to release ACh in vivo (Hume et al., 1983).  Future studies are 

required to confirm active vesicle cycling at these early synapses using, for example, 

genetically encoded markers of exocytosis, and to determine the order of accumulation of 

other additional synaptic components pre- and postsynaptically. 

Although AChR clustering temporally precedes synaptic vesicle clustering during 

initial synaptogenesis, at later stages of synaptogenesis, presynaptic axons probably also 

induce additional postsynaptic AChR clusters, because the total number of 

neuromuscular synapses present at 72 hpf is larger than the number of prepatterned 

AChR clusters initially present.  Thus there may be two distinct modes of synaptogenesis.  

In the first mode, initial synapses are formed at sites that contain preexisting 

neurotransmitter receptor clusters.  In a second and possibly contemporaneous mode, 

additional synapses are formed by the clustering of receptors beneath presynaptic nerve 

terminals (Flanagan-Steet et al., 2005).  In skeletal muscle, these latter events are 

mediated by agrin-MuSK and other signaling (Sanes and Lichtman, 1999).  In the CNS, 

most studies in culture have indicated that presynaptic differentiation precedes and may 

initiate postsynaptic differentiation (Rao et al., 1998; Friedman et al., 2000; Okabe et al., 

2001; Washbourne et al., 2002; Bresler et al., 2004).  Clearly, additional experiments are 

necessary in vitro as well as in vivo to resolve these issues in the CNS and to determine 

whether one or both modes of synapse formation do indeed occur.  That prepatterning of 

postsynaptic targets plays a previously unappreciated and important role in 

neuromuscular synaptogenesis suggests this process may also be important during CNS 

synaptogenesis, and thus be a general mechanism that shapes neural circuitry during 



 

52 

development.
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Figures and Legends 

Fig. 1  Location of prepatterned AChR clusters in myotomal muscle.  

Presynaptic vesicles in motor axons and terminals were labeled with an antibody 

against SV2 (green) and postsynaptic AChR clusters were labeled with rhodamine αBTX 

(red) in 24 hpf embryos.  Except where indicated, all images are oriented so that rostral is 

to the left and dorsal is at the top.  The dashed line in each panel indicates the edge of the 

spinal cord.  Higher magnification views of the boxed regions in A are shown in B-D. 

A:  In rostral segments (left), primary motor axons have grown past the choice 

point and have begun to extend along the medial surface of the myotome.  In middle 

segments, motor axons have just reached the choice point.  In the most caudal segments 

(right), motor axons have not yet exited the spinal cord.  Prepatterned AChR clusters are 

visible throughout the dorsal and ventral extent of the myotome and along the lateral 

myosepta.  Scale bar = 10 µm.   

B:  In rostral segments, as motor axons form the initial neuromuscular synapses at 

the choice point (bracket), and extend beyond it along the medial surface of the myotome, 

some prepatterned AChR clusters dorsal and ventral to the choice point have disappeared.   

C:  In middle segments, as motor axons enter the myotome, prepatterned AChR 

clusters are reduced in number, smaller, and more punctate in appearance.  

D:  In caudal segments, prepatterned AChR clusters are elongated and diffuse along each 

muscle fiber, well in advance of outgrowing motor axons.  Scale bar = 10 µm.
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Fig. 1  Location of prepatterned AChR clusters in myotomal muscle.  



 

63 

Fig. 2  Dynamics of prepatterned AChR clusters. 

 Rhodamine αBTX labeled AChRs (red) imaged in transgenic embryo expressing 

GFP in neurons to visualize motor axons (HuC:GFP, green) from 20-26 hpf at 1 hour 

intervals (Supplemental Movie 1).   

 A:  Time lapse images of prepatterned AChR clusters.  The first movie plane was 

taken at time 0:00, prior to motor axon outgrowth from the spinal cord.  Boxed regions in 

the first panel are shown at higher magnification in B and D.   Prepatterned AChR 

clusters are initially elongated and diffuse and coalesce over time (e.g., compare panels 

1:00 and 3:00).  The final panel is post-imaging immunostaining for presynaptic vesicles 

(SV2; green) that demonstrates that motor axons have grown to and synapses have been 

established at the choice point (bracket) by 6:00.  Scale bar = 10 µm. 

 B:  Higher magnification of boxed region in A.  As motor axons exit the spinal 

cord and innervate the choice point, many pre-patterned AChR clusters disappear 

(disappearing cluster indicated by arrow).  In this small region, many pre-patterned 

AChRs disappear over the six hour imaging interval (compare cluster marked with an 

arrow from panels 0:00 to 6:00).  However, throughout the myotome, 20% of 

prepatterned AChR clusters disappear over a 6 hour imaging interval.  Scale bar = 10 µm. 

  C:  Line scan (8 µm in length) through the cluster marked with an arrow in B 

shows that cluster fluorescence intensity (arbitrary units) and length decrease gradually 

over the 6 hour imaging interval.   
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 D:   Higher magnification of boxed region in A.  In this small region, 2 of the 4 

prepatterned AChR clusters present at the first views are incorporated into synapses 

(compare cluster marked with an arrow in panels 0:00 to 6:00) as evidenced by the 

appearance of a GFP+ axon over the AChR cluster at panel 5:00 (asterisk) that persists to 

6:00.   However, throughout the myotome, 30% of prepatterned AChR clusters are 

incorporated into synapses.  D’:  Post-imaging immunostaining demonstrating an SV2+ 

vesicle cluster formed at this AChR cluster.  D’’-D’’’:  single channel images of the 

boxed region in D’, demonstrating colocalization of the SV2+ vesicle cluster (indicated 

by dashed line) with the AChR cluster.  Scale bar = 10 µm.  

 E:  Line scan (11 µm) through the AChR cluster marked with an arrow in D 

shows that cluster width gradually decreases and that fluorescence persists throughout the 

6 hour imaging interval.  

 F:  Quantification of AChR cluster length at 0:00 and 6:00, demonstrating that 

prepatterned AChR clusters coalesce and become significantly reduced in length over 

time (N = 4 fish, 19 myotome segments; Komolgorov-Smirnoff test, p < 0.001). 

 G:  Quantification of AChR cluster intensity at 0:00 and 6:00, determined by 

measuring the average pixel intensity along a line scan, demonstrating that prepatterned 

AChR clusters significantly increase in fluorescence over time (N = 4 fish, 19 myotome 

segments; Komolgorov-Smirnoff test, p < 0.001). 

 H:  Quantification of the fate of prepatterned AChR clusters.  Of all prepatterned 

AChR clusters, 20% disappeared; 30% become synaptic during the 6 hour imaging 



 

65 

interval; and 50% remain non-synaptic during the imaging interval (N = 4 fish, 14 

myotome segments).    
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Fig. 2  Dynamics of prepatterned AChR clusters. 
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Fig. 3  Motor axon growth cones preferentially extend toward prepatterned AChR 

clusters. 

 A-C:   A primary motor neuron, MiP, expressing VAMP-GFP (green) and AChR 

clusters labeled with rhodamine αBTX (red) from a ca. 24 hpf embryo were imaged for 

more than 4 hours at intervals of 20 minutes (Supplemental Movie 2).  The dashed line 

indicates the edge of the spinal cord.  In this series of images, the position of AChRs is 

fixed, while a single motor axon growth cone advances across the field of view.  In the 

supplemental movie, AChR clusters near the bottom of the frame appear to move because 

the embryo is growing.  Since we did not attempt to focus on this region during image 

capture, these clusters come in and out of the field of view on several occasions.  

A:  At the start of time lapse imaging, MiP has extended to the choice point 

(bracket), and a dorsal axon branch is growing toward prepatterned AChR clusters 

(arrow).  The boxed region is shown at higher magnification in B.    

 B:  Time lapse images of the MiP growth cone extending toward, contacting, and 

then extending beyond, prepatterned AChR clusters.  In some cases, VAMP-GFP+ 

clusters of presynaptic vesicles accumulate over prepatterned AChR clusters (panel 0:40, 

asterisks).  In panels 3:00-4:20, the growth cone turns 65º toward prepatterned AChR 

clusters at the dorsal edge of the myotome and lateral myosepta (arrowhead).  Scale bar = 

10 µm. 
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 C:  At the end of time lapse imaging, the MiP axon has reached the dorsal edge of 

the myotome, and has just contacted AChR clusters located at the dorsal edge of the 

myosepta.  The boxed region is the same as in A.  Scale bar = 10 µm.   

 D:  To quantify axon and growth cone outgrowth with respect to prepatterned 

AChR clusters, the position of a growth cone was determined from a point in its 

geometric center (arrow).  The closest AChR cluster in advance of the growth cone was 

defined as a potential target AChR cluster (red oval).  Three angles were then measured:  

angle 1, the angle between the actual growth cone trajectory (black line) and a straight 

trajectory toward the AChR cluster (red dashed line); angle 2, the angle between the 

actual trajectory and the initial trajectory if the growth cone were to grow in a straight 

line (blue dashed line); and angle 3, the angle between the initial trajectory and the target 

AChR cluster (N = 9 22-30 hpf embryos, 9 motor neurons, 38 growth cone outgrowth 

events).   

 E:  The distribution of angles 1 and 2.  Sixty-three percent of growth cones are 

extended with an angle ≤ 10º, and 95% are extended at an angle of ≤ 30º, with respect to 

a prepatterned AChR cluster (black bars).  Growth cones were observed to turn toward a 

prepatterned AChR cluster over a wide range of angles, from 10º to 130º (grey bars).   

 F:  Angle 2 was plotted against angle 3 and their relationship was analyzed by 

linear regression.  A significant correlation exists between the location of a prepatterned 

AChR cluster with respect to the motor axon’s initial trajectory (angle 3), and the angle 

(angle 2) that the growth cone eventually turns toward that cluster (r = 0.91).
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Fig. 3  Motor axon growth cones preferentially extend toward prepatterned AChR 

clusters. 



 

70 

Fig. 4  Motor axon filopodia preferentially extend toward and contact prepatterned 

AChR clusters. 

 A-C:  A primary motor neuron, RoP, expressing VAMP-GFP (green) and 

prepatterned AChR clusters labeled with rhodamine αBTX (red) from a ca. 24 hpf 

embryo imaged for over 5 hours at intervals of 10 minutes (Supplemental Movie 3). Due 

to focal plane drift the leftmost AChR cluster in Supplemental Movie 3 briefly disappears 

for the first 5 frames at the beginning of the movie. 

 A:  The growth cone pauses at the choice point (bracket), and forms a rostrally 

extending branch (panel 5:00).  Two areas containing prepatterned AChRs are present 

(panel 0:00; rostral area, arrowhead; caudal and ventral area, arrow).  Scale bar = 5 µm. 

 B:  Many filopodia are extended toward the caudal area containing prepatterned 

AChR clusters (panel 0:00, arrow).  Filopodia contact this AChR cluster twice (panel 

0:10 and 3:30, asterisk) and retract.  Scale bar = 5 µm. 

 C:  Filopodia are also extended toward the rostral area containing prepatterned 

AChR clusters (panel 3:20, arrowhead).  A filopodia contacts an AChR cluster (panel 

4:00, asterisk) and then retracts (panel 4:10), contacts the cluster again (panel 4:20, 

asterisk), and persists until the end of the imaging session.  Scale bar = 5 µm. 

D:  Quantification of filopodial extension.  The upper panel illustrates a segment 

of a motor axon with 3 filopodia (green) and a prepatterned AChR cluster (red) off to the 

side of the axon.  In the bottom panel, the dashed line indicates the shortest distance 

between the base of each filopodia at the axon and the AChR cluster.  The solid line 
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indicates the actual direction of filopodial extension.  The angle between these two lines 

was measured for each filopodia. 

E:  Distribution of the angle of filopodial extension with respect to prepatterned 

AChR clusters for the RoP axon shown in A-C.  The location of prepatterned AChR 

clusters was aligned at 0° (red dot).  Each line represents one filopodia, the length of the 

line represents filopodial length, and the angle represents the angle of filopodial 

extension with respect to a prepatterned AChR cluster.  The majority of filopodia are 

extended at an angle ≤ 30° with respect to prepatterned AChR clusters.   

F:  Distribution of the angle of filopodial extension with respect to a control area 

15 µm away from the axon.  Filopodia are extended randomly if an AChR cluster is not 

present. 

G:  Summary plot of cumulative percent of angles of filopodial extension with respect to 

prepatterned AChR clusters (gray line; N = 6 22-30 hpf embryos, 6 motor neurons, 230 

filopodia) or control areas (black line; N = 167 filopodia) for all filopodia from all motor 

neurons imaged (significantly different, Kolmogorov-Smirnov test, p < 0.0001).
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Fig. 4  Motor axon filopodia preferentially extend toward and contact prepatterned 

AChR clusters. 
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Fig. 5  Filopodia are preferentially extended from synapses. 

 Examples of filopodia extended from primary motor neurons expressing VAMP-

GFP (green) and prepatterned AChR clusters labeled with rhodamine αBTX (red) from 

ca. 22-30 hpf embryos. 

 A-A”:  Filopodia are extended from VAMP-GFP+ clusters of presynaptic 

vesicles (A) that are apposed to AChR clusters (A’) and are thus synapses (A”). 

 B-B”:  Filopodia are extended from VAMP-GFP+ vesicle clusters (B) that are not 

apposed to AChR clusters (B’, B”). 

 C-C”:  Relatively few filopodia are extended from axon regions lacking VAMP-

GFP+ clusters.  Scale bar = 10 µm. 

 D:  Quantification of the percent of filopodia extended from VAMP-GFP+ vesicle 

clusters (90%), from synapses (63%) or from the axon (10%).   



 

74 

Fig. 5  Filopodia are preferentially extended from synapses. 
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Fig. 6  Postsynaptic AChR clusters precede presynaptic vesicle clusters during 

initial neuromuscular synaptogenesis. 

 Primary motor neurons (CaP) expressing VAMP-GFP (green) and prepatterned 

AChR clusters labeled with rhodamine αBTX (red) from a ca. 24 hpf embryos imaged 

for 2-5 hours at intervals of 20 minutes. 

 A:  At the beginning of the imaging session, a prepatterned AChR cluster is 

present in advance of the growth cone.  The boxed region is shown at higher 

magnification in B.  Scale bar = 10 µm. 

 B:  Time lapse images of the growth cone extending toward, contacting, and then 

extending beyond, the AChR cluster.  In panels 1:20 and 1:40, clusters of VAMP-GFP+ 

vesicles have accumulated over the AChR cluster.  Scale bar = 10 µm. 

 C, D:  The fluorescence intensity of postsynaptic AChRs (C) and presynaptic 

VAMP-GFP (D) are displayed as bars whose height and color are proportional to 

intensity (white, high; purple, low).  This analysis shows that VAMP-GFP gradually 

accumulates over the AChR cluster. 

 E:  At the beginning of the imaging session, a prepatterned AChR cluster is 

present in advance of the growth cone (arrow).  The boxed region is shown at higher 

magnification in F and G.  Scale bar = 10 µm. 

 F, G:  Time lapse images of the growth cone contacting and growing past a 

prepatterned AChR cluster and the subsequent appearance of an AChR cluster beneath a 

filopodia.  AChR labeling alone is shown in G for clarity.  The cluster that was present in 
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advance of the growth cone is marked in F, panel 3:00 with an arrow.  A VAMP-GFP+ 

cluster is subsequently induced over this AChR cluster (panel 4:00, asterisk).  In addition, 

a cluster subsequently appears beneath a filopodia (F, G, panel 3:20, arrowhead).  This 

AChR cluster becomes larger and increases in intensity over time (G, panel 4:40).  A 

VAMP-GFP+ cluster appears at this site (panel 3:40) and persists throughout the imaging 

period (F, panel 4:40, open arrowhead).  Scale bar = 10 µm. 
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Fig. 6  Postsynaptic AChR clusters precede presynaptic vesicle clusters during 

initial neuromuscular synaptogenesis. 
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Fig. 7  Insertion of new AChRs and redistribution of prepatterned AChRs during 

initial neuromuscular synaptogenesis. 

All AChRs were optically saturated with rhodamine αBTX at 20 hpf, and 2, 4 or 

7 hours later, embryos were fixed and newly inserted AChRs were labeled with Cy5 

αBTX.  The location of existing (old; red) AChRs and receptors inserted since the initial 

rhodamine αBTX labeling (new; blue) was compared to the location of motor axons and 

terminals visualized after immunostaining for SV2 (green). 

 A-A’:  Prepatterned AChRs present prior to motor axon outgrowth at 20 hpf. 

B-B”:  In embryos relabeled with Cy5 αBTX four hours after initial labeling of 

old AChRs with rhodamine αBTX, all prepatterned AChRs have coalesced and some 

have disappeared, consistent with immunostaining and in vivo imaging observations.  The 

majority of synaptic AChR clusters were composed of both old (B’) and new (B”) 

AChRs.  The majority of non-synaptic sites (B, arrows) were composed only of old 

AChRs.  Few if any AChR clusters are composed only of newly inserted AChRs.   

C-C”:  In embryos relabeled with Cy5 αBTX seven hours after initial labeling, 

old AChRs labeled with rhodamine αBTX were colocalized with new AChRs in clusters 

beneath presynaptic nerve terminals throughout the myotome.  Scale bar = 10 µm. 

 D:  Quantification of the percent of AChR clusters containing old, new or both 

old and new receptors in synaptic and non-synaptic sites (N = 6 22-24 hpf embryos, 170 

clusters). 
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Fig. 7  Insertion of new AChRs and redistribution of prepatterned AChRs during 

initial neuromuscular synaptogenesis. 
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Fig. 8.  AChR activity or AChR clusters are not required for motor axon outgrowth 

or neuromuscular synaptogenesis. 

 A-C:  24 hpf embryos in which SV2+ presynaptic axons and terminals (green) 

and rhodamine αBTX labeled AChRs (red) were analyzed in rostral (A, B, C), middle 

(A’, B’, C’) and caudal (A”, B”, C”) segments.  Brackets indicate the location of the first 

neuromuscular synapses formed at the choice point. 

 A:  Motor axon outgrowth, prepatterned AChRs and initial neuromuscular 

synaptogenesis in wild type, unmanipulated control embryos (N = 4 24 hpf embryos; 8 

myotome segments).   

 B:  Motor axon outgrowth, prepatterned AChRs and initial neuromuscular 

synaptogenesis in embryos in which AChRs were blocked with rhodamine αBTX from 

12-24 hpf (N = 4 24 hpf embryos; 8 myotome segments).  The dorsal and ventral extent 

of motor axon outgrowth, prepatterned AChRs and initial synaptogenesis are similar to 

control embryos. 

 C:  Motor axon outgrowth and formation of SV2+ presynaptic vesicle clusters in 

sop embryos (N = 7 24 hpf embryos, 14 myotome segments).  Although AChRs are 

absent, the dorsal and ventral extent of motor axon outgrowth is similar to normal 

siblings (N = 6 24 hpf embryos, 12 myotome segments; not shown).  Presynaptic vesicle 

clusters are present all along the length of axons, but clusters at the choice point (bracket) 

are enlarged.  Scale bar = 10 µm.   
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 D:  Quantification of motor axon outgrowth, normalized to myotome width, for 

rostral and middle myotomes in control and αBTX blocked embryos, sop mutants and 

normal siblings.  Mean values ± s.e.m. are not significantly different (Student’s t test).   

 E:   Quantification of SV2+ cluster number and total area in control and αBTX 

blocked embryos, sop mutants and normal siblings, and of AChR cluster and synapse 

number and total area in control and αBTX blocked embryos.  Number and total area 

measurements were normalized to axon length.  Mean values ± s.e.m. are not 

significantly different between control and αBTX blocked embryos or between sop 

mutants and normal siblings (Student’s t test).   

 F:  Cumulative percent of the area of individual SV2+ clusters in control 

and αBTX blocked embryos, sop mutants and normal siblings.  While the mean values 

for total area are not different among these groups (E), the distribution of the area of 

individual SV2+ clusters is shifted toward larger values in αBTX blocked compared to 

control embryos (Komolgorov-Smirnoff test, p = 0.002) and in sop mutants compared to 

normal siblings (p < 0.0001), probably reflecting the enlarged presynaptic SV2+ cluster 

area at 3-4 choice point synapses in each myotome.   

 G:  Quantification of prepatterned AChR cluster number and total area from 

caudal segments of control and αBTX blocked embryos, normalized to myotome width.  

Mean values ± s.e.m. are not significantly different (Student’s t test).
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Fig. 8.  AChR activity or AChR clusters are not required for motor axon outgrowth 

or neuromuscular synaptogenesis. 
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Supplemental Fig. 1  VAMP-GFP marks sites of presynaptic vesicle clusters and 

does not alter motor axon outgrowth.   

 Transient transgenic embryos at 24 hpf in which some motor neurons express 

VAMP-GFP (green) and postsynaptic AChRs are labeled with rhodamine αBTX (red).   

 A:  VAMP-GFP+ CaP primary motor neurons (green), one in each of two 

adjacent caudal segments.  The boxed regions 1 and 2 are shown at higher magnification 

to the right.  Post-imaging immunostaining shows that VAMP-GFP is colocalized with 

SV2 (blue), demonstrating that VAMP-GFP marks clusters of synaptic vesicles.  Scale 

bar = 10 µm. 

 B:  The left of 2 adjacent rostral segments is innervated by a VAMP-GFP+ CaP 

motor neuron (green).  Comparison with segments innervated by GFP- motor neurons 

(right) immunostained for SV2 to mark axons and presynaptic terminals (blue) shows that 

the extent of motor axon outgrowth and branching is unaffected by VAMP-GFP 

expression.  Scale bar = 10 µm. 

 C:  VAMP-GFP+ primary motor neuron CaP imaged over time at 24-72 hpf.  At 

ca. 24 hfp, relatively few motor axon branches or neuromuscular synapses are present, 

whereas by ca. 72 hpf axons have branched into their appropriate, cell specific territory 

and many neuromuscular synapses are present.  These data show that the imaging 

procedures used do not interfere with axon outgrowth or neuromuscular synaptogenesis.  

Scale bar = 10 microns.
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Supplemental Fig. 1  VAMP-GFP marks sites of presynaptic vesicle clusters and 

does not alter motor axon outgrowth.   
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Supplemental Fig. 2  Blockade of sodium channels with tricaine does not affect dispe

rsal of prepatterned AChR clusters or initial motor axon outgrowth. 

A-B:  Presynaptic vesicles in motor axons and terminals were labeled with an anti

body against SV2 (green) and postsynaptic AChR clusters were labeled with rhodamine a

BTX (red) in 24 hpf embryos. 

A:  Motor axon outgrowth, prepatterned AChRs and initial neuromuscular 

synaptogenesis in wild type, unmanipulated control embryos at 21 hpf. 

 B:  Motor axon outgrowth, prepatterned AChRs and initial neuromuscular 

synaptogenesis in embryos in which AChRs were blocked with tricaine from 10-21 hpf.  

Motor axon outgrowth, number and area of prepatterned AChRs, and dispersal of 

prepatterned AChRs were indistinguishable from that observed in control embryos. 
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Supplemental Fig. 2  Blockade of sodium channels with tricaine does not affect dispe

rsal of prepatterned AChR clusters or initial motor axon outgrowth. 
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Chapter 3 

 

Notch-dependent and -independent mechanisms underlie neural and synaptic 

defects in slytherin, a zebrafish model for human congenital disorders of 

glycosylation 
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Abstract 

Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by 

mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of 

fucosylated glycoproteins.  While impaired Notch signaling has been implicated in some 

aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly 

understood.  We have identified a zebrafish mutant slytherin (srn), which harbors a 

missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting 

enzyme in protein fucosylation, including that of Notch.  Here we report that some of the 

mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-

dependent, while others are Notch-independent.  We show, for the first time in a 

vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal 

differentiation, maintenance, axon branching, and synapse formation.  Srn is thus a useful 

and important vertebrate model for human CDG IIc that has provided new insights into 

the neural phenotypes that are hallmarks of the human disorder and has also highlighted 

the role of protein fucosylation in neural development.  
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Introduction 

 Congenital disorder of glycosylation, type IIc (CDG IIc), also known as leukocyte 

adhesion deficiency II (LAD II) or Rambam-Hasharon syndrome (RHS), is an autosomal 

recessive syndrome, characterized by recurrent infections, persistent leukocytosis, severe 

mental retardation and slowed growth (Becker and Lowe, 1999; Etzioni et al., 2002).  

The immunodeficiency that is a hallmark of these syndromes is believed to be caused by 

dysregulated fucose metabolism, resulting in the absence of all fucosylated glycans on 

the cell surface (Becker and Lowe, 1999; Etzioni et al., 2002).  The gene responsible for 

CDG IIc has been identified as GDP-fucose transporter (FUCT1) (Lubke et al., 2001; 

Luhn et al., 2001), which translocates GDP-fucose from the cytosol into the Golgi lumen 

for fucosyltransferase-catalyzed reactions during the modification of glycans.   

Several animal models have been generated to study the pathogenesis of CDG IIc:  

FX locus null mice, lacking an enzyme in the de novo GDP-fucose synthesis pathway 

(Smith et al., 2002), Gfr (homologous to FUCT1) null flies (Ishikawa et al., 2005) and 

Fuct1 null mice (Hellbusch et al., 2007).  Gfr null flies display Notch-like phenotypes 

during wing development and reduced Notch fucosylation, suggesting that Notch 

deficiency may be responsible for some of the developmental defects in CDG IIc patients 

(Ishikawa et al., 2005).  However, despite the neurodevelopmental and cognitive 

dysfunction prominent in CDG IIc patients, the anatomical, cellular and molecular 

abnormalities within the nervous system have not been well documented, and the 

mechanisms underlying this and other neural phenotypes remain unexplored.   
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A huge body of literature has demonstrated an important role for Notch-Delta 

signaling in neuronal and glial specification, neuronal maturation and learning and 

memory (Yoon and Gaiano, 2005).  Specifically, in zebrafish, Notch-Delta signaling has 

been shown to regulate neurogenesis and gliogenesis.  For instance, deficiency of 

Notch1a as in deadly seven (des) mutants resulted in increased primary motor neurons 

and Mauthner neurons (Gray et al., 2001); deficiency of Delta A as in dla mutant caused 

excessive primary motor neuron genesis at the expense of secondary motor neurons, 

some ventral interneurons and oligodendrocytes (Appel and Eisen, 1998; Appel et al., 

2001; Park and Appel, 2003); mutation of Mind Bomb (an E3 ubiquitin ligase for Delta) 

as in mib resulted in a severe neurogenic phenotype together with the loss of 

oligodendrocytes (Itoh et al., 2003; Park and Appel, 2003).  Other studies have supported 

the involvement of Notch signaling in the balance of excitatory/inhibitory synaptic input 

to hippocampal neurons (Salama-Cohen et al., 2006) and during synaptic plasticity 

(Wang et al., 2004).  However, whether Notch-Delta signaling modulates synaptogenesis 

is unknown.   

Here we report the genetic, cellular and molecular characterization of a zebrafish 

mutant slytherin (srn).  Previously, we have identified srn as a synaptogenic mutant that 

exhibits abnormal swimming behavior, has increased number of primary motor neurons 

and aberrant neuromuscular synaptogenesis (Panzer et al., 2005).  We have found that the 

srn mutation resides in GDP-mannose 4, 6-dehydratase (GMDS), the first and rate-

limiting enzyme in the fucose metabolism pathway.  Because dysfunction of the same 

pathway is responsible for human CDG IIc, we performed cellular and molecular 

analyses that suggest that srn has Notch-Delta dependent and independent defects, 
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consistent with a general defect in protein fucosylation.  Our work suggests that several 

aspects of neural development are regulated by protein fucosylation, including the 

formation of synaptic circuitry, consistent with previous studies that have shown that 

protein fucosylation is a highly regulated process in the nervous system. 
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Materials and Methods 

Zebrafish maintenance and mutants 

Zebrafish were raised and maintained under standard conditions.  The srn allele 

was previously described (Panzer et al., 2005).  The desb420 allele was obtained from Dr. 

Christine Beattie, Tg(hsp70l:GAL4) and Tg(UAS:myc-notch1a-intra) (Scheer et al., 2002) 

from Dr. Bruce Appel,  and dlahi781 and mibhi904 alleles from Zebrafish International 

Resource Center, University of Oregon.   

 

Positional cloning of srn 

Genetic mapping of mutant loci was performed as described (Willer et al., 2005). 

New simple sequence repeat (SSR) markers DKEY-25E12-SSR2 (forward, 5’-

gcacacatgcatacgttcag-3’; reverse, 5’-tcccaaagtgaaagggtgag-3’) and DKEY-177P2-SSR4 

(forward, 5’-cctgagggtcaggagagtaatg-3’; reverse, 5’-gaactaacactttcacaaacaccaa-3’) were 

used to define the interval that contained the mutation.  PCR products containing the 

entire ORF of gmds (accession # NM_200489) were generated with the primers 5’-

cggatgtgtttgcatccgta-3’ and 5’-tcacatgaattaaacggcat-3’ for both mutant and WT (WT) 

cDNAs, cloned into pCR 4-TOPO (Invitrogen), and sequenced to verify the presence of 

the mutation and for use in rescue experiments. 

 

GDP-fucose rescue 
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 GDP-fucose (50 mM in water (pH = 7) with 0.1% phenol red as a tracer) was 

injected directly into 1-2 cell stage embryos collected from crosses of srn carriers. 

 

mRNA and morpholino injection 

Gmds-gfp mRNAs (WT and srn) were injected into embryos from WT and srn 

incrosses at the 1-2 cell stage at ~200 pg.  The morpholino antisense oligonucleotide 

(Gene Tools) targeting the gmds exon5-intron5 junction 

(CGTATGTTTGCTGACCATAAGGCGA) was injected at the 1-2 cell stage at ~4 ng. 

 

RNA extraction and quantitative RT-PCR (qRT-PCR) 

RNA was extracted from a pool of 20 embryos with the RNeasy kit (Qiagen, 

Inc.).  hes5, neurod, her4, heyl, deltaC and b-actin1 were amplified with specific primers 

(Sup. Table 1).  qRT-PCR was performed with the SuperScript® III Platinum® SYBR® 

Green One-Step qPCR Kit w/ROX (Invitrogen) and data was analyzed with 7500 Real-

Time PCR System software (Applied Biosystems) using the 2-ΔCT method. 

 

Expression of Notch1a by heat-shock induction 

To induce expression of constitutively active Notch1a (Notch1a intracellular 

domain—NICD), embryos were collected from matings of heterozygous 

Tg(hsp70l:GAL4) and Tg(UAS:myc-notch1a-intra) adults and raised at 28.5°C.  At 11 
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hpf, embryos were heat-shocked at 39°C for 30 minutes and then returned to 28.5°C until 

the desired stage of development (Shin et al., 2007). 

 

DAPT treatment 

Embryos were dechorionated with forceps at 6 hpf and placed in DAPT (N-[N-

(3,5-Difluorophenacetyl-l-alanyl]-S-phenylglycine-t-butyl ester; Calbiochem) solution at 

28.5°C until the appropriate stage, as previously described (Geling et al., 2002).  For 

experiments, 50 µM (medium dose) and 100 µM (high dose) DAPT in embryo medium 

containing 1% DMSO was used.  Control embryos were incubated in an equivalent 

concentration (1%) of DMSO. 

 

Immunostaining, AAL staining and labeling of retinotectal projections 

Embryos were anesthetized, fixed and immunostained as described previously 

(Panzer et al., 2005) using antibodies against SV2, Zn5, 3A10, F59 (all from 

Developmental Studies Hybridoma Bank, Univ. of Iowa) and/or goldfish GFAP (Nona et 

al., 1989) (gift from Drs. S. Nona and J. Scholes, Univ. of Sussex, United Kingdom) and 

a fluorescently conjugated secondary antibody (Jackson Labs, Inc.).  To label AChRs, 

fluorescently conjugated a-bungarotoxin (Molecular Probes, Inc.) was used (Panzer et al., 

2005).  TUNEL staining was performed according to the manufacturer’s instructions 

(Chemicon, Inc.).  Fucosylated proteins were visualized in 48 hpf embryos using a 

biotinylated fucose-specific lectin, Aleuria Aurantia lectin (AAL; 20 µg/ml; Vector Labs) 

which recognizes fucose residues (Kochibe and Furukawa, 1980; Luhn et al., 2004) 

followed by Alexa 488 conjugated strepavidin (20 µg/mL; Molecular Probes).  Retinal 
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ganglion cell axon projections to the optic tectum were labeled as described (Lee et al., 

2004). 

Unless otherwise stated, each immunostaining or dye labeled figure panel is a 

single plane projection of a confocal z-stack of 20-160 1 mm thick planes (Leica TCS 

4D).  Presynaptic vesicles, AChR clusters and the co-localization of these two markers 

were measured from using interactive software (Metamorph).   
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Results  

External phenotype, genetic cloning and mRNA rescue of slytherin 

From a small-scale genetic screen for defects in synaptogenesis, we previously 

identified srn due to its abnormal swimming behavior and increased number of 

neuromuscular synapses (Panzer et al., 2005).  Externally, srn mutants exhibit a bent tail 

as early as 24 hpf, a phenotype that becomes progressively more severe (Fig. 1A), as well 

as a malformation of the hindbrain, which becomes apparent at 48 hpf (Fig. 1A, 

brackets).   

The srn locus was mapped between SSLP markers z49730/z14955 and z14614 on 

chromosome 20, with marker z10756 having no recombinants (Fig. 1B).  Gmds was 

found to contain a G to T transversion in the nucleotide sequence that produces a 

nonconservative glycine (G) to valine (V) substitution of amino acid 178 (G178V) in the 

short-chain dehydrogenase/reductase (SDR) domain (Fig. 1C, D, E).  GMDS is highly 

conserved among various species at the amino acid level; for instance, the fish and 

human proteins are 87% identical.   

RT-PCR analyses suggested that at least two splice variants exist in zebrafish 

gmds, with or without exon 4, which we name gmds-L and gmds-S respectively.  Both 

splice variants are expressed in srn mutants and WT embryos (Fig. 1F).  To confirm that 

gmds is the gene responsible for srn phenotypes, both splice variants of the WT and 

mutant gmds cDNAs were fused with gfp and were in vitro transcribed into mRNA and 

were injected into 1-2 cell stage embryos collected from srn incrosses.  Compared to 

uninjected embryos, in which 29% of the embryos were mutants scored by external 
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abnormalities, the percentage of mutants dramatically decreased, to 5%, in embryos 

injected with WT gmds-gfp mRNAs (Fig. 1G; one-way ANOVA, followed by Dunn’s 

pairwise comparison, p < 0.05).  The percentage of mutants was unchanged in embryos 

injected with mutant gmds-gfp mRNAs (Fig. 1G).  Moreover, when GMDS function was 

perturbed in WT embryos with a splice-blocking morpholino against exon5-intron5 

junction, it phenocopied all the defects seen in srn mutants (see below and Sup. Fig. 3).  

These experiments confirm that gmds is the gene mutated in srn. 

To examine the expression pattern of gmds mRNA, in situ hybridization was 

performed in embryos from 6 to 72 hours post fertilization (hpf; see Supplemental 

Information).  From 6 to 12 hpf, gmds transcripts are expressed throughout the embryo 

(Sup. Fig. 1A).  By 24 hpf, gmds transcripts are highly enriched in the CNS and are also 

present in somites (Sup. Fig. 1B).  Gmds mRNA expression is present in the CNS at 48 

and 72 hpf, with transcripts more abundant in brain than spinal cord (Sup. Fig. 1C, D).  

Gmds mRNA is also expressed in the PNS at 72 hpf, including in lateral line neuromasts 

(data not shown; (Thisse and Thisse, 2004)).  The widespread expression of gmds during 

early embryogenesis suggests that this gene plays a role in many different tissues during 

development, while its localization in the CNS and PNS at later stages suggests that gmds 

also plays a role in neural development. 

 

Slytherin mutants exhibit reduced protein fucosylation  

GMDS is the first enzyme in the de novo fucose metabolism pathway, and it 

catalyzes the conversion of GDP-D-mannose to GDP-4-keto-6-D-deoxymannose, which 
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is further processed into GDP-fucose (Smith et al., 2002).  GDP-fucose is then 

transported into the Golgi where it is used to fucosylate proteins, including Selectins, 

Notch and many others (Lowe, 2001; Moloney et al., 2000; Smith et al., 2002).  Given 

the known function of GMDS in the protein fucosylation pathway, we reasoned that 

protein fucosylation in srn mutants would be compromised.  Therefore, we performed 

AAL staining in 48 hpf WT and mutant embryos (Fig. 2). 

In WT embryos, AAL staining was detected in many tissues (Fig. 2A).  

Interestingly, but not surprisingly, AAL staining is particularly strong in various neural 

tissues including olfactory bulb, retina, optic tectum, hindbrain and spinal cord (Fig. 2B-

E), which prompted us to examine the potential phenotypes in these structures in srn.  

Moreover, at the neuromuscular junction (NMJ), AAL staining co-localizes with markers 

for pre- and postsynaptic specializations, such as SV2 and acetylcholine receptors 

(AChRs) (Fig. 2K-N).  In contrast, AAL staining is strongly reduced in srn mutants (Fig. 

2F-J, O-R), consistent with analyses of cells from CDG IIc patients (Lubke et al., 2001; 

Luhn et al., 2001), and of Drosophila Gfr mutants (Ishikawa et al., 2005).  These studies 

show that protein fucosylation is dramatically reduced in the CNS and other tissues in 

srn, consistent with a loss of function of GMDS, confirming a prediction based on the 

modeling of the protein crystal structure (Supplemental Information and Sup. Fig. 2). 

 

Supplementation with GDP-fucose rescues slytherin phenotypes 

Since GMDS functions early in the fucose metabolism pathway, we reasoned that 

exogenous supply of its downstream products may circumvent the genetic defect in srn.  
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Therefore, 50 mM GDP-fucose was injected into 1-2 cell stage embryos collected from 

srn incrosses.  Compared to uninjected embryos, the percentage of mutant embryos, as 

scored by external phenotypes (Fig. 3A), was dramatically reduced in GDP-fucose 

injected embryos (Fig. 3B).  Moreover, AAL staining was similar to that in WT embryos 

at 48 hpf in many if not all tissues (Fig. 3C).  Detailed phenotypic analyses further 

showed that GDP-fucose supplementation is sufficient to rescue neural defects in srn 

mutants (see below and Sup. Fig. 3).  These strongly suggest that the absence of GDP-

fucose, as a result of GMDS dysfunction, is the cause of the srn mutant phenotypes, 

rather than the accumulation of the substrate, GDP-mannose.  Thus srn mutants display 

dysregulated protein fucosylation, as is seen in human CDG IIc patients, and that GDP-

fucose supplementation restores fucosylation and rescues defects in srn.   

 

Slytherin mutants exhibit defects in neuron and glia number, patterning and axon 

outgrowth due to Notch-Delta signaling reduction 

Our previous work suggested that srn exhibited a neurogenic phenotype, 

specifically an increased number of primary motor neurons (Panzer et al., 2005), similar 

to that observed in Notch-Delta mutants.  Analyses of Drosophila Gfr mutants suggested 

that Notch fucosylation is reduced, and that a reduction in Notch signaling might 

contribute to the pathogenesis in CDG IIc (Ishikawa et al., 2005).  Therefore, we asked 

which if any neural defects in srn were similar to those observed in Notch-Delta mutants 

or in embryos treated with the g-secretase inhibitor DAPT to reduce Notch signaling. 
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We compared srn phenotypes with known Notch-Delta mutants, desb420 (deadly 

seven, a nonsense mutation in notch1a yielding a truncated protein; Dr. C. Beattie, 

personal communication), dlahi781 (delta A, an insertion in delta A, predicted to result in a 

truncated protein (Amsterdam et al., 2004)) and mibhi904 (mind bomb, an insertion in an 

E3 ligase that targets Delta and other proteins for ubiquitination (Itoh et al., 2003), 

predicted to result in a truncated protein (Golling et al., 2002)).  Below we describe 

phenotypes in each mutant in this order, which corresponds roughly to increasing 

disruption of Notch-Delta signaling. 

First, we examined secondary motor neuron cell body number and patterning in 

the spinal cord, and axon projections in muscle.  In srn mutants at 48 hpf and 72 hpf, 

while secondary motor neuron number is similar between srn mutant and WT embryos 

(Sup. Fig. 4), the patterning of these cells is aberrant.  Secondary motor neuron cell 

bodies are clumped in srn mutants (Fig. 4A, B, second panel, dashed blue bracket), 

compared to the even spacing of cell bodies observed in WT embryos (Fig. 4A, B, top, 

solid blue bracket).  The dorsally projecting secondary motor neuron nerve also is absent 

in srn mutants (Fig. 4A, B, second panel, dashed pink oval), consistent with increased 

secondary motor neuron cell death (Panzer et al., 2005).  des mutants do not have defects 

in secondary motor neuron number or patterning, but do have motor axon pathfinding 

errors, possibly due to aberrant formation of somite boundary (Fig. 4A; (Gray et al., 

2001)).  dla mutants do not have defects in secondary motor neuron number, but have 

similar aberrant secondary motor neuron patterning as in srn mutants, without the loss of 

the dorsal projecting nerve (Fig. 4A, B, dashed blue bracket and solid pink oval, 
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respectively).  mib mutants have aberrant secondary motor neuron number and patterning 

that is apparent at 48 and 72 hpf, as well as loss of the dorsal projecting nerve.   

In the hindbrain and retina, similar defects in neuron number and patterning are 

present.  In the hindbrain at 48 hpf, an increase in Mauthner neurons is observed in srn, 

des (as previously reported (Gray et al., 2001)), dla and mib, with the largest increase in 

Mauthner neuron number observed in mib (Fig. 4C, red brackets).   Moreover, neuronal 

patterning in the hindbrain is severely perturbed in srn and in mib (data not shown).  In 

the retina at 72 hpf, cell number and patterning appear grossly normal in srn, des and dla, 

but in mib, retinal ganglion cell number is reduced (Sup.  Fig. 5A), probably due to 

increased cell death, as previously reported (Bernardos et al., 2005).   These data suggest 

that reduced Notch-Delta signaling may account for some of the CNS and PNS 

phenotypes observed in srn. 

Because deficiencies in Notch-Delta signaling have been shown to result in 

reduced gliogenesis (Appel and Eisen, 1998; Appel et al., 2001; Itoh et al., 2003; Park 

and Appel, 2003), we examined glial cells in the spinal cord, hindbrain and retina with 

GFAP immunostaining.  In the spinal cord and hindbrain, the number of GFAP+ glial 

cells is reduced in srn mutants compared to WT embryos at 48-72 hpf (Fig. 4D and data 

not shown).  A similar reduction in GFAP+ glial cells is also observed in dla and mib, but 

not in des (Fig. 4D and data not shown).  In the retina, the number of radially oriented 

GFAP+ Muller cells is decreased in srn and mib, but not in des or dla (Sup. Fig. 5B). 

These results suggest that a reduction in Notch-Delta signaling may account for the 

reduction in glia observed in srn mutants. 
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We then compared srn phenotypes with those caused by Notch signaling inhibitor 

DAPT, a g-secretase inhibitor, that prevents intramembrane proteolysis of Notch and thus 

decreases the downstream signaling dependent on the Notch intracellular domain (Geling 

et al., 2002).  While high dose of DAPT treatment resulted in phenotypes resembling 

those seen in mib (Fig. 4 and Sup. Fig. 5), medium dose DATP treatment closely 

recapitulated srn phenotypes, including the secondary motor neuron patterning defects 

and the reduction of GFAP+ glial cells in the spinal cord and retina (Fig. 4 and Sup. Fig. 

5). These results substantiate the conclusion that a reduction in Notch-Delta signaling 

may account for the observed neural defects in srn mutants. 

In order to test the synergy between srn and Notch-Delta deficiency, we initially 

sought to examine embryos double heterozygous for srn and mib, but these embryos did 

not show any obvious defects, likely because both single heterozygous embryos are 

haploid sufficient.  Then we examine embryos double homozygous for srn and mib, 

reasoning since Notch signaling is mostly if not completely absent in mib,(Itoh et al., 

2003), if srn defects are also caused by Notch signaling deficiency, introducing srn into 

mib background would not result in addictive effects, i.e. would not be more sever then 

mib.  Indeed, srn and mib double mutants showed reduced secondary motor neurons and 

GFAP+ glial cells in the spinal cord, closely resembling those seen in mib (Fig. 5).  

Furthermore, using the same reasoning, we tested the synergy between srn and DAPT 

treatment.  Similarly, in DAPT high dose treated embryos, in which Notch signaling is 

mostly if not completely blocked, srn did not add to the defects caused by DAPT alone, 

i.e. DAPT treated srn mutants resembled DAPT treated WT embryos showing similar 

reduced secondary motor neurons and GFAP+ glial cells in the spinal cord (Fig. 5).  
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These results are consistent with the hypothesis that Notch signaling deficiency underlies 

the neurogenesis and gliogenesis defects in srn. 

In addition, we reasoned if the observed neural defects in srn results from reduced 

Notch signaling, overexpressing constitutively active Notch would be able to rescue these 

phenotypes.  We utilized transgenic lines in which a constitutively active form of Notch, 

Notch1a intracellular domain (NICD) is overexpressed under the heat-shock promoter 

(Tg(hsp70l:GAL4); Tg(UAS:myc-notch1a-intra)) (Scheer et al., 2002), recapitulated srn 

phenotypes in these embryos by morpholino knockdown of gmds transcripts, and 

examined whether NICD rescued the neural defects.  Indeed, NICD overexpression 

rescued the secondary motor neuron patterning and reduced GFAP+ glial cells 

phenotypes in gmds morphants (Fig. 6).  This result strongly suggests that Notch 

signaling deficiency underlies the neurogenesis and gliogenesis defects in srn. 

To further assess whether Notch-Delta signaling is deficient in srn mutants, we 

examined the expression of several Notch effective genes, including hes5, neurod, heyl, 

her4 and deltaC as direct readout of Notch transcriptional activation, using real time 

quantitative RT-PCR.  It is known that mib embryos display a strong reduction in Notch 

signaling (Itoh et al., 2003) and hes5, neurod, heyl, her4 and deltaC were collectively 

shown to be reduced in mib mutant fish and/or mice (Bae et al., 2005; Hegde et al., 2008; 

Koo et al., 2005; Zecchin et al., 2007).  We found that, at 48 hpf, hes5, neurod, heyl, her4 

expression were significantly reduced in srn mutants, similar as in mib mutants, although 

to a lesser extent with hes5, heyl and her4 (Fig. 7).  This analysis confirms that Notch-

Delta signaling is deficient in srn.  
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These results demonstrate important roles for protein fucosylation in neuro- and 

gliogenesis and patterning.  Because these data show that defects in neuron and glia 

number, patterning and Notch effective genes expression in srn mutants are similar to 

those observed in Notch-Delta mutants, a reduction in Notch-Delta signaling caused by 

the lack of fucosylation accounts for these srn phenotypes. 

 

Slytherin mutants exhibit defects in neuromuscular synaptogenesis due to Notch-Delta 

signaling reduction 

Because srn was first identified in a screen for mutants with defects in 

neuromuscular synaptogenesis, we assessed the role of protein fucosylation and Notch-

Delta signaling in neuromuscular synapse formation, particularly at the choice point 

where the first neuromuscular synapses are made(Panzer et al., 2005), using 

immunostaining.  Choice point neuromuscular synapse size was increased at 24 hpf in 

srn, des, dla, mib and DAPT treated embryos (Fig. 8).  At 48 hpf, mib and DAPT treated 

embryos showed no enlargement of choice point neuromuscular synapses, likely due to a 

reduced number of secondary motor neurons (Sup. Fig. 4).  These defects are not due to 

defects in muscle fiber integrity or number (Sup. Fig. 6 and (Panzer et al., 2005)).  These 

results show that dysregulated protein fucosylation in srn mutants resulted in an aberrant 

neuromuscular synaptogenesis that was phenocopied in Notch-Delta signaling deficient 

embryos, suggesting that Notch-Delta signaling plays an important and previously 

unappreciated role in modulating neuromuscular synapse formation. 
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Slytherin mutants exhibit defects in CNS axon branching and synaptic connectivity 

that are independent of Notch-Delta signaling   

Phenotypic analyses showed that srn has several defects that are not present in the 

Notch-Delta mutants des, dla or mib, or DAPT treated embryos.  In the retina, while 

overall cellular lamination is grossly normal in srn mutants (Fig. 9E, bottom left panel), 

the synaptic connections in the outer and inner plexiform layers (OPL and IPL) are 

dramatically altered, as shown by presynaptic labeling with SV2 antibody (Fig. 9A).  In 

srn mutants at 48-72 hpf, the OPL and IPL synaptic layers are disorganized, and this is 

not seen in des, dla or medium dose DAPT treated embryos (Fig. 9A).  In mib and high 

dose DAPT treated embryos, retinal ganglion and other cells die, resulting in a reduction 

in synapses throughout the retina (Fig. 9A).  Thus srn displayed unique defects in CNS 

synaptic connectivity that are not phenocopied by Notch signaling deficient embryos, 

suggesting fucosylation of proteins other than those involved in Notch-Delta signaling 

are required to shape this neural circuitry. 

Given that AAL staining showed high levels of protein fucosylation in optic 

tectum (Fig. 2), we examined whether retinal ganglion cell axon outgrowth to and 

branching within the optic tectum was affected in srn and other mutants.  In srn mutants, 

retinal ganglion axons grow to the correct location within optic tectum (Fig. 9B), but their 

axons are aberrantly branched within the tectum (Fig. 9B, dashed white circle) and 

medial axon projections are shifted towards the midline (Fig. 9B, compare solid arrow 

and dashed arrow).  These phenotypes are not present in des, dla or medium dose DAPT 

treated embryos (Fig. 9B).  In mib and high dose DAPT treated embryos, the retinal 
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ganglion cell axon projection to optic tectum is dramatically reduced due to retinal 

ganglion cell death (Fig. 9B).  Mib and high dose DAPT treated embryos also displayed 

retinal ganglion axon pathfinding errors at the optic chiasm (Fig. 9B, dashed square) and 

decreased branching within the optic tectum (Fig. 9B, dashed white circle).  Furthermore, 

topographic mapping analyses, in which the dorsonasal (DN) and ventrotemporal (VT) 

retinal ganglion cell projections were differentially labeled (Fig. 9C, D) showed that, in 

srn mutants, the location of the DN and VT axon projections in the optic tectum is 

aberrant, and that these projections overlap aberrantly dorsally and laterally (Fig. 9D). 

Moreover, the cellular lamination and cell viability in the optic tectum was similar 

between srn and WT embryos at 72 hpf (Fig. 9E, middle left panels).  These results 

suggest that signaling independent of the Notch-Delta pathway, but requiring protein 

fucosylation, modulates axon branching and synaptic patterning in the CNS.   
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Discussion 

We report that the srn mutation causes a loss of GMDS function, leading to a 

severe reduction in protein fucosylation, including that of Notch among many others.  Srn 

displays increased neurogenesis, decreased gliogenesis, increased neuronal cell death, 

abnormal neuronal patterning, abnormal axon arborization, and abnormal neuromuscular 

and CNS synaptic connectivity, indicating that protein fucosylation plays an important 

role in several aspects of neural development.   

 

Notch-Delta signaling reduction underlies some but not all srn neural phenotypes  

Our results suggest that both Notch-dependent and -independent mechanisms 

contribute to the neural phenotypes observed in srn.  Srn mutants showed reduced Notch 

transcriptional activity, as assayed by hes5, neurod, heyl, and her4 expression, increased 

primary motor neuron and Mauthner neuron number, decreased gliogenesis and abnormal 

neural patterning.  These defects are phenocopied by Notch-Delta mutants and in 

embryos with reduced Notch signaling.  That mib and Notch signaling inhibition by 

DAPT occlude srn defects, and that NICD overexpression rescues these srn phenotypes, 

strongly suggest that the dysregulated fucosylation of proteins in the Notch-Delta 

pathway accounts for these prominent neural defects in srn mutants.  While the lack of 

anti-zebrafish Notch antibodies prevented direct analysis of Notch fucosylation, Notch is 

known to be fucosylated, and other proteins in the Notch-Delta pathway, including Delta, 

Serrate and Jagged, contain consensus sequence(s) for O-linked fucose modification 

(Harris and Spellman, 1993; Harris et al., 1993; Moloney and Haltiwanger, 1999).  Notch 
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is also N-fucosylated, in which fucose is added to N-linked glycan side chains (Ishikawa 

et al., 2005; Jaeken and Matthijs, 2007; Sturla et al., 2003).  Notch O- and N-fucosylation 

has been shown to be reduced in the Drosophila Gfr null (Ishikawa et al., 2005).  It thus 

seems highly likely that the fucosylation of proteins in the Notch-Delta pathway is 

aberrant in srn mutants and that this accounts for some, but not all, srn neural 

phenotypes. 

Interestingly, there is a hierarchy in the spectrum of srn and Notch-Delta mutant 

phenotypes.  Phenotypes in des, except for the axon pathfinding errors, are weaker than 

those in dla, and both of these are weaker than srn.  This is consistent with the hypothesis 

that many Notch-Delta factors, including Notch, Delta, Serrate and Jagged, require 

proper protein fucosylation and compromised fucosylation of these proteins may account 

for the wider spectrum of defects seen in srn.  Mib mutants also displayed a wide range of 

defects, not seen in the other three mutants, consistent with the fact that mammalian Mib1 

interacts with a number of proteins besides Delta and may serve as an integrator of 

multiple neuronal developmental pathways (Choe et al., 2007). 

Moreover, our observation that srn and Notch-Delta mutants have increased 

neuromuscular synapses supports a previously underappreciated role for Notch-Delta 

signaling during synaptogenesis.  Because primary motor neuron number is increased in 

srn, it is difficult to separate direct effects of Notch-Delta signaling on presynaptic 

differentiation from indirect effects on neurogenesis.  The total number of motor neurons 

innervating trunk muscles actually decreases due to secondary motor neuron cell death 

(Panzer et al., 2005), while the increase in neuromuscular synapse number and size 
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persists.  This strongly suggests that Notch-Delta signaling plays a role in synaptogenesis, 

independent of its role in neurogenesis.   

Recent work has shown that reduced protein fucosylation, as a result of gmds 

mutation in twohead (twd) mutants, results in defects in the migration of vagus motor 

neuron progenitors (Ohata et al., 2009).  Ohata and colleagues concluded that Notch 

signaling is unaltered in twd mutants, based on analyses of her4 expression and analyses 

of hindbrain patterning and neuron number.  However, neural phenotypes in twd were not 

compared with those in the Notch-Delta signaling mutants as assayed here, and analyses 

of additional Notch target genes in twd and migration phenotypes in Notch-Delta 

pathway mutants may be informative.   

While deficiencies in Notch-Delta signaling underlie some srn phenotypes, other 

srn phenotypes are independent of this pathway.  Srn mutants exhibit prominent defects 

in retinotectal connectivity that are quite different from those observed in Notch-Delta 

mutants such as des and dla in which no defects in retinotectal axon branching are 

observed, and from the dramatic reduction in retinal ganglion cell number and axon 

pathfinding observed in mib.  We present several lines of evidence that strongly support 

the conclusion that some, but clearly not all, of the mechanisms underlying the neural 

phenotypes in srn are Notch-dependent.   Future work will focus on identifying the 

fucosylated proteins that mediate the neural deficits that are independent of Notch-Delta 

signaling.   

 

Srn as a zebrafish model for congenital disorders of glycosylation 
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Over the last decade, a large number of human genetic diseases with aberrant 

glycoprotein synthesis have been identified and grouped as congenital disorders of 

glycosylation (CDG).  Since glycosylation is essential for the function of many proteins, 

it is not surprising that disruption of glycosylation can lead to severe, multi-systemic 

phenotypes, including neurodevelopmental and cognitive disorders.  In srn mutants, the 

gmds mutation largely abolishes the synthesis of GDP-fucose, resulting in reduction or 

elimination of both O-linked and N-linked fucosylation of Notch and many other 

proteins.  Thus it is possible that disruption of O- as well as N-linked glycosylation of 

Notch and other proteins contributes to CDG IIc pathogenesis, although this has not been 

examined extensively in humans.   

There are several reports of neural deficits in CDGIIc patients, including severe 

mental retardation, microcephaly, cortical atrophy, seizures, psychomotor retardation and 

hypotonia (Frydman et al. 1992; Lubke et al., 1999; Etzioni et al., 2002).  These clinical 

observations are consistent with the CNS and PNS cellular phenotypes observed in srn.  

Given the advantage of performing imaging, genetic and pharmacological manipulations 

in zebrafish, srn will be a useful tool to guide future analyses in human CDG IIc patients 

and contribute to a better understanding of the mechanisms responsible for this 

devastating disorder that affects nervous system and other organ development. 
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Figures and Legends 

Figure 1.  Slytherin external phenotype, genotype, cloning and mRNA rescue of srn 

mutants. 

 A. External srn phenotypes at 48 hpf include a bent tail (80% bent dorsally (N = 

534 embryos, 8 carrier pairs) and aberrant hindbrain formation (brackets).  Scale bar = 

100 µm.  B. Genetic and physical map of the srn locus (red arrow), including SSLP 

markers, number of recombinants, BAC clones and megabase positions from Ensembl 

Zv7.  C, D. Gmds mutation in srn is a G to T mutation (C, red box) resulting in a Glycine 

to Valine conversion (D, red box).  The amino acid sequence of GMDS is highly 

conserved among several species, from E. coli to human.  E. Schematic location of srn 

mutation in the short-chain dehydrogenase/reductase (SDR) domain of GMDS.  F. Two 

splice variants exist in gmds mRNA, with (gmds-L, 377 aa) or without (gmds-S, 370 aa) 

exon 4.  Gmds alternative splicing is not altered in srn mutants.  G. Injection of gmds 

mRNA rescues srn mutants.  Compared to uninjected embryos, 28.6 ± 1.2% of the 

embryos were mutant when scored by external phenotypes (N = 3413 embryos, 27 carrier 

pairs).  In embryos injected with WT gmds-gfp mRNA, the percentage of mutants scored 

by external phenotypes was significantly decreased, to ca. 5% (gmds-wtL-gfp 5.4 ± 2.5%, 

N = 401 embryos, 3 carrier pairs; gmds-wtS-gfp 5.1 ± 0.6%, N = 587 embryos, 4 carrier 

pairs; one-way ANOVA, followed by Dunn’s pairwise comparison, p < 0.05).  The 

percentage of embryos with mutant external phenotypes was unchanged in embryos 

injected with mutant gmds-gfp mRNA (gmds-srnL-gfp 30.2 ± 0.9%, N = 387 embryos, 3 
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carrier pairs; gmds-wtS-gfp 25.1 ± 1.9%, N = 516 embryos, 4 carrier pairs).  This mRNA 

rescue experiment confirms that gmds is the gene responsible for srn mutation. 

 



 

121 

Figure 1.  Slytherin external phenotype, genotype, cloning and mRNA rescue of srn 

mutants. 
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Figure 2.  slytherin mutants exhibit reduced protein fucosylation as measured by 

AAL staining. 

A. AAL staining of WT embryos at 48 hpf showed that protein fucosylation is 

present throughout the embryo (10-15 embryos / 2-3 adult pairs for all analyses).  B-E. 

Protein fucosylation is prominent in neural tissues such as the retina (lateral view), optic 

tectum (dorsal view), hindbrain (lateral view), spinal cord (lateral view) and 

neuromuscular synapses (lateral view of axial muscle).  F. Protein fucosylation is 

dramatically reduced in srn mutants.  Scale bar = 20 µm.  G-J. Reduced protein 

fucosylation in retina, optic tectum, hindbrain, spinal cord and neuromuscular synapses, 

as well as in other tissues.  Scale bar = 20 µm.  K. Protein fucosylation at neuromuscular 

synapses in WT embryos at 48 hpf, as shown by the colocalization of AAL staining 

(green) with markers for presynaptic axons and nerve terminals (SV2, red) and 

postsynaptic AChR clusters (a-bungarotoxin, blue).  L-N. Higher magnification of boxed 

region in K.  O. Protein fucosylation is reduced in srn neuromuscular synapses.  Scale 

bar = 20 µm.  P-R. Higher magnification of boxed region in O.  Synapse area is 

significantly increased in srn mutants, especially at the choice point (compare dashed 

bracket in Q to solid bracket in M).  Scale bar = 20 µm.   
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Figure 2.  slytherin mutants exhibit reduced protein fucosylation as measured by 

AAL staining. 
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Figure 3.  Supplementation with exogenous GDP-fucose rescues srn external 

phenotypes and restores AAL staining. 

 A. External srn phenotypes including bent tail and aberrant hindbrain formation 

(bracket) are rescued by GDP-fucose supplementation (N = 3 embryos).  Scale bar = 100 

µm.  B. GDP-fucose injection significantly reduced the percentage of mutants from 28.6 

± 1.2% to 8.4 ± 2.7% (N = 576 embryos, 4 carrier pairs; Student’s test, p < 0.0001).  C. 

After GDP-fucose supplementation (N = 2 embryos), protein fucosylation as assessed by 

AAL staining at 48 hpf is rescued throughout srn embryos, to levels similar to those seen 

in WT embryos.  Scale bar = 100 µm. 
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Figure 3.  Supplementation with exogenous GDP-fucose rescues srn external 

phenotypes and restores AAL staining. 
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Figure 4.  Reduction in Notch-Delta signaling accounts for some srn phenotypes.    

A, B. Secondary motor neuron cell body number and patterning assayed with Zn-

5 immunostaining (18 embryos / 3 carrier pairs for each).  B. Higher magnification of  

boxed region in A.  At 48 - 72 hpf, secondary motor neuron number is similar in srn and 

WT (Sup. Fig. 4), but the patterning of these cells is aberrant in srn embryos.  Secondary 

motor neuron cell bodies are clumped in srn mutants (dashed blue bracket) compared to 

WT embryos (solid blue bracket).  dla mutants do not have defects in secondary motor 

neuron number (Sup. Fig. 4), and have aberrant secondary motor neuron patterning as in 

srn mutants (dashed blue bracket).  mib mutants and high dose DAPT treated embryos 

have aberrant secondary motor neuron number (Sup. Fig. 4) and patterning (dashed blue 

bracket).  Medium dose DAPT treated embryos show aberrant secondary motor neuron 

patterning defects (dashed blue bracket), without an obvious change in cell number (Sup. 

Fig. 4), as in srn.  The dorsal secondary motor neuron is absent in srn mutants (dashed 

pink oval) compared to WT (solid pink oval), consistent with increased secondary motor 

neuron cell death; is present in dla and des mutants (solid pink oval); des also has other 

motor axon pathfinding errors.  In mib mutants and high and medium dose DAPT treated 

embryos, the dorsal projecting nerve is absent (dashed pink oval).  C. In WT embryos at 

48 hpf, a pair of Mauthner neurons is present (dorsal view of hindbrain).  In srn, des, dla, 

mib and high dose DAPT treated embryos, Mauthner neuron number is increased (dashed 

red brackets), with the largest increase observed in mib (12 embryos, 3 carrier pairs for 

each).  D. In the spinal cord, the number of GFAP+ glial cells is reduced in srn and dla 

mutants and medium dose DAPT treated embryos compared to WT and des embryos at 
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48-72 hpf.  In mib and high dose DAPT treated embryos, a more dramatic reduction is 

observed.  18 embryos / 3 carrier pairs for each.  Scale bars = 40 µm. 
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Figure 4.  Reduction in Notch-Delta signaling accounts for some srn phenotypes.    
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Figure 5.  mib and DAPT treatment exclude srn phenotypes. 

 A-C. mib excludes srn phenotypes.  A. AAL staining is reduced in srn and srn + 

mib double mutants, but not in mib.  B. srn + mib double mutants showed reduction of 

secondary motor neurons, more severe than srn but similar to mib alone.  C. srn + mib 

double mutants have reduced GFAP+ glia, more severe than srn, but similar to mib alone.  

15 embryos / 2 carrier pairs for each.  Scale bar = 40 µm.  D-F. DAPT treatment excludes 

srn phenotypes.  D. AAL staining is reduced in srn and srn mutants treated with DAPT, 

but not in DAPT treated embryos.  E. srn mutants treated with DAPT showed reduction 

of secondary motor neurons, more severe than srn but similar to DAPT treated embryos.  

F. srn mutants treated DAPT showed reduction of GFAP+ glia, more severe than srn, but 

similar to DAPT treated embryos.  10 embryos / 2 carrier pairs for each. Scale bar = 40 

µm. 
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Figure 5.  mib and DAPT treatment exclude srn phenotypes. 
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Figure 6.  NICD rescues srn neuro- and gliogenesis phenotypes. 

A. AAL staining is reduced in srn, gmds morphants and gmds morphants 

overexpressing NICD, but not in WT embryos or WT embryos overexpressing NICD.  B. 

WT and WT overexpressing NICD had normal secondary motor neuron patterning.  srn 

and gmds MO showed secondary motor neuron patterning defects which was rescued by 

NICD overexpression in gmds morphants.  C. WT and WT overexpressing NICD had 

normal GFAP+ glia cells in spinal cord.  srn and gmds morphants had reduced GFAP+ 

glia cells, which was rescued by NICD overexpression in gmds morphants.  At least 10 

embryos in each experiment were assessed.  Scale bar = 40 µm. 
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Figure 6.  NICD rescues srn neuro- and gliogenesis phenotypes. 
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Figure 7.  srn mutants showed aberrant expression of Notch responsive genes 

similar to mib mutants. 

qRT-PCR assessment of fold change in hes5, neurod, heyl, her4 and deltaC 

expression in WT, srn and mib mutant embryos at 48 hpf, normalized to b-actin1.  hes5, 

neurod, heyl, and her4 expression is dramatically reduced in srn, similar to those in mib.  

The reduction in hes5, heyl and her4 is more dramatic in mib.  (N = 3-5 experiments, 20 

embryos each, one-way ANOVA, Bonferroni’s Multiple Comparison Test, ** p < 0.001, 

* p < 0.5).  
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Figure 7.  srn mutants showed aberrant expression of Notch responsive genes 

similar to mib mutants. 
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Figure 8.   Slytherin mutants exhibit defects in neuromuscular synaptogenesis due in 

part to reduction in Notch-Delta signaling. 

A- X. Presynaptic terminals (green) and postsynaptic AChR clusters (red) in 24 

and 48 embryos from WT (A, G, M, S), srn (B, H, N, T), des (C, I, O, U), dla (D, J, P, 

V), mib (E, K, Q, W) and DAPT treated embryos (F, L, R, X).  Boxed regions are shown 

at higher magnification in the panels below at 24 (G – L) and 48 hpf (S - X).  3 

hemisegments in each of 20 embryos / 3 carrier pairs for each.  Scale bar = 20 mm. Y. 

Presynaptic terminal, axon and synapse area at the choice point was significantly 

increased in all mutants, except in mib and DAPT treated embryos at 48 hpf, compared to 

WT (one-way ANOVA, Bonferroni’s Multiple Comparison Test, ** p < 0.01, *** p < 

0.001).   
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Figure 8.   Slytherin mutants exhibit defects in neuromuscular synaptogenesis due in 

part to reduction in Notch-Delta signaling. 
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Figure 9.  Slytherin mutants exhibit defects in axon branching and CNS synaptic 

connectivity that are independent of Notch-Delta signaling. 

A. In srn mutants at 72 hpf, the OPL and IPL are disorganized, and this is not 

seen in des or dla mutants.  In mib mutants, retinal ganglion and other cells die, resulting 

in a reduction in synapses throughout the retina (rightmost panel).  8 embryos / 2 carrier 

pairs for each.  Scale bar = 20 mm.  B. In srn mutants, retinal ganglion cell axons grow 

out to the optic chiasm and to optic tectum, but axon branches are aberrantly distributed 

within optic tectum (dashed white circle).  Virtually all of the retina was dye labeled, and 

this labeling pattern was consistent from experiment to experiment, suggesting that this 

pattern is not due to incomplete dye uptake or labeling in srn mutants.  In addition, 

medial axon projections are shifted towards the midline (compare solid arrow and dashed 

arrow).  These phenotypes are not present in des or dla mutants, and are also different 

from mib mutants, in which retinal ganglion cell axonal projections to optic tectum are 

dramatically reduced, as a consequence of retinal ganglion cell death.  Mib mutants also 

displayed retinal ganglion axon pathfinding errors at the optic chiasm, and axons were 

observed to branch in regions anterior to the optic chiasm (dashed square) while 

branching within optic tectum was dramatically reduced (dashed white circle).  15 

embryos / 3 carrier pairs for each.  Scale bar = 20 mm. C, D. Topographic mapping of the 

retinal ganglion cell axon projection to optic tectum, in which the dorsonasal (DN) and 

ventrotemporal (VT) retinal ganglion cell projections are differentially labeled with DiI 

and DiD, showed that the location of the DN and VT axon projections within the optic 

tectum is aberrant in srn mutants, and that these projects overlap aberrantly both dorsally 

(C) and laterally (D).  8 embryos / 2 carrier pairs for each. Scale bar = 20 mm.  E. In the 
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retina and optic tectum (white circle), the overall cellular lamination pattern as assessed 

by DAPI staining is grossly normal in srn mutants (compare bottom left panels, WT and 

srn).  TUNEL staining showed that increased cell death was observed in the retina of srn 

mutants compared to WT embryos at 72 hpf, and no difference in cell death in the optic 

tectum was observed in srn mutants compared to WT embryos at 72 hpf (color overlay, 

right most panels; 2-3 embryos / 1 carrier pair).  Scale bar = 20 mm.  
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Figure 9.  Slytherin mutants exhibit defects in axon branching and CNS synaptic 

connectivity that are independent of Notch-Delta signaling. 
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Supplemental Materials and Methods, Results and Figure Legends 

  

Materials and Methods 

 

Analysis of GMDS structure 

In the absence of a three dimensional structure of zebrafish GMDS, we used a 

model constructed using molecular modeling to explain the effects of the Glycine 178 to 

Valine  mutation on the activity of the enzyme. A search of the Protein Data Bank 

database (www.pdb.org) with either the wild type or mutant zebrafish GMDS sequence, 

using the software MODELLER (Sali and Blundell, 1990; Sali and Blundell, 1993; Sali 

et al., 1990), identified the unpublished crystal structure of the human GMDS/GDP/NDP 

complex as its closest homologue  (87% sequence identity) and produced the 

corresponding zebrafish GMDS models.  To understand how the srn mutation causes 

what appears to be a near-complete loss of function, the wild type zebrafish GMDS was 

overlain with the  mutant zebrafish GMDS structures using PYMOL. 
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Results 

 

Structure of wild type and mutant GMDS 

Because of this high degree of amino acid sequence conservation between 

zebrafish and human GMDS, we reasoned that it would be informative to superimpose 

the zebrafish GMDS sequence onto the human GMDS crystal structure.  Human GMDS 

was co-crystallized with GDP (www.pdb.org), and several ordered waters were evident in 

the structure that seem to co-ordinate GDP to Glu158 to hold GDP-mannose in place 

(Sup. Fig. 2).  When Gly178 was mutated to Valine, recapitulating the srn mutation, the 

R group from the Valine appears to come into close proximity with the carbonyl 

backbone of Glu158.  To determine whether this would disrupt the location of this amino 

acid, a local energy minimization computer simulation was performed to compare wild 

type zebrafish GMDS with the srn mutation, mapped onto the human crystal structure.  

The mutant zebrafish GMDS shows that the insertion of the larger hydrophobic side 

chain of Valine in this position displaces E158 towards the GDP molecule, thus 

disrupting the canonical interactions made between the protein and GDP (Sup. Fig. 2).  

This shift may impact the binding of GDP-mannose, providing a clue to the molecular 

dysfunction of the protein. 
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Supplemental Figures and Legends 

Supplemental Table 1.  Primers used for qRT-PCR. 

 

Gene name Forward primer Reverse Primer 

hes5 gaaagccagtggtggaaaag gaaagccagtggtggaaaag 

neurod tccgtacggtacaatggaca taaggggtccgtcaaatgag 

her4 cctggagatgacgcttgatt cactgggcactgagacagaa 

heyl gcgatacctcagctctttgg ggagaggatccagctcactg 

deltaC gcgactgccagatctttttc gaaagccagtggtggaaaag 

b-actin1 tgaatcccaaagccaacagagaga tcacgaccagctagatccagacg 
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Supplemental Figure 1.  Gmds mRNA localization by in situ hybridization in wild 

type zebrafish embryos from 12 to 72 hpf.   

In situ hybridization was performed as described previously (Panzer et al., 2005), 

with anti-sense (A – E) gmds probe; sense probe was used as a control (F). Several 

hundred embryos from several carrier pairs were used from 6 – 72 hpf. 

A.  From 6 to 12 hpf, gmds transcripts are expressed throughout the embryo. 

B.  By 24 hpf, gmds transcripts are highly expressed in the CNS and are also 

expressed in somites at lower levels.   

C, D.  Gmds mRNA expression is present in the CNS at 48 (C) and 72 (D) hpf, 

with transcripts more abundant in brain than spinal cord.   
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Supplemental Figure 1.  Gmds mRNA localization by in situ hybridization in wild 

type zebrafish embryos from 12 to 72 hpf.   
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Supplemental Figure 2.  Modeling of zebrafish GMDS protein structure. 

The wild type (brown rods) and srn (blue rods) primary amino acid sequence was 

modeled onto the human GMDS protein crystal structure.   

A:  As in the srn mutation, Valine was substituted for Glycine at residue 178 and 

an energy minimization calculation was performed.  When the srn mutation is present, 

the Valine deforms a nearby Glutamate residue, Glu155.  This change is predicted to 

push away the substrate GDP-manose, resulting in loss of function.  

B:  To understand how the movement of Glu155 could affect surrounding amino 

acids, the wild type structure (brown sticks) was examined in more detail. Three ordered 

H2O molecules exist between the negatively charged group on Glu155 and the negatively 

charged phosphate group on GDP.  The bond lengths between water oxygens and 

phosphate or carboxylic acid oxygens are appropriate to form hydrogen bonds to 

coordinate GDP to Glu155. 
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Supplemental Figure 2.  Modeling of zebrafish GMDS protein structure. 
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Supplemental Figure 3.  GDP-fucose rescue of srn and morpholino knockdown of 

gmds. 

 A.  RT-PCR showed >80% of gmds transcript was mis-spliced after gmds 

morpholino (4 ng) injection. 

 B-E.  External phenotypes in srn and gmds morphants  (E) include tail bend 

(compare B, wild type with C, srn) which is rescued after GDP-fucose supplementation 

(D).   

 F-I.  srn (G) and gmds morphants (I) showed reduced AAL staining compared to 

wild type (F) which is rescued after GDP-fucose supplementation (H).   

 J-M.  srn  (K) and gmds morphants (M) showed increased Mauthner neuron 

number compared to wild type (J) a phenotype that is rescued after GDP-fucose 

supplementation (L). 

 N-Q.  srn (O) and gmds morphants (Q) showed reduced GFAP+ glia in the spinal 

cord compared to wild type (N), a phenotype that is rescued after GDP-fucose 

supplementation (P).   

 R-U.  srn (S) and gmds morphants (U) showed increased neuromuscular synapses 

compared to wild type (R), a phenotype that is rescued after GDP-fucose 

supplementation (T). Scale bar = 40 µm. 

 In each experiment, at least 10 srn, normal siblings, gmds morphants or GDP-

fucose rescued srn mutant embryos were assessed at 48 hpf.  These results show that 
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GDP-fucose rescues external and neural defects in srn mutants and that gmds knockdown 

by morpholino phenocopies srn phenotypes.  Together, these further support the 

conclusions that gmds is the gene mutated in srn, that the fucose metabolism pathway is 

deficient in srn mutants, and that the resulting lack GDP-fucose is the cause of the srn 

mutant phenotypes, rather than the accumulation of the substrate, GDP-mannose. 
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Supplemental Figure 3.  GDP-fucose rescue of srn and morpholino knockdown of 

gmds. 
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Supplemental Figure 4.  Secondary motor neuron number is reduced in mib but not 

srn, des or dla compared to wild type embryos.   

 The number of secondary motor neurons was counted from embryos at 48 and 72 

hpf after immunostaining with Zn-5 antibody and confocal reconstruction of the motor 

neuron pool.  At 48 hpf, secondary motor neuron number per hemisegment was similar 

among wild type (46 ± 2), srn (49 ± 1), des (52 ± 2) and dla (46 ± 2) embryos, and is 

significantly reduced in mib mutant embryos (27 ± 2) (N = 1 hemisegments in each of 6-9 

48 hpf embryos counted of each genotype; one-way ANOVA, Bonferroni’s Multiple 

Comparison Test, only mib is significantly different compared to other mutants and wild 

type, p < 0.001).  At 72 hpf, secondary motor neuron number per hemisegment was 

similar among wild type (63 ± 2), srn (62 ± 1), des (63 ± 2) and dla (61 ± 2) embryos, 

and is significantly reduced in mib mutant embryos (36 ± 2) (N = 1hemisegments in each 

of 6-10 72 hpf embryos counted of each genotype; one-way ANOVA, Bonferroni’s 

Multiple Comparison Test; only mib is significantly different compared to other mutants 

and wild type, * p < 0.001).   
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Supplemental Figure 4.  Secondary motor neuron number is reduced in mib but not 

srn, des or dla compared to wild type embryos.   
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Supplemental Figure 5.  Reduction in Notch-Delta signaling accounts for some srn 

phenotypes in the retina.    

A. Retina patterning was examined with immunostaining using antibody Zn5 at 

72 hpf.  Retina cell patterning appears grossly normal in srn, des, dla and medium dose 

DAPT treated embryos, but in mib and high does DAPT treated embryos retinal ganglion 

cell number is reduced, probably due to increased cell death, as previously reported 

(Bernardos et al., 2005).   8 embryos / 2 carrier pairs were examined.  Scale bar = 40 µm. 

B.  Glial cells in the retina were examined after immunostaining with anti-GFAP 

antibody.  In the retina, the number of radially oriented GFAP+ Muller cells is decreased 

in srn and mib and medium dose DAPT treated embryos, but not in des or dla.  8 

embryos / 2 carrier pairs were examined.  Scale bar = 40 µm. 

These results suggest that a reduction in Notch-Delta signaling may account for 

the glial defects observed in srn mutants.    
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Supplemental Figure 5.  Reduction in Notch-Delta signaling accounts for some srn 

phenotypes in the retina.    
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Supplemental Figure 6.  Muscle patterning is grossly normal in srn mutants. 

 Slow muscle fibers were examined with F59 antibody and glia cells in the spinal 

cord were examined with GFAP antibody.  While there is an obvious reduction of 

GFAP+ glia cells in the spinal cord in srn mutants, the patterning of slow muscle fibers is 

similar in srn and wild type embryos at 48 hpf.  Previous work showed that fast muscle 

fiber number and patterning are unaltered in srn compared to wild type embryos at 48 hpf 

(Panzer et al., 2005).  3 embryos / 1 carrier pair were examined. Scale bar = 200 mm.   
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Supplemental Figure 6.  Muscle patterning is grossly normal in srn mutants. 
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Chapter 4 

 

Mutations in electron transfer flavoprotein (ETF) and electron transfer flavoprotein 

dehydrogenase (ETFDH), cause fatty acid metabolism and mitochondrial 

dysfunction, unbalanced oxidative phosphorylation and glycolysis, and lead to 

severe neural defects in zebrafish and humans 
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Summary 

In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer 

flavoprotein dehydrogenase (ETFDH) lead to multiple acyl-CoA dehydrogenase 

deficiency (MADD) / glutaric aciduria II, an autosomal recessively inherited disorder 

characterized by a broad spectrum of devastating neurological and other symptoms.  We 

show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD 

patients, have similar metabolic defects and mitochondrial dysfunction, in particular 

excessive aerobic glycolysis, and upregulation of the PPARG-ERK pathway.  This 

metabolic dysfunction leads to aberrant neural proliferation in xav, in addition to other 

neural phenotypes and paralysis.  Strikingly, a PPARG antagonist attenuates aberrant 

neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural 

proliferation in wild type embryos.  These results provide new insights into the 

mechanisms coupling metabolism and neural development, showing for the first time that 

mitochondrial dysfunction leading to an increase in aerobic glycolysis affects 

neurogenesis through the PPARG-ERK pathway.  Using xav as the first animal model for 

MADD, we now have a better understanding of the mechanisms underlying this rare but 

devastating human disorder, and have identified the PPARG-ERK pathway as a potential 

target for therapeutic intervention. 
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Introduction 

Mitochondria, the cellular power plants in most eukaryotic organisms, play 

pivotal roles in cell signaling, differentiation, and the control of cell cycle, growth and 

death.  Particularly in the nervous system, mitochondrial function is essential in meeting 

the high energy demand in neurons and glia (reviewed in Knott et al., 2008; Mattson et 

al., 2008).  During nervous system development, mitochondria regulate neural 

proliferation and differentiation by supporting the different bioenergetic requirements of 

highly proliferative neural stem cells compared to postmitotic neurons (Erecinska et al., 

2004).  Mitochondrial dysfunction has been implicated in various aspects of neuronal and 

glial dysfunction, aging, as well as in the pathogenesis of neurodegenerative diseases 

(reviewed in Knott et al., 2008; Mattson et al., 2008; Wallace, 2005).  However, when 

mitochondria cause and compensate for physiological and pathological challenges, how 

this in turn affects neurogenesis, neural development, and nervous system function, 

remain poorly understood. 

Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric 

aciduria type II, is an autosomal-recessive inherited disorder caused by mutations in 

electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase 

(ETFDH) (Frerman and Goodman, 2001).  In mitochondria, ETF, located in the matrix, 

receives electrons from several dehydrogenases involved in fatty acid oxidation and 

amino acid metabolism.  ETF then transfers electrons to ETFDH, located in the inner 

mitochondrial membrane, and subsequently, electrons are passed to ubiquinone in the 

respiratory chain, leading to ATP production (McKean et al., 1983; Ruzicka and Beinert, 
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1977).  As a result of ETF or ETFDH deficiency, the acyl-CoA dehydrogenases are 

unable to transfer the electrons generated by dehydrogenation reactions, resulting in the 

accumulation of various acyl-esters in blood and urine, giving the disease its name 

(Frerman and Goodman, 2001).   

The clinical features of MADD are highly heterogeneous and have been classified 

as neonatal-onset form with (type I) or without (type II) congenital anomalies, and mild 

and/or late-onset form (type III).  MADD consists of a large spectrum of symptoms, 

including hypotonia, hypoglycemia, cardiomyopathy, polycystic kidneys, and 

neurological manifestations such as symmetric warty dysplasia of the cerebral cortex, 

encephalopathy and leukodystrophy.  While there have been case studies reporting the 

use of riboflavin (reviewed in Rinaldo et al., 2002) and sodium-3-hydroxybutyrate 

(Bonham et al., 1999; Van Hove et al., 2003) as treatment for MADD on a patient-by-

patient basis, no systematic therapy has been validated.  Moreover, despite the 

neurodevelopmental and cognitive dysfunction prominent in MADD patients, the 

anatomical, cellular and molecular abnormalities within the nervous system have not 

been well documented, and the mechanisms underlying neural phenotypes remain 

unexplored. 

Here we report the genetic, cellular and molecular characterization of a zebrafish 

mutant xav.  We had previously identified xav as a mutant that exhibits abnormal motility 

and aberrant neuromuscular synaptogenesis (Panzer et al., 2005).  We found that the xav 

mutation resides in ETFDH, which is critical for fatty acid and choline metabolism.  

Because dysfunction of this gene is responsible for human MADD, we performed several 



 

161 

cellular and molecular analyses on xav mutants and fibroblast cells from MADD patients.  

Our results advance our understanding of how metabolism affects neural development, 

link mitochondrial dysfunction and the resulting increase in aerobic glycolysis to 

neurogenesis via the PPARG-ERK pathway, and suggest this pathway as a target for 

therapeutic intervention in human MADD.   
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Experimental Procedures 

Zebrafish husbandry  

Zebrafish were raised and maintained under standard conditions.  The xav allele 

was previously described (Panzer et al., 2005).  Wild type and mutant embryos were 

obtained from crosses between adult zebrafish. 

 

Fibroblasts from human MADD patients 

Fibroblasts from a MADD patient, WH, were obtained from Dr. William J. 

Rhead, Department of Pediatrics, Children’s Hospital of Wisconsin.  Fibroblasts from an 

age-matched control patient (an infant, < 1 year of age, with no evident related disease) 

were obtained from Dr. Carsten Bonnemann, Children’s Hospital of Philadelphia.  Patient 

WH is a deceased newborn with severe MADD, whose acylcarnitine profile showed 

elevations of C5- and C16- intermediates, and extremely low C2-carnitines (Dr. Rhead, 

personal communication).  We found that patient WH showed mis-splicing of ETFA 

transcript, lacking the long isoform that contains exon2.  Gene sequencing showed that 

patient WH has a 52 C>T heterozygous mutation in exon2 that may cause the splicing 

defects.  The same mutation has been reported in a MADD patient with neonatal 

neurological deterioration and metabolic acidosis (Schiff et al., 2006). 

Fibroblasts from passages 6 – 12 were grown to 80-100% confluency and used for 

metabolic or gene expression analyses as indicated. 
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Positional cloning of xav 

Adult zebrafish heterozygous for the xav mutation were crossed to generate a 

panel for linkage mapping.  DNA was isolated from xav homozygous mutant embryos, 

wild type siblings, and parental fin clips.  Bulk segregant analysis was performed as 

described (Willer et al., 2005), using microsatellite markers (Knapik et al., 1998; 

Shimoda et al., 1999) (http://zebrafish.mgh.harvard.edu/zebrafish/index.htm).  Once 

linkage was detected, 96 mutant individuals were genotyped to localize the mutation 

between two closely flanking markers.  These analyses mapped xav to chromosome 14 

between markers Z15804 and Z7108. An additional 749 xav mutant embryos were 

collected from two mapping crosses and used for further linkage analysis. New simple 

sequence repeat (SSR) markers were identified from sequenced BAC clones and primers 

were designed using the zebrafish SSR search web site 

(http://danio.mgh.harvard.edu/markers/ssr.html). Primer sequences for new markers are 

given in Supplemental Table 1.  PCR reactions were run with 5 PRIME Taq DNA 

polymerase according to the manufacturer’s instructions.  Genotypes were determined by 

analyses of PCR products on 4% agarose E-Gels (Invitrogen).  For genotyping large 

numbers of fish we used fluorescently labeled primers and analyzed products on ABI 

3130xl Genetic Analyzer (Applied Biosystems). 

 To sequence the open reading frame (ORF) of candidate genes, RNA was isolated 

from pools of mutant and WT embryos using a VERSAGENE RNA isolation Tissue Kit 

(Gentra Systems). cDNA was synthesized using Oligo (dT) and Superscript III as 
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described by the manufacturer (Invitrogen).  cDNA fragments of the entire ORF were 

obtained by PCR using Accuprime Taq polymerase and Buffer II (Invitrogen), 20mM of 

each primer (Sup. Table 1) and first strand cDNA.  Amplified products were purified and 

sequenced using the ABI Big dye terminators and an ABI 3130xl Genetic Analyzer.  

When necessary, PCR products were cloned into pCR 4-TOPO (Invitrogen), plasmid 

DNA isolated with Wizard Plus SV Minipreps (Promega) and inserts sequenced as 

described above. 

 

Morpholino injection 

The morpholino antisense oligonucleotide (Gene Tools) targeting the etfdh 

intron2-exon3 junction (CTACCCCTGAAAACATTCAATTATA) was injected at the 1-

2 cell stage at ~8 ng. 

 

Plasma acylcarnitine and organic acid profiling 

Sonicated fish (N = 40-80) were subjected to acylcarnitine and organic acid 

analysis. Acylcarnitines were analyzed by tandem mass spectrometry as butyl esters 

using the procedure initially developed for skin fibroblast acylcarnitine analysis (Shen et 

al., 2000).  Organic acids were analyzed as their trimethylsilyl derivatives by capillary 

gas chromatography- electron impact mass spectrometry using a procedure that was 

initially developed for urine and vitreous humour analysis (Bennett et al., 1992). 
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RNA extraction and quantitative RT-PCR (qRT-PCR) 

RNA was extracted from a pool of 20 embryos with the RNeasy kit (Qiagen).  

The primers for qRT-PCR are shown in Supplemental Table 2.  qRT-PCR was performed 

with the SuperScript® III Platinum® SYBR® Green One-Step qPCR Kit w/ROX 

(Invitrogen) and data was analyzed with 7500 Real-Time PCR System software (Applied 

Biosystems) using the 2-ΔCT method, data were normalized to β-actin1 for zebrafish and 

ACTB for fibroblasts. 

 

BrdU labeling and immunostaining 

 BrdU labeling was performed as described previously (Zannino and Appel, 2009).  

In brief, at ~56-60 hpf, embryos were incubated with 10 mM BrdU in 10% DMSO in 

embryo medium for 30 min. on ice and then raised in embryo medium at 28.5°C for 30 

min.  The embryos were then fixed using 4% paraformaldehyde in PBS, pH = 7.4, 

followed by 2 hour incubation in 2 M HCl.  Embryos were anesthetized, fixed and 

immunostained as described previously (Panzer et al., 2005) using antibodies against 

BrdU (mouse monoclonal Developmental Studies Hydrodermal Bank (DSHB); rabbit 

polyclonal, Abcam) and dp-ERK (Sigma) and the appropriate fluorescently conjugated 

secondary antibody (Jackson Labs).  Unless otherwise stated, each figure panel showing 

immunostaining is a single plane projection of a confocal z-stack of 20-60 1 µm thick 

planes (Leica TCS 4D system) and was assessed using interactive software (Metamorph).  
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Western blotting 

 To prepare protein, embryos were triturated in lysis buffer (100mM pH 8 Tris, 1% 

SDS, 10mM EDTA, 50 mM DTT).  Protein quantity was assessed (Dc Protein Assay; 

Bio-Rad) and proteins were separated by SDS-PAGE (4-10% gradient gel), transferred to 

a nitrocellulose membrane and probed with antibodies against AMPKα (Cell Signaling), 

phospho-AMPKα (Thr172) (Cell Signaling), PPARG (Santa Cruz), dp-ERK (Sigma), 

phospho-STAT3 (Tyr705) (MBL) and/or actin (Sigma).  After washing, blots were 

incubated in AP-conjugated secondary antibody (Jackson Labs), and then visualized 

using chemiluminescence (WesternStar detection system; Applied Biosystems). 

 

ROS labeling 

 Embryos were incubated in embryo medium containing 10 µM of 

dyhydrorhodamine123 (DHR123, Invitrogen) for 2 hrs at 28°C, then washed with 

embryo medium several times and examined with confocal microscopy. 

 

Polarographic analysis of oxygen consumption, mitochondrial membrane potential 

measurement,ATP and lactate quantification 

 WT and xav embryos (50-100 embryos for each sample) were homogenized in a 

mitochondrial isolation buffer (MIB) (in mM, 210 mannitol, 70 sucrose, 10 HEPES (pH 
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7.2), 0.2 EGTA) freshly supplemented with 0.5% fatty acid- free BSA and 1/100 dilution 

of Sigma protease inhibitor cocktail.  All operations and buffers were at 2-4oC.   

Oxygen consumption was measured polarographically using a Strathkelvin 

oxygen electrode at 28°C.  Homogenates were suspended in a total volume of 0.15 mL of 

air-saturated buffer composed (in mM) of 220 mannitol, 70 sucrose, 5 HEPES, pH 7.2, 5 

KH2PO4, 0.2 EGTA and 5 EDTA.  Oxidation of carnitine esters was measured in the 

presence of 2 mM malate with either 0.10 mM palmitoylcarnitine or 0.2 mM 

octoylcarnitine followed by addition of 0.2 mM ADP.  Oxygen consumption was also 

measured in the presence of 10 mM α-ketoglutarate + 2 mM malate or 10 mM succinate 

+ 2 µM rotenone.  Azide-sensitive cytochrome oxidase activity (complex IV) was 

measured in the presence of 2.5 mM ascorbate + 0,25 mM N,N,N′,N′-tetramethyl-p -

phenylenediamine (TMPD).  Rates of substrate oxidation with or without ADP were 

expressed as nanoatoms of oxygen consumed per minute per milligram homogenate 

protein.  State 3 refers to oxygen consumption stimulated by a limiting amount of ADP 

and state 4 refers to oxygen consumption after phosphorylation of the added ADP to 

ATP. 

Tetra-methyl rhodamine ester (TMRE, Invitrogen) was used to measure 

generation of mitochondrial transmembrane potential.  Used in the quench mode, 

energization of mitochondria decreases and uncoupling increases TMRE fluorescence 

measured using excitation/emission wavelengths of 549 nm and 574 nm, respectively, in 

an Aminco-Bowman Series 2 spectrofluorometer.  Homogenates were suspended in 

buffer composed (in mM) of 220 mannitol, 70 sucrose, 10 Hepes, pH 7.2, 5 KH2PO4, 0.2 
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EGTA and 200 nM TMRE.  Fluorescence changes were monitored continuously while 

the sample was magnetically stirred at ambient temperature.  Energization was achieved 

by addition of 2 mM malate with 0.40 mM palmitoylcarnitine or 0.2 mM octoylcarnitine, 

or 10 mM α-ketoglutamate + 2 mM malate; mitochondria were depolarized by addition 

of  5 µM ClCCP. 

Measurement of intact cellular respiration was performed using the Seahorse 

XF24 analyser (Ferrick et al., 2008). Respiration was measured under basal condition, in 

the presence of the mitochondrial inhibitor oligomycin (0.5 µg/ml), in the presence of the 

mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CICCP) (3 µM) 

and in the presence of complex I inhibitor rotenone (100 nM) to assess maximal oxidative 

capacity as described previously. 

For ATP quantification, fibroblasts or embryo homogenate were prepared in MIB.  

While continuously vortexing, 0.1 volume of 6N PCA was added to homogenates while 

vortexing to achieve a final concentration of 0.6 N PCA.  Following a 15 min incubation 

on ice to facilitate full precipitation, samples were centrifuged at 15,000 g for 15 min.  

Extracts were transferred to a clean tube and sufficient 2M KHCO3 was added while 

vortexing to achieve a final concentration of 0.5M KHCO3.  Extracts were centrifuged at 

15,000 g for 15 min, transferred to a clean tube and frozen at -80°C until assayed using a 

ATP luminescence kit (Sigma).  Luminescence was read using a Turner luminometer.  

Protein concentration was quantified using the BCA assay (Pierce) with BSA as a 

standard. For lactate measurement in fibroblasts, culture media was collected after 6 days 

in vitro and assayed with Lactate Assay Kit (Biovision) and a fluorometer.  For lactate 
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measurement in embryos, embryos were prepared as for ATP measurement, and were 

assayed using Lactate Assay Kit (Biovision) with a spectrometer. 

 

PPARG pharmacology 

 Embryos were incubated in 25 µ m PPARG antagonist BADGE (Wada et al., 

2006) or agonist 10 µM Ciglitizone (Nam et al., 2007) at ~24 hpf until the desired 

developmental stage. 
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Results  

External phenotypes, genetic cloning and morpholino phenocopy of xav 

We previously identified xav in a small scale genetic screen due to its abnormal 

swimming behavior and decreased number of neuromuscular synapses (Panzer et al., 

2005).  Externally, xav mutants cannot be distinguished from WT until after 48 hpf, when 

they start to exhibit a bent tail and slower heart beat, a phenotype that becomes 

progressively more severe (Fig. 1A, 1B).   

Positional cloning strategies were used to identify the mutation responsible for the 

xav phenotype.  Bulk segregant analysis initially localized the mutation to chromosome 

14 between Z15804 and Z7108 on linkage group 14.  Further mapping using newly 

designed SSR markers localized the mutation between 274P15-SSR1 and 199B20-SSR1 

(Fig. 1C).  Sequence from the Ensembl Zv6 genome build did not appear to be correctly 

ordered between the flanking markers as was evidenced by the fact that our linkage data 

indicated markers 36H4-SSR1 (Fig. 1B) and Z4701 (data not shown) fell outside the 

interval while the Zv6 build placed these sequences directly between the flanking 

markers (data not shown).  For this reason, we asked if the general order of some of the 

genes in the region could be confirmed based on conserved synteny with human.  We 

found that LOC557693, tmem33, zgc:92093, and ppid potentially represented a conserved 

block of genes (Sup. Fig. 1).  SSR markers were then designed in BAC clones that 

contained these genes to determine if the sequences were truly positioned within the 

interval.  Following this strategy, marker 278P11-SSR1 was found to have zero 

recombinants.  Interestingly, the linkage results also indicated that BAC DKEY-50I13, 
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positioned roughly 50 Mb from this region on the Zv6 build, was in fact located in the 

critical interval (Fig. 1C).  The open reading frames for the three genes in BAC CH211-

278P11 (LOC565292= rxfp1-like, zgc:92093, and ppid) were amplified from mutant and 

wild-type embryos and sequenced to look for mutations.  zgc:92093 was found to contain 

a T to A transversion at position 1305 which introduces a premature stop codon (Y435X) 

in the 617 amino acid protein (Fig. 1D, 1E).  zgc:92093 encodes electron-transfer-

flavoprotein dehydrogenase (etfdh) which is highly conserved among species and is 80% 

homologous to its human counterpart. 

Besides the truncation of the protein caused by the xav etfdh mutation, we also 

found that the overall abundance of etfdh mRNA in xav is dramatically reduced.  Real-

time quantitative RT-PCR (qRT-PCR) showed that there is 80% reduction of etfdh 

mRNA (Sup. Fig. 2A), likely due to nonsense mediated decay (Hentze and Kulozik, 

1999).  Furthermore, xav mutants showed nonsense mediated alternative splicing.  As a 

result of the mutation, which resides in exon11, the exon10-exon13 junctions are mis-

spliced in mutants, resulting in transcripts that are predicted to encode proteins lacking 

critical domains or truncated (Sup. Fig. 2B).   These results suggest that xav contains a 

likely loss of function mutation in etfdh. 

To confirm whether etfdh is the gene mutated in xav, we designed a splice-

blocking morpholino against etfdh and compared the phenotypes in morphants and 

mutants.  Injection of 8 ng etfdh MOI2E3 in WT embryos, which targets intron2-exon 3 

junction, results in > 80% reduction of the normal transcript at 2 and 3 dpf, producing a 

mis-spliced transcript that lacks exon3 (Sup. Fig. 3C, 3D), resulting in predicted protein 
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fragment lacking all functional domains (Fig. 1E).  etfdh morphants not only showed bent 

tail and reduced heart beat (Fig. 1A, 1B), but also exhibited aberrant swimming behavior 

and reduced neuromuscular synaptogenesis (see Supplemental Results and Sup. Fig 6 and 

data not shown), as in xav mutants.  These results indicate that etfdh mutation is 

responsible for xav phenotypes. 

 

xav mutants exhibit plasma acylcarnitine and organic acid profiles similar to those in 

MADD patients 

 Given the fact that xav and MADD patients have mutation in the same gene, we 

asked whether xav mutants exhibit phenotypes similar to those seen in human patients.  

Clinically, MADD is diagnosed by the plasma acylcarnitine profile, the urine organic 

acid profile and acylglycine analysis.  These analyses were thus performed in xav mutants 

compared to WT embryos. 

 Tandem mass spectroscopy of plasma acylcarnitine detected a markedly higher 

level of a spectrum of intermediate acyl-fatty acid species in xav mutants, including C4, 

C5, C6, C8, C14, C16 and C18, together with a drastic reduction of C2 acylcarnitine (Fig. 

2A), suggesting dysregulation of mitochondrial β-oxidation and alterations in multiple 

intermediary mitochondrial metabolic pathways in xav, similar to that observed in 

MADD patients (Frerman and Goodman, 2001). 

 Gas chromatographic analysis of organic acids from embryo homogenates 

detected a dramatic elevation of glutaric acid in xav (Fig. 2B).  Further quantification 
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showed the glutaric acid content in xav is 0.99 µg/embryo, but < 0.05 µg/embryo in WT, 

resembling the glutaric acidemia seen in MADD patients (Frerman and Goodman, 2001). 

While acylglycine analysis showed elevated acylglycine levels in MADD 

patients, no acylglycine was detected in either WT or xav embryos.  This suggests that 

the function of glycine-N-acyltransferase, which converts acyl-CoA and glycine to CoA 

and acylglycine, may not be conserved between zebrafish and humans.  Moreover, 

kidney defects were observed at the organ structural and cellular level in xav mutants 

compared to WT embryos at ~60 hpf (Sup. Fig. 3), consistent with a polycystic kidney 

phenotype that is prominent in MADD patients.  Together, these analyses show that the 

etfdh mutation in xav results in MADD like metabolic and kidney defects.   

 

xav mutants exhibit several hallmarks of mitochondrial dysfunction 

 Given the fact that etfdh functions in mitochondria, and is involved in fatty acid 

metabolism and electron transport, we asked whether mitochondria function is abnormal 

in xav mutants.  First, we evaluated the efficiency of oxidative phosphorylation in 

homogenates of xav mutants and WT embryos at ~56 hpf, by measuring O2 consumption 

after stimulation with α-ketoglutarate and fatty acids as substrates.  Rates of O2 

consumption were decreased ~30-35% in xav mitochondria with either substrate (Fig. 

3A; Sup. Fig. 4A).  Maximal rates of state 3 respiration, stimulated by the addition of 

ADP, were blunted in xav mitochondria (Sup. Fig. 4A).  These suggest that oxidative 

phosphorylation is compromised in xav. 
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Mitochondria maintain a membrane potential, which is usually generated by 

respiratory chain complexes, and is utilized to drive critical cellular processes, such as the 

production of ATP and Ca2+ uptake.  We measured mitochondrial membrane potential 

using tetramethylrhodamine ethyl ester (TMRE) as an indicator in xav mutant and WT 

embryos at ~56 hpf.  We found a ~50% reduction of membrane potential stimulated by 

fatty acids (Fig. 3B), consistent with a decrease of O2 consumption.  Surprisingly, 

however, despite the decrease in O2 consumption stimulated by α-ketoglutarate, 

mitochondrial membrane potential was observed to be increased by ~50% (Fig. 3B).  

This result suggests that additional membrane potential is generated in response to 

defects in the electron transport chain, but is not properly utilized for O2 consumption.  

Despite reduced O2 consumption after α-ketoglutarate and fatty acid stimulation, 

the activity of complex IV was increased by 40% when assayed directly after N,N,N′,N′-

tetramethyl-p -phenylenediamine (TMPD)/ascorbate stimulation (Fig. 3C), suggesting a 

compensatory response that potentiates the remaining respiratory capacity in xav mutants.  

Consistent with this idea, at ~56 hpf, a higher level of F1-F0 ATPase (complex V) 

protein was detected by immunostaining in xav mutants compared to WT (Sup. Fig. 4B).  

This likely reflects a response to insufficient respiration, and is consistent with 

compensation.   

To further assess mitochondrial defects, we examined the activity of AMP-

activated protein kinase (AMPK), which is an evolutionarily conserved metabolic sensor 

that responds to alterations in cellular energy levels to maintain energy balance.  

Biochemical analyses showed that while the total level of AMPK is unchanged in xav, 
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the level of activated AMPK (phospho-AMPKαThr172) protein is significantly increased 

(Fig. 3D, 3E).  This result suggests that there is a homeostatic regulation in xav mutants, 

in response to insufficient metabolism.  In addition, measurement of ATP production 

showed a ~45% reduction in xav mutant compared to WT embryos (Fig. 3F), despite a 

compensatory increase of complex IV, complex V and activated, p-AMPK protein levels.  

Together, these results suggest that the etfdh mutation in xav results in respiratory chain 

deficiency, which is not restricted to the fatty acid metabolism pathway.  This further 

leads to dysregulation of mitochondrial membrane potential and insufficient energy 

production. 

In order to gain more insight into the mitochondrial dysfunction in xav and the 

underlying molecular mechanisms, we profiled the expression of genes known to be 

involved in mitochondrial function and biogenesis with qRT-PCR (Fig. 3G).  We found a 

~30-40% reduction of mt-nd5 and ndufs1, two mitochondria encoded genes that belong to 

complex I.  Mutations of these genes are associated with complex I deficiency and 

mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), 

two disorders which have neurological manifestations (Benit et al., 2001; Loeffen et al., 

2000; Triepels et al., 2001).  The expression of pgc-1β, esrrα and pparγ, genes involved 

in transcriptional regulation of energy metabolism, were increased ~2.4, 1.5 and 2.8 fold, 

respectively.  Interestingly, expression of zebrafish uncoupling protein 4 (fucp4), which 

is proposed to be responsible for uncoupling of respiration from ATP synthesis and thus 

protect against reactive oxygen species (ROS) production, showed a ~6 fold increase, 

while ucp2 expression remained unchanged.  The closest homologue of fucp4 in humans, 

UCP3, has been reported to be upregulated in MADD patients (Russell et al., 2003).  
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These results document mitochondrial dysfunction at the level of alteration of gene 

expression in xav mutants as a result of etfdh mutation. 

 Impairment of mitochondrial metabolism, including β-oxidation, may result in 

greater oxidative stress (Wallace, 1999), which increases generation of ROS.  The 

oxidative fluorescent dye dihydrorodamine-123 (DHR-123) was used to qualitatively 

address cellular superoxide production.  DHR-123 labeling in live embryos showed 

higher cellular superoxide levels in xav mutants compared to WT, especially in the 

nervous system, including in the spinal cord (Fig. 3H).  We next assessed the expression 

profile of genes known to be involved in the ROS pathway.  qRT-PCR analyses showed a 

50% reduction of catalase transcripts and 5-fold increase of glutathione reductase (Fig. 

3I), both of which are known to reduce ROS generation.  We also found a 5 fold increase 

of hspa9 (Fig. 3I), mutation of which produces an increase in ROS in blood cells (Craven 

et al., 2004).  These results further confirm that etfdh mutation results in mitochondrial 

dysfunction and subsequent oxidative stress in xav mutants. 

 

Human MADD fibroblast cells display similar mitochondrial dysfunction as xav 

mutants 

 We next asked whether the mitochondrial abnormalities observed in xav are 

similar to those in MADD patients.  As analyses of MADD patient tissues are rare, and 

postmortem tissues are not available, we performed analyses on fibroblast cells from a 

patient, WH, and a control patient.    
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Fibroblasts from Patient WH exhibited increased mitochondrial oxidative capacity 

as elicited by the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CICCP) 

compared to control fibroblasts (Fig. 4A), resembling the increased complex IV and 

complex V activity observed in xav.  Basal ATP levels were slightly but significantly 

reduced in Patient WH fibroblasts (Fig. 4B).  These results suggest insufficient 

respiration and compensation in MADD patients as in xav mutants.  Moreover, while 

electron transport chain is compromised, cells in vitro are more readily able to maintain 

ATP homeostasis than in vivo, either by upregulating reserve respiration capacity, by 

shifting to glycolysis (as discussed in the following section) or by reducing dependence 

on fatty acids.   

Gene expression profiling revealed that PGC-1β, PPARG, ESRRα, UCP3 were all 

significantly increased in Patient WH (Fig. 4C), as in xav.  Furthermore, the expression of 

ROS related genes are also altered in Patient WH, as in xav, in particular decreased 

catalase and increased glutathione reductase and HSPA9 (Fig. 4C).  These results extend 

our understanding of the extent of mitochondrial dysfunction in human MADD, and 

show further that this dysfunction is similar at the metabolic and gene expression level in 

xav and MADD patients. 

 

MADD fibroblasts and xav mutants exhibit increased aerobic glycolysis 

During the course of measuring mitochondrial oxidative responses, we noticed 

that there was also a significant increase in the extracellular acidification rate (ECAR) in 
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Patient WH, especially in the presence of an uncoupler (Fig. 5A).  ECAR reflects 

changes in proton concentration and is used as readout of lactate production as this 

dominates the acidification rate and of levels of glycolysis (Watanabe et al., 2006).  

While the increase in ECAR in Patient WH fibroblasts suggested that aerobic glycolysis 

is increased, we performed two additional analyses to further examine this possibility.  

First, the amount of lactate secreted into the culture medium was directly measured in 

Patient WH fibroblasts.  Basal lactate production was increased by ~25%, consistent with 

increased glycolysis (Fig. 5B).  Second, the expression profile of genes critical for 

glycolysis or in the glycolytic pathway was assessed using qRT-PCR.  mRNA for 

glycolytic enzymes enolase 1 (ENO1), phosphoglycerate mutase 1 (PGAM1), 

phosphoglycerate kinase 1 (PGK1) and phosphofructokinase (PFKM) were all 

significantly increased in MADD patients (Fig. 5C).  These results suggest that aerobic 

glycolysis is increased in fibroblasts from MADD patients.   

 To determine whether glycolysis is also elevated in xav mutants, the amount of 

lactate was directly measured and was found to be increased by ~2.4 fold in xav mutants 

compared to WT embryos at ~56 hpf (Fig. 5D).  Gene expression analyses by qRT-PCR 

revealed significant changes in expression of several glycolysis related genes.  mRNA for 

the glycolytic enzymes eno1, pgam1a, pgk1 and pfkma, as well as fructose-biphosphate 

aldolase C (aldoc) was significantly increased (Fig. 5E).  mRNA for dihydrolipoamide S-

acetyltransferase (dlat), that belongs to the pyruvate dehydrogenase complex which links 

glycolysis to tricarboxylic acid (TCA) cycle, was significantly decreased (Fig. 5E).  

Together, these data suggest that in both human MADD cells and xav mutants, there is an 

electron transport chain deficiency which compromises oxidative phosphorylation, 
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leading to an upregulation in aerobic glycolysis, likely as an alternative energy source to 

compensate for this metabolic insuffiency. 

 

xav mutants exhibit increased neural proliferation 

 Many proliferating cells, including some cancer cells, utilize aerobic glycolysis, 

which while an inefficient way to generate ATP compared to oxidative phosphorylation, 

has been suggested to have the advantage of generating a number of intermediates which 

can be used to incorporate nutrients into the cell biomass, a phenomenon known as the 

Warburg effect (reviewed in Vander Heiden et al., 2009).  Because changes in utilization 

of metabolic pathway from oxidative phosphorylation to aerobic glycolysis affect 

proliferation, and because of the striking neural phenotypes observed in xav mutants, 

including reduced neuropil staining, abnormal glial patterning, reduced motor axon 

branching and neuromuscular synaptogenesis, increased cell death and progressive 

paralysis (Supplemental Results and Sup. Fig. 5 – 9), we asked whether neural cell 

proliferation is increased in xav mutants compared to WT embryos using BrdU 

incorporation. 

 The number of BrdU+ cells was significantly increased throughout the nervous 

system, in particular in the spinal cord, of xav mutants compared to WT embryos at 56-60 

hpf (Fig. 6A, 6B).  While in ~56-60 hpf WT embryos, there are ~3 BrdU+ cells in the 

spinal cord per hemisegment, there are ~24 in xav mutant embryos at the same 

developmental stage, resulting in an expansion of the proliferating cellular domain dorso-

ventrally and rostro-caudally (Fig. 6A).  The peri-ventricular location of these BrdU+ 
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cells suggests that they are likely to be neural progenitor cells (Mueller and Wullimann, 

2002, 2003).  These observations suggest that neural cell proliferation is increased in the 

nervous system of xav mutants.  

 

Relationship between increased activation of the PPAR-ERK pathway and increased 

neural proliferation in xav mutants 

In order to explore the mechanistic relationship between metabolic dysfunction 

and increased neural proliferation in xav, we focused on the PPARG-ERK pathway.  

PPARG is a known regulator of the cell cycle and apoptosis, and is highly expressed in 

many cells, including neurons and some human cancer cells (reviewed in Fajas et al., 

2001).  High levels of PPARG expression have been reported in embryonic mouse brain 

and neural progenitors, while very low levels have been reported in adult mouse brain 

(Braissant and Wahli, 1998; Moreno et al., 2004).  Recently, PPARG has been shown to 

regulate neural proliferation in vitro, through the activation of ERK and STAT3 (Wada et 

al., 2006).  Because our qRT-PCR analyses showed a dramatic increase in PPARG 

expression in xav mutant embryos and MADD patient fibroblasts, this pathway was 

further examined using Western blot and immunostaining analyses.  

 Western blot analyses showed that PPARG protein levels were elevated in xav, 

consistent with elevated mRNA expression (Fig. 6D).  Western blot and immunostaining 

analyses were also used to assess ERK activation using a phospho-ERK specific antibody 

(dp-ERK) (Neumann and Nuesslein-Volhard, 2000).  The amount of dp-ERK protein was 

significantly increased, and dp-ERK immunoreactivity was increased in the spinal cord, 
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of xav compared to WT embryos at ~56 - 60 hpf (Fig. 6A, 6D).   BrdU labeling of 

dividing cells and dp-ERK immunostaining in xav mutant embryos at ~56 - 60 hpf 

revealed a significant increase in the number of double positive BrdU+ / dp-ERK+ cells, 

from ~0 in WT to ~8 per hemisegment in xav mutant embryos at ~56-60 hpf (Fig. 6A, 

6C).  Furthermore, 45% of the BrdU+ cells were dp-ERK positive.  Western blot analyses 

were then used to assess the level of activated STAT3 protein, using an antibody against 

phosphorylated STAT3 (phospho-STAT3Tyr705) (Yamashita et al., 2002).  The amount of 

phosphorylated STAT3 protein was significantly increased in xav embryos (Fig. 6D).  

These results suggest that the PPARG-ERK pathway is dysfunctional in xav mutants, and 

is associated with increased cell proliferation.   

PPARG antagonists and agonists were used to assess the mechanistic relationship 

between the PPARG-ERK pathway and the increased cell proliferation observed in xav 

mutant embryos.  We found that 25 µM of the PPARG antagonist 2,2-Bis[4-

(glycidyloxy)phenyl]propane, 4,4′-isopropylidenediphenol diglycidyl ether (BADGE), 

when applied from 24 – 60 hpf, significantly reduced the number of BrdU+ cells in the 

spinal cord of xav mutants, from ~24 to ~10 cells per hemisegment (Fig. 6E).  

Furthermore, 10 µM of the PPARG agonist Ciglitizone, when applied to WT embryos 

from 24 – 60 hpf, significantly increased cell proliferation in the spinal cord, from ~3 to 

36 cells per hemisegment (Fig. 6E).  Moreover, we found that BADGE, when applied 

from 24 – 60 hpf, significantly reduced the proportion of xav mutants that were paralyzed 

at ~60 hpf, from 18% to 4%, and also delayed the onset of paralysis by ~12 hours (Fig. 

6F; see also Supplemental Results).  
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Together, these data suggest that aberrant activation of the PPARG-ERK pathway 

underlies, at least in part, the cell proliferation and behavioral defects that are prominent 

in xav mutants, linking metabolic and mitochondrial dysfunction with defects in nervous 

system development, and possibly other organ system development, in xav mutants and 

MADD patients.  
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Discussion 

We report that the xav mutation causes a loss of ETFDH function, and that both 

xav and fibroblasts from MADD patients have similar metabolic defects and 

mitochondrial dysfunction, including altered energy metabolism, dysregulated ROS 

production and altered expression of genes critical for mitochondrial function.  xav and 

MADD fibroblasts exhibit excessive aerobic glycolysis, similar to the Warburg effect 

observed in cancer cells, leading to excessive neural proliferation in xav, mediated by 

upregulation of the PPARG-ERK pathway.  xav mutants also display motility defects 

culminating in paralysis, abnormal glial patterning, reduced motor axon branching and 

neuromuscular synapse number, but muscle fiber and neuromuscular synapse function 

appear normal.  While there is increased apoptosis throughout the nervous system, many 

of these phenotypes are independent of cell death, as they are not rescued when cell death 

is blocked.  Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and 

alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild 

type embryos.  This work provides further insights into the relationship between 

metabolism and neural development, specifically that mitochondrial dysfunction that 

leads to an increase in aerobic glycolysis affects neurogenesis, at least in part through the 

PPARG-ERK pathway.   

 The molecular basis of the metabolic pathology in MADD can be explained by the 

malfunction of fatty acid and choline metabolism as a result of ETF or ETFDH mutation 

(Frerman and Goodman, 2001).  However, it remains unclear why individuals with 

MADD exhibit other defects, especially neurological defects including cortex dysplasia, 
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encephalopathy and leukodystrophy (Bohm et al., 1982; Shevell et al., 1995; Stockler et 

al., 1994; Takanashi et al., 1999).   

 While it is not surprising that mutations in ETF genes or ETFDH would lead to 

impaired fatty acid metabolism, it is interesting that a broader metabolic defect is also 

present.  Our finding that mitochondrial oxidative phosphorylation stimulated by 

substrates other than fatty acids is also compromised, and that there is a compensatory 

elevation of complex IV and complex V function, further supports the idea that there is 

crosstalk among various steps along the energy production pathway.   

 In most cancer cells and other rapidly proliferating cell populations, ATP is 

produced primarily by aerobic glycolysis followed by lactate fermentation, rather than by 

mitochondrial oxidative phosphorylation as in normal, differentiated cells, a phenomenon 

known as the Warburg effect.  The Warburg effect has been proposed as an adaptive 

strategy to facilitate the uptake and incorporation of essential nutrients needed for 

increasing cell biomass and proliferation (reviewed in Vander Heiden et al., 2009).  

Despite understanding that proliferating cells switch from oxidative phosphorylation to 

aerobic glycolysis, the underlying triggers, effectors and mediators of this switch remain 

elusive.  We show using several cellular and molecular assays that xav mutants and 

MADD fibroblasts exhibit a similar switch, enhanced aerobic glycolysis accompanied by 

reduced mitochondrial oxygen consumption, the consequence of which is increased cell 

proliferation, in particular in the nervous system of xav mutants.  In xav mutants, the 

deficiency of fatty acid metabolism and oxidative phosphorylation may force cells to 

boost glycolysis as an alternative energy source to preserve viability.  This switch may 
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alter the balance between cell proliferation and differentiation, a major regulator of which 

is PPARG signaling.  In xav mutants and MADD fibroblasts, PPARG expression is 

increased at the mRNA and protein level, and activation of downstream effectors such as 

ERK and STAT3 are also increased.   We showed that PPARG elevation underlies, in 

large part, the increase in cell proliferation in the nervous system of xav mutants by 

antagonizing this pathway in xav and agonizing this pathway in WT embryos.  Under 

physiological conditions, the PPARG pathway may act as a sensor of the balance 

between oxidative phosphorylation and aerobic glycolysis, and shift the balance between 

neural cell proliferation and differentiation accordingly.  

Using xav as a model for MADD, we have gained new insights into the cellular 

and molecular mechanisms underlying this rare but devastating human disorder.  xav is 

the first animal model in which the etfdh gene is affected and in which neural defects can 

be demonstrated and studied.  We have also identified the PPARG-ERK pathway as 

potentially valuable for therapeutic intervention.  Understanding the relationship between 

metabolic and mitochondrial deficiencies and the mechanisms underlying the pathology 

of MADD, in particular the neurological phenotypes, has been hampered by the rarity of 

the disorder and thus analyses of autopsy and other tissues has been limited (Frerman and 

Goodman, 2001).  It will be of particular interest to assess neural cell proliferation and 

other neural phenotypes in MADD patients as tissues become available.  The striking 

phenotypic similarity between xav and MADD patient cells suggests that xav mutants 

will be a useful discovery tool to guide future analyses in human MADD patients, and 

identify avenues for therapeutic intervention. 
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Figures and Legends 

Figure 1.  xavier external phenotype, genotype, cloning and morpholino phenocopy 

of xav mutants 

 A.  External xav and etfdh morphant (MO) phenotypes at ~60 hpf include a bent 

and thinner tail and smaller head and eyes.  Scale bar = 100 µm.  B.  xav mutants and MO 

exhibit slower heart beat (WT 158 ± 6 beats / minute, N = 13 embryos; xav 87 ± 7; N = 

14 embryos; MO 65 ± 7, N = 14 embryos; one-way ANOVA, followed by Dunn’s 

pairwise comparison, * p < 0.001.  C.  Genetic and physical map of the xav (zgc:92093) 

locus (red), including microsatellite and SSR markers, number of recombinants, and BAC 

clones from the T51 radiation hybrid panel.  D.  etfdh mutation in xav is a T to A 

mutation (blue box) resulting in a premature stop codon (red box).  The amino acid 

sequence of etfdh is highly conserved among several species, from C. elegans to human.  

E. Schematic location of xav mutation, resulting in truncation of the C terminal.  etfdh 

MO is predicted to give rise to a protein fragment lacking all functional domains. 
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Figure 1.  xavier external phenotype, genotype, cloning and morpholino phenocopy 

of xav mutants 
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Figure 2.  xavier mutants display abnormal acylcarnitine and organic acid profile 

A.  Representative acylcarnitine profile from homogenates of WT and xav mutant 

embryos using mass spectroscopy, showing a markedly higher level of several 

intermediate acyl-fatty acid species in xav mutants including C4, C5, C6, C8, C14, C16 

and C18, and a reduction of C2 actylcarnitine (pool of ~100 embryos for xav mutant and 

WT at ~56 hpf).  B.  Representative organic acid profile from homogenates of WT and 

xav mutant embryos using gas chromatographic analysis, showing an elevation of the 

level of glutaric acid in xav mutants (black arrow) (pool of ~100 embryos for xav mutant 

and WT at ~56 hpf). 
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Figure 2.  xavier mutants display abnormal acylcarnitine and organic acid profile 
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Figure 3.  xav mutants exhibit mitochondrial dysfunction 

 A. Measured state 3 respiration stimulated by α-ketoglutarate and fatty acids 

showed a 30-35% reduction in xav mutant compared to WT embryos at ~56 hpf (values 

normalized to WT; α-ketoglutarate in xav, 0.72 ± 0.10; N = 4 experiments 50-100 

embryos each; Student’s t test, * p=0.03; fatty acid 0.65 ± 0.10 in xav; N= 4 experiments 

50-100 embryos each; Student’s t test, * p=0.02).  B.  Membrane potential stimulated by 

α-ketoglutarate and fatty acids was measured using TMRE and spectrofluorometry, 

showing a 55% increase in xav compared to WT at ~56 hpf (values normalized to WT; α-

ketoglutarate xav 1.55 ± 0.15; N = 4 experiments 50-100 embryos each; Student’s t test, 

*** p<0.001) and a 50% reduction (fatty acids xav 0.53 ± 0.07; N= 5 experiments 50-100 

embryos each;  Student’s t test, *** p<0.001).  C. Measured O2 consumption rated 

stimulated by TMPD/ascorbate showed a 40% increase in xav compared to WT at ~56 

hpf (values normalized to WT; xav 1.39 ± 0.13; N= 6 experiments 50-100 embryos each; 

Student’s t test, * p=0.014).  D-E. Western blot showed that while the total level of 

AMPK is unchanged in xav, the amount of activated AMPK (phospho-AMPKαThr172) 

protein is significantly increased.  Quantification showed a 2.3 fold increase in xav 

mutants compared to WT embryos (values normalized to WT; xav 2.3 ± 0.6; N= 3 

experiments 30 embryos each; Student’s t test, * p < 0.05).  F.  Measurement of ATP 

production showed a ~45% reduction in xav mutants compared to WT embryos (WT 20.6 

± 2.6 nmol per mg protein; xav 11.3 ± 2.3 nmol per mg protein; N= 9 replicates, 50-100 

embryos each, Student’s t test, * p<0.05).  G. mRNA levels of genes involved in 

mitochondrial function and biogenesis were analyzed with qRT-PCR.  A ~30-40% 
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reduction was observed in mt-nd5 and ndufs1, and a ~2.4, 1.5 and 2.8 fold increase was 

observed in pgc-1β, esrrα and pparγ in xav mutants compared to WT.  Expression of 

zebrafish uncoupling protein 4 (fucp4) was increased ~6 fold, while expression of ucp2 

was unchanged (N = 3-4 replicates, 20 embryos each; Student’s t test, * p<0.05, ** 

p<0.01, *** p<0.001).  H. The oxidative fluorescent dye DHR-123 was used to measure 

cellular superoxide production in live embryos and showed higher cellular superoxide 

levels in xav mutants compared to WT, especially in the nervous system, including in the 

spinal cord.  Scale bar = 100 µm.  I. Expression profile of genes known to be involved in 

the ROS pathway was assayed with qRT-PCR and showed a ~50% reduction of catalase 

transcripts and ~5 fold increase of glutathione reductase and hspa9 in xav compared to 

WT (N = 3 replicates, 20 embryos each; Student’s t test, * p<0.05, ** p<0.01). 
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Figure 3.  xav mutants exhibit mitochondrial dysfunction 
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Figure 4.  Human MADD fibroblast cells display similar mitochondrial defects as 

xav 

 A. Oxygen consumption was measured in intact control and MADD Patient WH 

fibroblasts under basal conditions, following the addition of the mitochondrial inhibitor 

oligomycin (0.5 µg/ml), in the presence of the uncoupler CICCP (3 µM) and with the 

addition of complex I inhibitor Rotenone (100 nM).  A 2-fold increase was observed in 

Patient WH fibroblasts compared to control, after uncoupler CICCP treatment, which 

measures the reserved mitochondrial oxidative capacity  (N = 3 experiments, 7-9 

replicates of cells from passage 7-12; Student’s t test, *** p<0.001).  B. Measurement of 

ATP levels showed a ca. 10% reduction in MADD Patient WH fibroblast cells compared 

to control (N = 14 replicates of cells from passage 7-12; Student’s t test ,* p<0.05).  C. 

Gene expression assayed by qRT-PCR revealed that PGC-1β, PPARG, ESRRα, UCP3 

were increased ~2, 4.6, 2 and 1.6 fold in Patient WH compared to control.  The 

expression of ROS related genes are also altered in Patient WH, with a ca. 20% decrease 

in catalase and 4.7 and 5.7 fold increase in glutathione reductase and HSPA9 expression 

(N = 3-7 replicates of cells from passage 7-12; Student’s t test, * p<0.05, ** p<0.01, *** 

p<0.001). 
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Figure 4.  Human MADD fibroblast cells display similar mitochondrial defects as 

xav 
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Figure 5.  Increased aerobic glycolysis in MADD fibroblasts and xav 

 A. ECAR was measured in intact control and MADD Patient WH fibroblasts 

under basal conditions, following the addition of the mitochondrial inhibitor oligomycin 

(0.5 µg/ml), in the presence of the uncoupler CICCP (3 µM) and the addition of complex 

I inhibitor Rotenone (100 nM).  A trend towards higher ECAR rate was seen under basal 

conditions, and a significant 2-fold increase was observed after uncoupler CICCP 

treatment in Patient WH fibroblasts compared to control.  (N = 3 experiments, 7-9 

replicates of cells from passage 7-12; Student’s t test, * p<0.05).  B. Measurement of 

lactate secreted into the culture medium showed a ~20% increase in the basal lactate 

production in Patient WH fibroblasts compared to control (N = 2 experiments, 5-6 

replicates of cells from passage 7-8; Student’s t test, * p<0.05).  C. qRT-PCR analyses of 

genes involved in glycolysis showed glycolytic enzymes enolase 1 (ENO1), 

phosphoglycerate mutase 1 (PGAM1), phosphoglycerate kinase 1 (PGK1) and 

phosphofructokinase (PFKM), were increased by ~1.9, 2.7, 3.4 and 3.1 fold respectively 

in Patient WH fibroblasts compared to control (N = 5 replicates of cells from passage 7-

9; Student’s t test, * p<0.05, *** p<0.001).  D. Measurement of lactate levels showed a 

~2.4 fold increase in xav mutants compared to WT embryos at ~56  hpf (N = 7-9 

replicates, 30-100 embryos each; Student’s t test, * p<0.05).  E. qRT-PCR analyses of 

gene expression revealed increased expression of glycolytic enzymes eno1, pgam1a, 

pgk1, pfkma, and fructose-biphosphate aldolase C (aldoc) by 2.8, 2, 1.9, 1.8 and 2.1 fold 

respectively, as well a ~20% decrease in dihydrolipoamide S-acetyltransferase (dlat), that 

belongs to the pyruvate dehydrogenase complex, which links glycolysis to tricarboxylic 
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acid (TCA) cycle, in xav mutants compared to WT embryos at ~56 hpf (N = 3-7 

replicates, 20 embryos each; Student’s t test, * p<0.05, ** p<0.01). 
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Figure 5.  Increased aerobic glycolysis in MADD fibroblasts and xav 
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Figure 6.  xav exhibits increased neural cell proliferation as a result of increased 

glycolysis, due to perturbation of the PPARG-ERK pathway 

 A. Whole mount embryos labeled with BrdU to mark cells undergoing 

proliferation.  The number of BrdU+ cells was significantly increased in the nervous 

system, especially in the spinal cord, in xav mutants compared to WT embryos at ~56-60 

hpf.  Increased dp-ERK+ cells and BrdU+ / dp-ERK+ double labeled cells in the spinal 

cord in xav mutants compared to WT embryos at ~56-60 hpf.  B. In spinal cord cross-

sections from xav mutants and WT embryos at ~56-60 hpf, BrdU+ cells are distributed 

peri-ventricularly, suggesting that they are likely to be neural progenitor cells.  Dashed 

line outlines the spinal cord and indicates the midline.  Scale bar = 20 µm.  C. 

Quantification of BrdU+ and dp-ERK+ cells at ~56-60 hpf.  Per spinal cord 

hemisegment:  BrdU+ cells WT 3.2 ± 0.4, xav 24 ± 1.4; dp-ERK+ cells WT 2.6 ± 0.3, 

xav 19.4 ± 0.8; BrdU+ / dp-ERK+ WT 0.2 ± 0.2, xav 7.8 ± 1.2.  Percent of BrdU+ cells 

that are also dp-ERK+: WT 3.6% ± 3.6%, xav 45% ± 8% (N = 4-19 embryos, >2 carrier 

pairs; Student’s t test, *** p<0.001).  D. Western blot analyses of pparγ, dp-ERK and 

phospho-STAT3 expression showed dramatic increase in xav compared to WT embryos 

at ~56-60 hpf (N = 3 replicates, 30 embryos each; Student’s t test, * p<0.05).  E. BrdU 

labeling of proliferating cells in whole mounts of spinal cord of WT embryos, xav 

mutants, WT treated with 25 µm BADGE, xav mutants treated with 25 µm BADGE and 

WT treated with 10 µm Ciglitizone at ~56-60 hpf.  Embryos were raised in BADGE or 

Ciglitizone from 24 to 60 hpf.  Per spinal hemisegment:  BrdU+ cells WT 3.2 ± 0.4, WT 

+ BADGE 4.5 ± 0.3, xav 24 ± 1.4, xav + BAGDE 10.6 ± 0.9, WT + Ciglitizone 36 ± 2.5 
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(N = 6-19 embryos, >3 carrier pairs; one-way ANOVA, followed by Bonferroni’s 

multiple comparison test, *** p<0.001). 
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Figure 6.  xav exhibits increased neural cell proliferation as a result of increased 

glycolysis, due to perturbation of the PPARG-ERK pathway 
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SUPPLEMENTAL INFORMATION 

 

Supplemental Materials and Methods 

Behavioral assessment of xav mutants and wild type embryos 

 Gross motility was assessed via head and/or tail tap with a fine plastic probe, and 

elicited movements observed under a stereomicroscope (Leica MZ12.5).  The behavior 

was recorded using high-speed video microscopy (800 frames/ s; MotionPro 2000, 

Redlake), Supplemental Video 1 and 2.  

 

Immunostaining and TUNEL assay  

Embryos were anesthetized, fixed and immunostained as described previously 

(Panzer et al., 2005) using antibodies against the presynaptic neurotransmitter vesicle 

protein SV2 (Developmental Studies Hybridoma Bank (DSHB)), Zn5 (DSHB) and/or the 

glial specific protein GFAP (Nona et al., 1989) (gift from Drs. S. Nona and J. Scholes, 

Univ. of Sussex, United Kingdom), complex V (Invitrogen) and the appropriate 

fluorescently conjugated secondary antibody (Jackson Labs).  To label AChRs, 

fluorescently conjugated α−bungarotoxin (Invitrogen) was used as described previously 

(Panzer et al., 2005).  Presynaptic vesicles, AChR clusters and the co-localization of 

these two markers were measured from single plane projections of confocal image stacks 

using interactive software (Metamorph).   For immunostaining of NaK ATPase with α6F 

(DHSB) together with Acetyl-tub (Sigma), embryos were fixed in Dent’s fix (Drummond 
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et al. 1998).  For sections, fixed embryos were incubated in 20% sucrose, embedded in 

OCT and cut into 20 µm sections.   

TUNEL staining was performed according to the manufacturer’s instructions 

(Chemicon). 

 

p53 morpholino injection 

A morpholino antisense oligonucleotide (Gene Tools) targeting p53 

(GCGCCATTGCTTTGCAAGAATTG) (Langheinrich et al., 2002) was injected at the 1-

2 cell stage at ~8 ng.  Embryos were assessed at 56-72 hpf using the TUNEL assay. 

  

Mitochondria labeling in motor neurons 

An hb9:mito-GFP construct was generated by inserting mito-GFP (obtained from 

Drs. Marnie Halpern and Bill Saxton, Carnegie Inst. for Dev. Biology, Baltimore, MD) 

into an I-Sce vector containing hb9 promoter (obtained from Dr. Michael Granato, Univ. 

of Pennsylvania Sch. Medicine and Dr. Dirk Meyer, Albert-Ludwigs University, 

Freiburg, Germany).  DNA (50 ng/µl) was injected into 1-2 cell stage embryos, which 

were then raised to 24-48 hpf for assessing expression in motor neurons using confocal 

microscopy. 
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Supplemental Results 

Kidney defects in xav mutants  

Given that congenital polycystic kidneys have been reported in MADD patients 

(Bohm et al., 1982; Lehnert et al., 1982), we asked whether xav mutants display similar 

phenotypes.  Immunostaining of whole mount embryos at ~60 hpf revealed that the cilia 

in the pronephric ducts, as stained by anti-acetylated tubulin, appear distended and 

irregularly thickened, and contain gaps, in xav mutants compared to WT embryos (Sup. 

Fig. 3).  Pronephric duct epithelial cells, as labeled by an anti-NaK ATPase antibody, 

appear irregular in shape and showed aberrant clustering in xav embryos (Sup. Fig. 3).  

This result suggests that xav exhibit kidney morphological defects similar to those in 

MADD patients.   

 

xav mutants exhibit abnormal motility and progressive paralysis  

xav mutants exhibited several behavioral deficits.  While xav mutant embryos are 

normally motile up until 48 hpf, at this time, increased spontaneous muscle twitching and 

spastic movements are observed in mutants, while WT embryos are largely stationary 

unless stimulated (percent of time spent continuously moving, WT 0.4% ± 0.3%, xav 

12% ± 4%, N = 3-5 embryos, 1 carrier pair, Student’s t test, p<0.05) (Supplemental 

Video 1 and 2).  However, once stimulated, WT embryos respond with a characteristic C-

bend and swimming escape response (Panzer et al., 2005), but xav mutants, despite 

executing a C-bend similar to that in WT embryos, do not exhibit a normal swimming 
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escape response.  xav mutants swim with reduced speed and distance, often ending in 

twitching movements (Supplemental Video 1 and 2).  Moreover, by ~60 hpf, xav mutants 

are completely paralyzed (Panzer et al., 2005). 

 

xav mutants exhibit several neural phenotypes, including reduced neuropil staining 

and aberrant glial patterning  

Several analyses were performed to qualitatively assess the central and peripheral 

nervous system in xav mutants compared to WT embryos, to further understand the 

neural defects in xav, and provide insight into those neural defects that may be present in 

MADD patients, as this is a poorly explored aspect of the disorder due to its rarity 

(Frerman and Goodman, 2001).   

At 3 dpf, xav embryos exhibited reduced neuropil as assayed by SV2 staining 

(Sup. Fig. 5).  Glia number and patterning as assayed by GFAP staining was aberrant 

throughout the nervous system (Sup. Fig. 5).  Not only were glial processes irregular in 

shape, but clumps of GFAP+ cells were observed in several brain regions (Sup. Fig. 5 

and data not shown).  These observations suggest that, in addition to neural cell 

proliferation defects, several aspects of neural development are impaired in xav, due to 

metabolic and mitochondria deficiency. 
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xav mutants exhibit reduced motor axon branching, reduced neuromuscular synapse 

number and abnormal mitochondria distribution within motor neuron axons and at 

synapses 

 xav mutants exhibit reduction of motor axon branching, and a reduction of 

neuromuscular synaptogenesis, at 56 hpf and most strikingly at 72 hpf (Sup. Fig. 6A; 

(Panzer et al., 2005)).  Motor neuron number, as assayed by in situ hybridization for islet-

2, is similar between xav mutants and WT embryos at 48 hpf (Sup. Fig. 6B).  Moreover, 

there is no substantial apoptosis in the pool of motor neurons, as assayed by double 

staining for TUNEL and Zn5, which labels secondary motor neurons (Sup. Fig. 6C).  

These data suggest that the reduction in motor axon branching and neuromuscular 

synaptogenesis are not due to a decrease in motor neuron number. 

  To determine whether motor neurons and muscle fibers function normally in xav 

mutants, electrophysiological assays were performed in xav mutants and WT embryos.  

Miniature excitatory postsynaptic current (mEPC) recordings from fast muscles showed 

no statistical difference in terms of frequency, amplitude, rise time and exponential decay 

time (Sup. Fig. 7A, 7B, 7C).  Furthermore, muscle fibers from xav embryos fire action 

potentials after exogenous stimulation, comparable to muscle fibers from WT embryos 

(Sup. Fig. 7D).  These data suggest that despite a reduction of neuromuscular synapses in 

xav mutants, the physiological properties of postsynaptic muscle fibers are not 

compromised, making the possibility of deteriorative and nonspecific effects in muscle 

fibers an unlikely explanation for the morphological and motility defects.  Thus, either 
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defects intrinsic to presynaptic motor neurons, and/or circuitry in the spinal cord and/or 

other CNS regions, is responsible for the observed paralysis in xav mutants. 

 We next assessed the distribution of mitochondria within motor neurons.  Mito-

GFP was expressed in motor neurons and branching and synapse formation followed over 

time.  In WT embryos at ~56 hpf, mitochondria are distributed along the entire axon and 

some appear to be clustered (Sup. Fig. 8A).  The majority of mitochondria clusters are at 

synapses, with some along the axon and branches (data not shown).  Mitochondria 

clusters are continuously added over time, increasing both in number and density (Sup. 

Fig. 8A, 8B).  In contrast, in xav mutants, while the number and distribution of 

mitochondria clusters along the axon are comparable to WT embryos at ~56 hpf, the 

continuous addition of mitochondria is absent, resulting in a decrease of mitochondria 

cluster density over time (Sup. Fig. 8A, 8B).  These results suggest that the number, 

distribution and addition of mitochondria is impaired in xav mutants. 

 

xav mutants exhibit cell death throughout the nervous system that is rescued by p53 

morpholino knockdown and does not account for the motor axon branching, 

neuromuscular synapse or motility defects 

A particularly prominent phenotype in xav mutants is the widespread cell death 

observed in the peripheral nervous system, and most strikingly in the CNS, compared to 

other tissues.  There was a dramatic increase in TUNEL+ cells in xav mutants compared 

to WT embryos at ~56-72 hpf, particularly in the retina and spinal cord (Sup. Fig. 9A).  
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That TUNEL+ cells were not observed in all tissues argues against generalized cell death 

due to metabolic insufficiency.  

Given prominent apoptotic cell death throughout the nervous system, we asked 

whether blocking cell death may abrogate any xav neural and behavioral phenotypes.  

Cell death was blocked using a morpholino against p53 (Langheinrich et al., 2002; Robu 

et al., 2007) and xav and WT embryos were assessed at ~56 hpf.  xav mutants injected 

with p53 morpholino exhibited levels of cell death that were indistinguishable from WT 

in the central and peripheral nervous system (Sup. Fig. 9B).  However, blocking cell 

death did not block the reduction of axon branching and synaptogenesis phenotypes that 

are present in xav mutants, as these phenotypes were similar between xav mutants and 

xav mutants injected with p53 morpholino (Sup. Fig. 9B).  Moreover, xav mutants 

injected with p53 morpholino exhibited motility deficits that were indistinguishable from 

xav mutants, including the proportion of embryos paralyzed at ~56-60 hpf (data not 

shown).  This result suggests that cell death per se is unlikely to account for the axon 

branching, synaptogenesis or paralysis phenotypes prominent in xav mutants.    
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Supplemental Figures and Legends 

Supplemental Figure 1.  Genetic map of the xav locus 

Conserved synteny between genes in the xav interval and human chromosome 4.  

xav linkage results suggest the sequence in and around BAC clone DKEY-50I13 

(accession no. CR846102.12) is misplaced on the Ensembl Zv6 genome build. 
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Supplemental Figure 1.  Genetic map of the xav locus 
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Supplemental Figure 2.  Nonsense mediated decay and nonsense mediated 

alternative splicing of etfdh transcript in xav, and morpholino knock down of etfdh 

A.  qRT-PCR showed that there is a significant, ~80% reduction of etfdh mRNA 

in xav, likely due to nonsense mediated decay.  N = 3 pools of 20 embryos each for WT 

and xav; Student’s t test, * p<0.0001.  B.  xav mutants showed nonsense mediated 

alternative splicing.  As a result of the mutation, which resides in exon11, the exon10-

exon13 junctions are mis-spliced in mutants, resulting in transcripts that are predicted to 

encode proteins lacking critical domains or truncated.  Blue arrows indicate primer 

location.  These results suggest that the xav mutation is likely to be loss of function.  C. A 

splice-blocking morpholino against intron2-exon3 (MOI2E3) was designed for etfdh.  D. 

Injection of 8 ng etfdh MOI2E3 in WT embryos, results in > 80% reduction of the normal 

transcript at 2 and 3 dpf, producing a mis-spliced transcript that lacks exon3.  Red arrow 

indicates the MO location and blue arrows indicate primer location. 
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Supplemental Figure 2.  Nonsense mediated decay and nonsense mediated 

alternative splicing of etfdh transcript in xav, and morpholino knock down of etfdh 
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Supplemental Figure 3.  xav mutants display polycystic kidney like phenotypes. 

Immunostaining of whole mount zebrafish embryos revealed that the cilia in the 

pronephric ducts, as labeled by immunostaining with anti-acetylated tubulin antibody, 

appear distended and irregularly thickened, and contain gaps, in xav mutants compared to 

WT embryos at ~60 hpf.  Pronephric duct epithelial cells, as labeled by immunostaining 

with the anti-NaK ATPase antibody α6F, appear irregular in shape and showed aberrant 

clustering in xav embryos. N  = > 10 xav and WT embryos for each immunostaining 

assessment.  Scale bar = 20 µm.   
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Supplemental Figure 3.  xav mutants display polycystic kidney like phenotypes. 



 

221 

Supplemental Figure 4.  xav mutants exhibit respiratory deficiency  

A. Decreased rates of O2 consumption in xav mitochondria.  Homogenates from 

WT and xav embryos were incubated in an oxygen sensor chamber, and O2 consumption 

(y axis) as a function of incubation time (x axis) was recorded.  In the upper panels, the 

mitochondria were incubated with α-ketoglutarate, and in the lower panels, mitochondria 

were incubated with fatty acid (C16 carnitine).  ADP (0.2 mM) was added to the 

mitochondria to measure state 3 respiration.  State 4 rates of respiration were calculated 

when ADP was depleted from the reaction.  N = > 10 embryos from at least 2 carrier 

pairs for each metabolic assay.  B. At ~56 hpf, a higher level of F1-F0 ATPase (complex 

V) protein was detected by immunostaining (red) in xav mutants (lower panels) compared 

to WT embryos (upper panels).  A higher magnification view of the spinal cord is shown 

in the right most panels.  TUNEL staining (green) was performed simultaneously and 

showed that there is increased cell death in the spinal cord in xav and that complex V 

positive cells are also TUNEL positive in xav.  N = > 10 embryos from at least 2 carrier 

pairs for each immunostaining assay.  Scale bar = 100 µm. 
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Supplemental Figure 4.  xav mutants exhibit respiratory deficiency  
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Supplemental Figure 5.  xav mutants exhibit neural and glial defects and cell death 

 At 3 dpf, xav embryos exhibited increased cell death as assayed by TUNEL 

staining (green), reduced neuropil as assayed by SV2 staining (blue).  Glia number and 

patterning as assayed by GFAP staining (red) was aberrant throughout the nervous 

system.  Not only were glial processes irregular in shape, but clumps of GFAP+ cells 

were observed in several brain regions (white arrowheads point to several examples).  N 

> 3 embryos, 1 carrier pair.  Scale bar = 20 µm. 
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Supplemental Figure 5.  xav mutants exhibit neural and glial defects and cell death 
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Supplemental Figure 6.  xav mutants exhibit reduced motor axon branching and 

neuromuscular synaptogenesis that are not caused by change of motor neuron 

number or viability  

 A. SV2 (green) and AChR (red) labeling showed that motor axon branching and 

neuromuscular synaptogenesis were reduced in xav mutants and etfdh morphants 

compared to WT embryos, at 56 hpf and most strikingly at 72 hpf.  Scale bar = 20 µm.  

B. Motor neuron number, as assayed by in situ hybridization for islet-2, is similar 

between xav mutants and WT embryos at 48 hpf.  Scale bar = 100 µm.  C. No substantial 

apoptosis was seen in the pool of motor neurons in xav compared to WT at 48 hpf, as 

assayed by double staining for TUNEL and Zn5, which labels secondary motor neurons.  

N > 10 embryos, 3 carrier pairs. Scale bar = 20 µm. 
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Supplemental Figure 6.  xav mutants exhibit reduced motor axon branching and 

neuromuscular synaptogenesis that are not caused by change of motor neuron 

number or viability  
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Supplemental Figure 7.  xav mutants display electrophysiological properties in the 

muscle, comparable to WT 

 A-C. Miniature excitatory postsynaptic current (mEPC) recordings from fast 

muscles showed no statistical difference in terms of frequency, amplitude, rise time and 

exponential decay time.  N = 4 embryos, 2 carrier pairs.   D. Muscle fibers from xav 

embryos fire action potentials after exogenous stimulation, comparable in amplitude and 

shape to action potentials recorded from muscle fibers from WT embryos.  N = 4 

embryos, 2 carrier pairs. 
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Supplemental Figure 7.  xav mutants display electrophysiological properties in the 

muscle, comparable to WT 
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Supplemental Figure 8.  xav mutants exhibit aberrant mitochondria distribution in 

motor neurons 

 A-B. Mito-GFP was expressed in motor neurons and branching and synapse 

formation followed over time.  In WT embryos at ~56 hpf, mitochondria are distributed 

along the entire axon.  Mitochondria are continuously added over time, increasing both in 

number and density.  In contrast, in xav mutants, while the number and distribution of 

mitochondria clusters along the axon are comparable to WT embryos at ~56 hpf, the 

continuous addition of mitochondria is absent, resulting in a decrease of mitochondria 

cluster density by 3 dpf.  N = 9-10 embryos, 3-4 carrier pairs.  Scale bar = 20 µm. 
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Supplemental Figure 8.  xav mutants exhibit aberrant mitochondria distribution in 

motor neurons 
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Supplemental Figure 9.  xav mutants exhibit cell death throughout the nervous 

system that is rescued by p53 morpholino knockdown and does not account for the 

motor axon branching, neuromuscular synapse or motility defects 

 A. xav mutants exhibit widespread cell death in the peripheral and central nervous 

system.  There was a dramatic increase in TUNEL+ cells in xav mutants compared to WT 

embryos at ~56-72 hpf, particularly in the retina and spinal cord.  B. At 56 hpf, cell death 

was blocked using a morpholino against p53.  However, blocking cell death did not block 

the reduction of axon branching and synaptogenesis phenotypes that are present in xav 

mutants.  N > 6 embryos, 2 carrier pairs.  Scale bar = 100 µm.
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Supplemental Figure 9.  xav mutants exhibit cell death throughout the nervous 

system that is rescued by p53 morpholino knockdown and does not account for the 

motor axon branching, neuromuscular synapse or motility defects 
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Supplemental Table 1.  Primer sequences for new zebrafish simple sequence repeat 

(SSR) markers 

 

SSR Name Forward  Reverse 

Z15804-SSR4 AACATGTTTGGGTATCCTGATTT TGACCACCAGAATCAAGACG 

274P15-SSR1 GGAAGCTAATTGCACGGTCT AACCCACTGATAACAGTTCCAA 

50I13-SSR1 TGCGTGCAATCAGGTTTAAG TGTCCCAGTGACCAACATGA 

278P11-SSR1  ATGGCAGCCTTCACCAAACA CACCCGGAGTTCACCTTTCA 

276B5-SSR3 TGCTTGCTAAGGTATTTGCTGA TTAAAGCAGCAAGGCAATGA 

154C1-SSR1 CAGGTATGAAATGCTGCTTGC TTGCTCCAGCAGAGATGATG 

199B20-SSR1 AGCTCCCAGGATTCCACTCT CCCTAACTGTCTCTGCAACCA 

36H4-SSR1 ATCCCTTTTGGGAAAACAGC ACCTCATCACGTACGCACAA 

Gene Name   

zgc:92093 (Acc 
# 
NM_001004598) 

CGCATTCAACCTGGAAAACC TGTGCCCCAGTGACGGTAAT 
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Supplemental Table 2.  Primers for qRT-PCR analyses of gene expression in xav and 

fibroblasts from human MADD patients 

Gene Name Forward  Reverse 

Zebrafish 

etfdh ACACGCTGGTTCTCCTCTGT AGCGAAGCGTTCCATTTCTA 

β-actin1 TGAATCCCAAAGCCAACAGAGAGA TCACGACCAGCTAGATCCAGACG 

mt-nd5 TTGACCATCGGGAAAATAGC TTAGGGCTCAGGCGTTAAGA 

ndufs1 GCCGTATGACACACTGGATG CTCATGGGCCTGTTTGAAAT 

pgc-1β GGACGCCAGTGATTTTGACT TCCAGCGCTGTACTGTATGG 

esrra CGAGGAGTTTGTCATGCTCA CTGATGCAGCAGGTCTCGTA 

pparγ AGTACGGGGTCATCGAAGTG GCGCAGACTCTTGAGGAACT 

ucp4 GCGTGGAAAAGACAACCCTA AAACGCACCTTTACCACGTC 

ndufb8 TCTCCTGACCCCAGCTCTAA CTTTCTCCTCTGCGGTTTTG 

cox5aa ACGGATGAGGAGTTTGATGC TCCAGGATCTTTGGTTCAGG 

atp5g AGGAACCCATCTCTGAAGCA GCAAACAGGATGAGGAAAGC 

ndufv1 CTTGCAGAGAGGGAGTGGAC GTCTCCTAAAGCGCAGATGG 

pgc-1α CTGCCTGAGCTTGACCTTTC TTGGATGCTTCATTGCCATA 

nrf1 CCGAACAGAGGAGCAGAAAC GTGGCAACTTGTGTGGTGAC 

tfam AGCTGGCAGAGGACGATAAA GTTTTGGCTTTGGCTTTGAG 

pparα CGACAAGTGTGAACGCAACT TATCCGCCCAAAACGAATAG 

pparβ TGGAGTACGAGCGATGTGAG CTTCTCCGCTTCTGGCATAC 

ucp2 AGCTGGTGACGTTCCTCCTA TTGTTCTCCCCCTGAATCTG 

cyt C GCATTGTCTGGGGTGAAGAT TCTCTCGCCCTTCTTCTTGA 

catalase GCGGATACCAGAGAGAGTCG ATCGGTGTCGTCTTTCCAAC 

glutathione 
reductase 

ATTGGCAGAGAACCCAACAC ACATCCCCGACTGCATAGAC 

gpx1a GAAATACGTCCGTCCTGGAA TCTCCCATAAGGGACACAGG 

gpx3 TCCAGGAAATGGATTCGTTC TCTCTCCTACAGGCGGACAT 
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hmox1 GGAAGAGCTGGACAGAAACG CGAAGAAGTGCTCCAAGTCC 

hspa9 CGACTTGGGAACCACAAACT CATTCCTACAAGCCGCTCTC 

eno1 GGCAAAGGTGTCTCAAAAGC TTGTTGTCTGTGCCATCCAT 

pgam1a TGAGAGGCATTGTGAAGCAC GGCTTCAGGTTCTTGTCCAG 

pgk1 GATGGAGTCCCTATGCCAGA TGGACCCACACAGTCTTTCA 

pfkma CTGGAAGCCACTCCAGAGAC AATCGACCCTCATTCATTGC 

aldoc CCATTGTGGAGCCTGAGATT TCACCATGTTGGGTTTCAGA 

dlat GAGACCTGCTGGCTGAAATC CTGGTGCCCTCAGAAATCAT 

 

Human fibroblasts 

ACTB GAGCTACGAGCTGCCTGACG GTAGTTTCGTGGATGCCACAG 

PGC-1β TTATGCCTCCCTCACACCTC TGAAGCTGCGATCCTTACCT 

PPARG GAGCCCAAGTTTGAGTTTGC GGCGGTCTCCACTGAGAATA 

ESRRα AAAGTGCTGGCCCATTTCTAT CCTTGCCTCAGTCCATCAT 

UCP3 CTCCAGGCCAGTACTTCAGC CGCAAAAAGGAGGGTGTAAA 

catalase TTTCCCAGGAAGATCCTGAC ACCTTGGTGAGATCGAATGG 

glutathioine 
reductase 

ACTTGCCCATCGACTTTTTG CATCTTCCGTGAGTCCCACT 

HSPA9 AATTACTTGGGGCACACAGC CGAAGCACATTCAGTCCAGA 

ENO1 CTCCGTGACCGAGTCTCTTC CCAGTCTTGATCTGCCCAGT 

PGAM1 GGGGTCTAACCGGTCTCAAT ACGTTTCCCCTCCTTGATCT 

PGK1 TCACTCGGGCTAAGCAGATT CAGTGCTCACATGGCTGACT 

PFKM AGAGCGTTTCGATGATGCTT GTTGTAGGCAGCTCGGAGTC 
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Chapter 5 

 

General Conclusions and Future Directions 

 

The role of non-synaptic AChR clusters during early neuromuscular synaptogenesis 

The role of prepatterned AChR clusters in synapse formation has been a topic of 

much debate.  In vitro studies demonstrate that motor axon growth cones ignore non-

synaptic AChR clusters on cultured muscle fibers (Anderson and Cohen, 1977; Frank and 

Fischbach, 1979).  In contrast, during axon regeneration in adult muscle, pre-existing 

AChR clusters are selectively reinnervated (Bennett and Pettigrew, 1976).  Detailed 

studies of the function of prepatterned AChR clusters in the earliest stages of 

synaptogenesis have been hampered by technical limitations imposed by the study of 

mammalian embryos.  Thus, it has remained unknown whether, in vivo, motor axon 

growth cones contact pre-existing AChR clusters, and if so, whether they incorporate 

them into newly formed synapses.  My observations, made in collaboration with Jessica 

Panzer, demonstrated that protosynaptic AChR clusters mark target sites on muscle fibers 

that are preferentially contacted by motor axon growth cones.  Such protosynaptic AChR 

clusters appear to be incorporated into newly formed synapses.  This work provides a 

foundation for future studies, aimed at determining the identity of other postsynaptic 

proteins localized to protosynaptic receptor clusters, as well determining the mechanism 

by which motor axons detect these AChR clusters or presumptive synaptic sites marked 
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by pre-existing AChR clusters, which will greatly expand our understanding of this 

process.  In addition, there is some evidence that axon growth cones in the CNS 

preferentially contact pre-existing target sites on dendrites (Cooper et al., 1992; Saito et 

al., 1992), and also that non-synaptic NMDA receptor clusters are present on the 

dendrites of CNS neurons prior to synaptogenesis (Aoki et al., 1994; Rao et al., 1998).  

Thus, prepatterning of postsynaptic targets may play a common, and little explored, role 

in synaptogenesis throughout the developing nervous system.   

 

Mechanisms that trigger the dispersion of prepatterned AChR clusters 

 Unlike the appearance of aneural AChR clusters in mammals, which is 

contemporaneous with the motor axon branching and presynaptic terminal differentiation 

(Lin et al., 2001; Misgeld et al., 2002), at the zebrafish neuromuscular junction, these are 

present in the presumptive endplate band well in advance of motor axon innervation.  

Their dispersion, which is part of the process of refinement and determination of future 

synaptic sites, also occurs prior to axon ingrowth (Lin et al., 2001; Misgeld et al., 2002).  

While it is possible that ACh released by motor neurons may act as a dispersion factor at 

the mammalian neuromuscular junction (Misgeld et al., 2002), it is not very likely to be 

the case in zebrafish.  It is conceivable that a muscle intrinsic mechanism may be 

responsible.  It can be hypothesized that signaling coupled to MuSK activation 

(autoactivation or activation by an unknown ligand that generates the AChR prepattern 

(Kim and Burden, 2008; Lefebvre et al., 2007; Zhang et al., 2004)) may be stimulated by 

MuSK itself to initiate the internalization of AChRs, for degradation and/or for 
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mobilization and transportation.  The observation that the dispersion takes place 

throughout the myotomal muscle and appears to be simultaneous across muscle fibers, 

suggest that this signal may be either far-reaching, or alternatively, be locally generated 

at the site of initial contact and then propagated among muscle fibers.  This makes it 

reasonable to postulate that events such as spontaneous muscle contraction may elicit a 

signal that is dispersed among muscle fibers, possibly through gap junctions.  Future 

studies to test these and other hypotheses, to identify putative dispersion factor(s), and to 

track the fate of existing, turning over and newly inserted populations of AChRs, may 

substantiate our understanding of the dynamics of postsynaptic specializations and their 

contribution to synaptogenesis. 

 

Notch-Delta signaling deficiency, as a result of dysregulated protein fucosylation, 

underlies neurogenic and synaptogenic defects in srn 

 srn was identified as a synpatogeneic mutant that displays exuberant 

neuromuscular synapse formation (Panzer et al., 2005).  We showed that the srn locus as 

a missense point mutation resulting in a Glycine to Valine change in GMDS, the first and 

rate-limiting enzyme in fucose metabolism.  GMDS malfunction results in the loss of 

glycoprotein fucosylation, including Notch among many other proteins.  My results 

strongly suggest that the dysregulated fucosylation of proteins in the Notch-Delta 

pathway accounts for the neurogenic defects prominent in srn mutants.  While the lack of 

anti-zebrafish Notch antibodies prevented me from examining Notch fucosylation 

directly, Notch is a known substrate for fucosylation.  Moreover, other proteins in the 
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Notch-Delta pathway, including Delta, Serrate and Jagged, contain consensus 

sequence(s) for O-linked fucose modification, C-X-X-G-G-S/T-C, where X is any amino 

acid and S/T is the modified residue (Harris and Spellman, 1993; Harris et al., 1993; 

Moloney and Haltiwanger, 1999) as well as for N-fucosylation, in which fucose is added 

to N-linked glycan side chains (Ishikawa et al., 2005; Jaeken and Matthijs, 2007; Sturla et 

al., 2003).  In addition, Notch fucosylation has been shown to be reduced in the fly Gfr 

null model (Ishikawa et al., 2005) that is relevant to srn.  It thus seems highly likely that 

the fucosylation of proteins in the Notch-Delta pathway is aberrant in srn mutants and 

that this accounts for some, but not all, srn neural phenotypes.  Moreover, my observation 

that srn and Notch-Delta mutants have aberrant neuromuscular synapses, specifically 

dramatically increased presynaptic terminal area at the earliest established synapses in 

axial muscles, supports a previously underappreciated role for Notch-Delta signaling 

during synaptogenesis.  Future experiments in which Notch-Delta signaling is 

manipulated after neurogenesis but before synaptogenesis would be of interest to parse 

the role of this pathway in neurogenesis and synaptogenesis. 

 

Notch-Delta independent pathways also contribute to srn neural defects 

While deficiencies in Notch-Delta signaling underlie some srn phenotypes, other 

srn phenotypes are likely to be independent of this pathway.  srn mutants exhibit 

prominent defects in retinotectal connectivity that are quite different from those observed 

in Notch-Delta mutants.  For example, in the retina, it has been shown that crumbs related 

genes, that are essential for the establishment of proper apical-basal polarity, are 
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important for retina patterning.  Mutations in crumbs homologue 2 (crb2), as in oko 

meduzy (ome), resulted in drastic neuronal patterning defects in the zebrafish retina 

(Malicki, 2000; Malicki and Driever, 1999; Malicki et al., 1996; Omori and Malicki, 

2006; Schier et al., 1996; Tsujikawa and Malicki, 2004).  Crumbs contains a consensus 

sequence for O-linked fucose modification, C-X-X-G-G-S/T-C, and thus is predicted to 

be fucosylated (Moloney and Haltiwanger, 1999).  While complete loss of function of 

crumbs leads to catastrophic defects as in ome, srn mutants showed aberrant synaptic 

connectivity without disrupting retinal or tectal lamination.  Thus it will be interesting to 

determine whether the lack of fucose modification in crumbs can cause similar defects as 

in srn mutants.  Axon guidance molecules such as Netrin and Slits also contain consensus 

sequence for O-linked fucose modification (Moloney and Haltiwanger, 1999), and only 

Slit1a, but not Slit1b, Slit2 or Slit3, is expressed within the optic tectum and regulates 

retinal ganglion cell arborization and synaptogenesis (Campbell et al., 2007).  In addition, 

the retinal ganglion axon arborization defects in srn mutants are similar to those seen in 

mutants dackel and boxer, which encode ext2 and extl3, respectively, which are 

glycosyltransferases implicated in heparin sulfate biosynthesis (Lee et al., 2004).  

Heparin sulfate proteoglycans modulate axon guidance, in some cases by directly 

interacting with axon-guidance ligands and receptors, such as Slits and Robos (reviewed 

in Lee and Chien, 2004).  Future work could focus on identifying the fucosylated proteins 

that mediate the axon guidance, branching, synaptogenesis and other neural deficits that 

are independent of Notch-Delta signaling.   
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Mitochondrial and metabolic deficiency underlie neural and synaptic defects in xav 

 xav was identified as a mutants that has reduced motor axon branching and 

neuromuscular synaptogenesis, and progressive paralysis (Panzer et al., 2005).  We found 

that the xav mutation resides in electron transfer flavoprotein dehydrogenase (etfdh), 

which functions in the mitochondria electron transport chain and is important for fatty 

acid and choline metabolism.  I showed that xav mutants exhibit metabolic and 

mitochondrial dysfunction, including altered energy metabolism, dysregulated ROS 

production and altered expression of genes critical for mitochondrial function.  In 

particular, xav mutants showed excessive aerobic glycolysis, similar to the Warburg 

effect observed in cancer and other proliferating cells (Vander Heiden et al., 2009), 

leading to excessive neural cell proliferation, which is, at least in part, mediated by 

upregulation of the PPARG-ERK pathway.  These abnormalities are associated with 

neural defects in xav, including reduced neuropil staining, abnormal glial patterning, 

reduced motor axon branching and synaptogenesis, as well as progressive paralysis.  

Future work could be focused on establishing the mechanistic connections between 

mitochondrial dysfunction and specific neural defects.  It will be interesting to determine 

whether the increase of neural cell proliferation results in defects in neural differentiation 

and thus leads to the reduced neuropil and abnormal glial patterning.  It will also be 

crucial to determine what pathway(s) causes the motor axon branching and 

synaptogenesis defects and the reduced motility and paralysis.  Given our observation 

that motor neuron number is not reduced and that xav muscle fibers showed 

electrophysiological properties comparable to those in wild type embryos, one hypothesis 

worth testing is that abnormal neural proliferation leads to malformation of the circuitry 
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underlying motor behavior.  Alternatively, mitochondrial malfunction within motor 

neurons may also account for these defects, and this would be consistent with my 

observation that the distribution of mitochondria within motor neuron axons is aberrant. 

 

Linking metabolism and neural development 

 It is well appreciated that energy metabolism and brain function are highly 

coupled processes.  It is known that two principle components of energy production, 

mitochondrial oxidative metabolism and glycolysis, play pivotal roles in nervous system 

function, such as synaptic transmission, by providing ATP in the former case, or specific 

glycolytic intermediates in the case of glycolysis (Okada and Lipton, 2007).  When 

metabolism is aberrant, as seen in inherited disorders of metabolism, most of these 

conditions are associated with some neurologic sequelae, such as congenital 

malformation of the nervous system, mental retardation, mood disorders, seizures, ataxias 

and neuropathy (reviewed in Ramachandram, 2009).  The mechanistic links between 

metabolism and neural development and function are areas of active research.  I 

identified one pathway, the PPARG pathway, that is upregulated due to metabolic 

deficiency in both xav and fibroblasts from MADD patients, and that, in xav, leads to 

excessive neural proliferation.  Future work could be focused on elucidating the 

mechanism(s) upstream of PPARG and understanding how metabolic status is sensed, in 

turn regulating the PPARG pathway.  Moreover, it will be interesting to determine the 

targets of PPARG activation that mediate neural proliferation, and how these may be 

related in xav and MADD patients. 



 

243 

 

Conclusion 

 My first project using in vivo imaging and cellular analyses of the formation of 

neuromuscular synapses uncovered important roles of the prepatterning of postsynaptic 

specializations in guiding synaptogenesis.  My work on the characterization of a 

zebrafish mutant slytherin revealed a previously underappreciated role for protein 

fucosylation in regulating neural and glial specification and patterning, axon branching 

and synaptogenesis, through both Notch dependent and independent pathways.  My work 

on the characterization of a second mutant, xavier, extends our understanding of the 

connections among mitochondria, metabolism and neural development, and provide 

insights into how mitochondrial and metabolic dysfunction lead to defects in neural 

proliferation, glial patterning, axon branching and synaptogenesis in zebrafish and human 

patients.  It is possible that this work, while foundational, may in the future lead to 

insights that could provide avenues for therapeutic intervention in humans with mutations 

in these genes that compromise neural development and function and thus impact quality 

of life. 
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