
Updatable Security Views

J. Nathan Foster Benjamin C. Pierce Steve Zdancewic

University of Pennsylvania

Abstract

Security views are a flexible and effective mechanism for
controlling access to confidential information. Rather than
allowing untrusted users to access source data directly, they
are instead provided with a restricted view, from which all
confidential information has been removed. The program
that generates the view effectively embodies a confidentiality
policy for the underlying source data. However, this ap-
proach has a significant drawback: it prevents users from
updating the data in the view.

To address the “view update problem” in general, a
number of bidirectional languages have been proposed. Pro-
grams in these languages—often called lenses—can be run
in two directions: read from left to right, they map sources
to views; from right to left, they map updated views back to
updated sources. However, existing bidirectional languages
do not deal adequately with security. In particular, they do
not provide a way to ensure the integrity of source data as
it is manipulated by untrusted users of the view.

We propose a novel framework of secure lenses that
addresses these shortcomings. We enrich the types of basic
lenses with equivalence relations capturing notions of confi-
dentiality and integrity, and formulate the essential security
conditions as non-interference properties. We then instanti-
ate this framework in the domain of string transformations,
developing syntax for bidirectional string combinators with
security-annotated regular expressions as their types.

1. Introduction

Security views are a widely used mechanism for controlling
access to confidential information in databases and other
systems that manage structured information. By forcing
users to access data via views that only expose public infor-
mation, data administrators ensure that secrets will not be
leaked, even if the users mishandle the data or are malicious.
Security views are robust, making it impossible for users
to leak the source data hidden by the view, and they are
flexible: since they are implemented as arbitrary programs,
they can be used to enforce extremely fine-grained access
control policies. However, they are not usually updatable—
and for good reason! Propagating updates to views made
by untrusted users can, in general, alter the source data,
including the parts that are hidden by the view.

Still, there are many applications in which having a
mechanism for reliably updating security views would be
extremely useful. For example, consider Intellipedia, a col-
laborative data sharing system based on Wikipedia that is
used by members of the intelligence community. The data
stored in Intellipedia is classified at the granularity of whole
documents, but many documents actually contain a mixture
of highly classified and less-classified data. In order to
give users with low clearances access to the portions of
documents they have sufficient clearance to see, documents
often have to be regraded: i.e., the highly classified parts
need to be erased or redacted, leaving behind a residual
document—a security view!—that can be reclassified at a
lower level of clearance. Of course (since we are talking
about a wiki), we would like the users of these views to
be able to make updates—e.g., to correct errors or add new
information—and have their changes be propagated back to
the original document.

In general, for a view to be updatable, the program that
generates it needs to be bidirectional. That is, it must not
only be able to transform sources to views but also to map
updated views back to updated sources. In previous work,
we and many others have proposed a family of languages
for describing bidirectional transformations, often called
lenses [19], [8], [7], [21], [37], [41], [26], [9], [24], [35],
[17], [23], [30], [28]. Formally, a lens l mapping between
a set S of “source” structures and a set V of “views”
comprises three functions

l.get ∈ S −→ V
l.put ∈ V −→ S −→ V

l.create ∈ V −→ S

that obey “round-tripping” laws for every s ∈ S and v ∈ V .
l.get (l.put v s) = v (PUTGET)
l.get (l.create v) = v (CREATEGET)
l.put (l.get s) s = s (GETPUT)

The get function defines the view and is a total function
from S to V . There are two functions that handle updates:
the put function takes an updated V and the original S and
weaves them together to yield a correspondingly modified
S, while the create function handles the special case where
we need to compute an S from a V but have no S to use as
the original (it fills in any source data that is not reflected
in the view with default values).

2009 22nd IEEE Computer Security Foundations Symposium

1063-6900/09 $25.00 © 2009 IEEE

DOI 10.1109/CSF.2009.25

60

2009 22nd IEEE Computer Security Foundations Symposium

1063-6900/09 $25.00 © 2009 IEEE

DOI 10.1109/CSF.2009.25

60

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

The round-tripping laws capture fundamental expectations
about how the components of a lens should behave; they are
closely related to the classical conditions on correct view
update translators that have been studied in the database
literature [1], [12], [22]. The first two laws require that
updates to the view must be propagated “exactly”—i.e.,
given an updated view, the put and create functions must
produce a source that the get function maps to the very
same view. The third law imposes an additional “stability”
constraint, requiring that the put function must not change
the source at all if the view has not been modified.

Languages for describing these basic lenses have been
extensively studied in recent years, but none of the languages
that have been proposed so far deal adequately with security
issues. The critical issue that they fail to address is that many
of the natural ways of propagating view updates back to
sources alter the source data in ways that violate expectations
about its integrity. For example, in the Intellipedia applica-
tion, the natural way to propagate the deletion of a section of
a regraded document is to delete the corresponding section of
the original document. But while doing so faithfully reflects
the edit made to the view—formally, it satisfies the PUTGET
law—it is not necessarily what we want: if the section in
the original document contains additional classified data in
nested subsections, then deleting the section is almost surely
unacceptable—users should not be able to delete data they
do not even have sufficient clearance to see!

One can add an additional behavioral law stipulating
that propagating updates to the view must not lose any
of the hidden data in the source. Indeed, this idea has
been explored extensively in the context of databases in
the so-called constant complement approach [1]. The idea
is that the source S should be isomorphic to (V × C), a
product consisting of the view V and a “complement” C
that contains all of the information in the source not reflected
in the view. The get function uses the function witnessing
the isomorphism to transform the source into a pair, and
projects out the first component. The put function pairs up
the new view with the original complement and applies
the witness in the other direction to obtain the updated
source. Note that because the put function is injective, it
necessarily propagates all of the information contained in
the complement back to the source—i.e., the information in
the complement is kept constant.

We can require that lenses hold a complement constant
by imposing an additional law requiring that the effect of
two puts in a row must be the same as just the second one:

l.put v′ (l.put v s) = l.put v′ s (PUTPUT)

(For details about the relationship between this law and
constant complement see [19].) Lenses that satisfy PUTPUT
are called very well behaved. However, requiring that every
lens be very well behaved is a draconian restriction—e.g.,
it rules out conditionals and iteration operators that are

indispensable in practice.
So, because we need to allow untrusted users to modify

hidden source data through the view, under certain circum-
stances, we need a simple, declarative way to specify which
parts of the source can be affected by view updates and
which parts that cannot. Developing a framework in which it
is possible to formulate integrity policies like “these sections
in the source can be deleted” or “these sections in the
view must not be altered (because doing so would have an
unacceptable effect on the source),” and verify that lenses
obey them, is the goal of this paper.

To this end, we identify a new semantic space of secure
lenses, in which types not only describe the sets of structures
manipulated by the components of lenses, but also capture
the notion that certain parts of the source and view represent
endorsed data while other parts may be tainted. Semanti-
cally, we model these types as sets of structures together
with equivalence relations identifying structures that agree
on endorsed data. Syntactically, we describe them using
annotated regular types—regular expressions decorated with
annotations drawn from a set of labels representing static
levels of integrity. We formulate a condition ensuring the
integrity of source data by stipulating a non-interference
property for the put function as an additional behavioral
law. This law ensures that if the update to the view does not
change high-integrity data in the view then the put function
does not modify high-integrity data in the source.

Having identified this semantic space of secure lenses, we
then demonstrate its applicability by developing a security-
enhanced variant of Boomerang, a bidirectional language
whose primitives are based on finite-state string transduc-
tions [7]. We choose to work in the domain of string
transformations both because it is interesting in its own
right—the Intellipedia application is just one example out
of many where one might want an updatable security view
of string data—and because it is a fairly simple setting for
exploring the pragmatics of secure lenses, while still offering
enough structure to raise a host of issues that also come up
in richer settings. In particular, the regular-expression-based
type system is powerful enough to encode non-recursive
XML schemas and is closely related to the full-blown
schema languages of XML transformation languages such
as XQuery [6], which are based on regular tree automata.

We present refined typing rules for Boomerang’s core
primitives—atomic lenses for copying, deleting, and fil-
tering strings, and combinators for concatenation, union,
iteration, and sequential composition. These typing rules
use an information-flow analysis to track dependencies be-
tween data in the source and view and guarantee the lens
laws, including the new non-interference property for the
put function. There are some interesting details compared
to information-flow type systems for general-purpose lan-
guages, since our types describe data schemas at a high level
of precision.

6161

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

So far, we have been talking only about ensuring the
integrity of source data. But confidentiality is also interesting
in this context: typically the whole reason for defining a
security view is to hide certain parts of the source. To
the best of our knowledge, none of the previous work on
security views has provided a way to formally verify that
the information hidden by the view adheres to a declarative
confidentiality policy—the query is the policy. But, having
developed the technical machinery for tracking integrity, it is
easy to extend it to track confidentiality as well, and we do so
in our information-flow type system for Boomerang. Thus,
the actual type system tracks flows of information in two
directions, ensuring confidentiality in the forward direction
and integrity in the reverse direction.

Tracking information flow using a static type system
yields an analysis that is effective but conservative. For
example, if the put component of a lens ever produces a
tainted result, then the type system must classify the source
as tainted to ensure the secure lens properties. However,
very often there are many inputs that the put function can
propagate without tainting the source. In the final technical
section of the paper, we extend secure lenses with dynamic
checks that allow us to test for and detect these situations.
These lenses use a combination of static types and dynamic
tests to establish the same essential security properties and,
in many cases, can be assigned more flexible types.

Our contributions can be summarized as follows:
1. We propose a semantic space of secure lenses that

extends our previous work on lenses with a type
system ensuring the confidentiality and integrity of
data in the source. This provides a framework for
building reliable and updatable security views.

2. We develop the syntax and semantics of annotated
regular expressions, which describe sets of strings as
well as equivalence relations that encode confidential-
ity and integrity policies.

3. We instantiate the semantic space of secure lenses
with specific string lens combinators drawn from the
Boomerang language, and we define a bidirectional
information-flow type system for these combinators
based on annotated regular types.

4. We present an extension to secure lenses that ensures
the integrity of source data but replaces some of the
static constraints on lens types with dynamic tests.

To save space, proofs are deferred to the long version of this
paper, which is available as a technical report [20].

2. Example

Let’s warm up with a very small example—much simpler
than the Intellipedia application discussed in the introduc-
tion, but still rich enough to raise the same essential issues.1

1. Interested readers can find prototype code for computing security
views of MediaWiki documents in the Boomerang source distribution.

Suppose that the source is an electronic calendar in which
certain appointments, indicated by “*”, are intended to be
private.

*08:30 Coffee with Sara (Starbucks)
10:00 Meeting with Brett (My office)
12:00 PLClub Seminar (Seminar room)

*15:00 Work out (Gym)

Next, suppose that we want to compute a security view
where some of the private data is hidden—e.g., perhaps we
want to redact the descriptions of the private appointments
by rewriting them to BUSY and, at the same time, we also
want to erase the location of every appointment.

08:30 BUSY
10:00 Meeting with Brett
12:00 PLClub Seminar
15:00 BUSY

Or, perhaps, we want to go a step further and erase private
appointments completely.

10:00 Meeting with Brett
12:00 PLClub Seminar

In either case, having computed a security view, we might
like to allow colleagues make changes to the public version
of our calendar to correct errors and make amendments.
For example, here the user of the view has corrected a
misspelling by replacing “Brett” with “Brent” and added
a meeting with Michael at four o’clock.

08:30 BUSY
10:00 Meeting with Brent
12:00 PLClub
15:00 BUSY
16:00 Meeting with Michael

The put function of the redacting lens combines this new
view with the original source and produces an updated
source that reflects both changes:

*08:30 Coffee with Sara (Starbucks)
10:00 Meeting with Brent (My office)
12:00 PLClub (Seminar room)

*15:00 Work out (Gym)
16:00 Meeting with Michael

Although this particular update was handled in a reasonable
way, in general, propagating view updates can violate expec-
tations about the handling of hidden data in the source. For
example, if the user of the view deletes some appointments,

08:30 BUSY
10:00 Meeting with Brent

then the source will also be truncated (as it must, to satisfy
the PUTGET law):

6262

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

*08:30 Coffee with Sara (Starbucks)
10:00 Meeting with Brent (My office)

From a certain perspective, this is correct—the updated view
was obtained by deleting appointments, and the new source
is obtained by deleting the corresponding appointments. But
if the owner of the source expects the lens to both hide the
private data and maintain the integrity of the hidden data,
then it is unacceptable for the user of the view to cause
some of the hidden data—the description and location of
the three o’clock appointment and the location of the noon
appointment—to be discarded.

A similar problem arises when the user of the view
replaces a private entry with a public one. Consider a private
appointment in the source

*15:00 Work out (Gym)

which maps via get to a view:

15:00 BUSY

If user of the view replaces it with a public appointment
(here, they have insisted an important event has precedence)

15:00 Distinguished Lecture

then the description (Work out) and location (Gym) associ-
ated with the entry in the original source are both lost.

15:00 Distinguished Lecture

As these examples demonstrate, to manage security views
using lenses reliably, we need mechanisms for tracking the
integrity of source data.

Let us consider an attractive—but impossible—collection
of guarantees we might like to have. Ideally, the get function
of the lens would hide the the descriptions of private
appointments as well as the location of every appointment,
and the put function would take any updated view and
produce an updated source where all of this hidden data
is preserved. Sadly, this is not possible: we either need to
allow the possibility that certain updates will cause hidden
data to be lost, or, if we insist that it must not, then we
need to prevent the user of the view from making those
updates—e.g., deleting entries and replacing private entries
with public ones—in the first place.

Both alternatives can be expressed using the secure
lens framework developed in this paper. To illustrate these
choices precisely, we need a few definitions. The source
and view types of the redacting and erasing lenses are
formed out of regular expressions that describe timestamps,
descriptions, and locations (along with a few predefined
regular expressions, NUMBER, COLON, SPACE, etc.) defined
in Boomerang as follows:

let TIME : regexp =
NUMBER{2} . COLON . NUMBER{2} . SPACE

let DESC : regexp =

[^\n()]* - (ANY . BUSY . ANY)
let LOCATION : regexp =
(SPACE . LPAREN . [^()]* . RPAREN)?

Boomerang uses POSIX notation for character sets
([^\n()]) and repetition (* and {2}). The (.) and (-)
operators denote concatenation and difference.

To specify the policy that prevents the user from applying
updates to the view that would cause hidden data to be lost,
we pick a type that marks some of the data as endorsed
by decorating the bare regular expressions with annotations.
Here is a type in which the private appointments are en-
dorsed, as indicated by annotations of the form (R : E),
but the public appointments are tainted, as indicated by
annotations of the form (R :T):

((SPACE·TIME·DESC·LOCATION·NEWLINE):T
| (ASTERISK·TIME·DESC·LOCATION·NEWLINE):E)∗

⇐⇒
((TIME·DESC·NEWLINE):T | (TIME·BUSY·NEWLINE):E)∗

As described in the next section, before the owner of
the source data allows the user of the view to propagate
their updates back to the source using the put function,
they check that the original and updated views agree on
endorsed data. In this case, since the private appointments
are endorsed, they will refuse to propagate views where
the private appointments have been modified. (The public
appointments, however, may be freely modified.)

Alternatively, to specify the policy that provides weaker
guarantees about the integrity of source data but allows more
updates, we pick a type that labels both public and private
appointments as tainted:

((SPACE·TIME·DESC·LOCATION·NEWLINE):T
| (ASTERISK·TIME·DESC·LOCATION·NEWLINE):T)∗
⇐⇒
(((TIME·DESC·NEWLINE) | (TIME·BUSY·NEWLINE)):T)∗

With this type, the user of the view may update the view
however they like—the whole view is tainted—but the lens
does not guarantee the integrity of any appointments in the
source. The fact that the entire source may be tainted is
reflected explicitly in its type.

Here is the Boomerang code that implements these lenses.

let public : lens =
del SPACE .
copy (TIME . DESC) .
del LOCATION .
copy NEWLINE

let private : lens =
del ASTERISK .
copy TIME .
((DESC . LOCATION) <-> "BUSY") .
copy NEWLINE

6363

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

let redact : lens =
public* . (private . public*)*

let erase : lens =
filter (stype public) (stype private);
public*

Note that there are no security type annotations in these
programs—the current Boomerang implementation only
tracks basic lens types, leaving security type annotations to
be checked by hand. We plan to extend the implementation
with annotated types in the near future.

In the forward direction, these lens definitions can
be read as ordinary string transducers, written in reg-
ular expression style. For example, the public lens
deletes a space character (del SPACE), copies a times-
tamp and description (copy (TIME . DESC)), deletes an
optional location (del LOCATION), and copies a new-
line character (copy NEWLINE). The concatenation oper-
ator (.) combines lenses in the obvious way. Similarly,
the private lens deletes an asterisk (del ASTERISK),
copies the timestamp (copy TIME), redacts the event de-
scription and optional location by rewriting them to BUSY
(DESC . LOCATION? <-> "BUSY"), and copies a newline
(copy NEWLINE). The top-level redact lens processes
blocks of public appointments (public*) interspersed with
private appointments (private). The iteration operator (*)
works by splitting the source string into a list of substrings
and processing these substrings using the get component of
the lens being iterated. The top-level erase lens processes
the source in two phases, combined sequentially (;). It
filters away the private entries in the first phase (stype
extracts the source type of a lens), and transforms the public
appointments (public*) in the second phase.

In the reverse direction, these definitions can be read
as functions that combine the new view with the original
source, propagating the information contained in the view
and restoring discarded information from the source. For
example, the put function of the copy lens (which does not
discard information in the get direction) simply copies the
new view to the source. On the other hand, the put functions
of the delete (del) and rewriting (<->) lenses, which discard
the entire source in the get direction, restore the original
source. The concatenation (.) and iteration (*) operators
split the source and view in substrings and apply the put
of their sublenses to pairs of these smaller strings.2

2. The put functions of the lenses we consider here operate positionally—
e.g., the put function of l∗ splits the source and view into substrings
and applies l.put to pairs of these in order. It is not hard to think of
examples where this behavior is not what is wanted (imagine deleting the
first element of the view...). Readers familiar with Boomerang may recall
that it is actually based on dictionary lenses, which incorporate mechanisms
for handling ordered data [7]. It would be interesting to develop a secure
version of dictionary lenses, but we leave this extension for future work.

3. Semantics

The behavioral laws obeyed by basic lenses ensure some
fundamental sanity conditions, but, as we saw in the preced-
ing section, to uses lenses reliably in security applications
we need additional guarantees. In this section, we present a
refined semantics for secure lenses that obey new behavioral
laws stipulating that the put function must not taint endorsed
(high integrity) source data and the get function must not
leak secret (high confidentiality) data.

Let P (for “privacy”) and Q (for “quality”) be lattices
of security labels representing levels of confidentiality and
integrity, respectively. To streamline the presentation, we
will mostly work with two-point lattices P = {P,S} (for
“public” and “secret”) with P v S and Q = {E,T} (for
“endorsed” and “tainted”) with E v T.

P =
S

P
Q =

T

E

(Although we call endorsed data “high integrity” informally,
it is actually the least element in Q. This is standard—
intuitively, data that is higher in the lattice needs to be
handled more carefully while data that is lower in the
lattice can be used more flexibly.) Our results generalize
straightforwardly to arbitrary finite lattices.

Fix sets S (of sources) and V (of views). To formalize
notions like “these two sources contain the same public
information (but possibly differ on their private parts),” we
will use equivalence relations on S and V indexed by both
lattices of security labels. Formally, let ∼S

k ⊆ S × S and
∼V

k ⊆ V ×V be families of equivalence relations indexed by
security labels in P , and let ≈S

k ⊆ S×S and ≈V
k ⊆ V ×V be

families of equivalence relations indexed by labels in Q. In
what follows, when S and V are clear from context, we will
suppress the superscripts to lighten the notation. Typically,
∼S and ≈T will be equality, while ∼P and ≈E will be coarser
relations that identify sources and views containing the same
public and endorsed parts, respectively. These equivalences
capture confidentiality and integrity policies for the data.

A secure lens l has three components

l.get ∈ S −→ V
l.put ∈ V −→ S −→ S

l.create ∈ V −→ S

that obey the following laws for every s in S, v in V , and
k in Q or P as appropriate:

l.get (l.put v s) = v (PUTGET)
l.get (l.create v) = v (CREATEGET)

v ≈k l.get s
l.put v s ≈k s

(GETPUT)

s ∼k s
′

l.get s ∼k l.get s′
(GETNOLEAK)

6464

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

The PUTGET and CREATEGET laws here are identical to
the basic lens version that we saw in the Introduction and
express the same fundamental constraint on lenses: updates
to views must be propagated to sources exactly.

The GETPUT law for secure lenses, however, is different.
It ensures the integrity of source data, expressed as a non-
interference condition on the put function. Formally, it
requires that if the original view (i.e., the one computed from
the original source) and the new view are related by ≈k, then
the original source and the updated source computed by put
must also be related by ≈k. For example, if the original and
new view are related by ≈E—i.e., they agree on the endorsed
data—then GETPUT guarantees that the new source will also
agree with the original source on endorsed data. Note that
we recover the basic lens law GETPUT when ≈k is equality,
as it typically is for ≈T.

The GETPUT law suggests a protocol for using secure
lenses: before the owner of the source allows the user of a
view to invoke the put function, they check that the original
and updated views are related by ≈k for every k that is lower
in Q than the data the user is allowed to edit—e.g., in the
two-point lattice, a user whose edits are considered tainted
would have the checks performed using ≈E. The owner of
the source only performs the put if the test succeeds.

Secure lenses obey a variant of the PUTPUT law capturing
a notion of lenses that are very well behaved on endorsed
data. The following PUTPUTENDORSED law can be derived
from GETPUT and PUTGET:

v′ ≈k l.get s ≈k v

l.put v′ (l.put v s) ≈k l.put v′ s
(PUTPUTENDORSED)

If ≈k is equality (as it typically is for ≈T) then
PUTPUTENDORSED reduces to GETPUT law: it says that
applying put (twice) to the view obtained by invoking get
on the source yields the original source (both times). If,
however, ≈k relates strings that agree on endorsed data (as it
typically does for ≈E) then PUTPUTENDORSED implies that
put must preserve the endorsed hidden data in the source.
This law allows operators such as conditional and iteration
whose put functions do sometimes discard hidden source
data in the reverse direction, and are therefore not very well
behaved lenses in the strict sense, as long as they indicate
that they do so in their type, by marking the source data that
may be discarded as tainted.

Our main concern in this paper is preserving integrity
after updates, but it is also worth noticing that we can tell
an improved story about confidentiality. In previous work
on (non-updatable) security views, the confidentiality policy
enforced by the view is not stated explicitly—the private
information in the source is simply “whatever information
is projected away in the view.” Our security lenses, on the
other hand, have an explicit representation of confidentiality
policies, embodied in the choice of equivalence relations.
Thus, we can add the GETNOLEAK law stipulating that the

get function must not leak confidential source information
source. This law is formulated as a non-interference condi-
tion stating that, if two sources are related by ∼k, then the
results computed by get must also be related by ∼k. For
example, when ∼P relates two sources, GETNOLEAK en-
sures that the views computed from those sources also agree
on public data. Thus, secure lenses provide a confidentiality
guarantee that can be understood without having to look
at the program defining the lens.3 In the next section, we
present a declarative language for security annotations that
can be used to describe many such equivalences.

4. Annotated Regular Expressions

The types of our secure string lens combinators are regular
expressions annotated with labels drawn from the two lat-
tices of security labels. In this section, we define the precise
syntax and semantics of these annotated regular expressions.

We begin by fixing a few pieces of notation. Let Σ be a
finite alphabet (e.g., ASCII). A language L is a subset of
Σ∗. When L is non-empty, we write rep(L) for an arbitrary
representative of L. The ε symbol denotes the empty string,
and u·v denotes the concatenation of strings u and v. We
lift concatenation to languages in the obvious way. The
iteration of L is L∗ =

⋃∞
n=0 L

n, where Ln denotes the
n-fold concatenation of L with itself.

Many of our definitions require that every string in the
concatenation of two languages have a unique factorization.
We say that two languages L1 and L2 are unambiguously
concatenable, written L1·!L2, if for every u1, v1 in L1 and
u2, v2 in L2, if (u1·u2) = (v1·v2) then u1 = v1 and u2 = v2.
Similarly, we say that a language L is unambiguously iter-
able, written L!∗, if for every (u1, . . . , um), (v1, . . . , vn),∈
L, if (u1 ···um) = (v1 ···vn) then m = n and ui = vi for
i ∈ {1...n}. It is decidable whether two regular languages
are unambiguously concatenable and whether a language is
unambiguously iterable (see [4, Proposition 4.1.3]).

Now we are ready to define our types. Let K = (K,v)
be a finite lattice.4 The set of annotated regular expressions
over Σ and K is given by the following grammar

R ::= ∅ | u | R·R | R|R | R∗ | R :k

where u ∈ Σ∗ and k ∈ K. An annotated expression can be
interpreted in two ways:

3. We treat confidentiality and integrity as orthogonal—almost, see
Section 6—so users can also choose ∼S

P to be equality and our laws place
no constraints on confidentiality. This yields the same story as in previous
systems, where “what the view hides” is read off from the view definition.

4. Note that, to streamline the notation, annotations here are drawn from
just one lattice of labels. Later, when we use these annotated regular
expressions to denote the types of secure string lenses, we’ll decorate them
with labels from both P and Q. When we calculate the semantics of a
type—in particular, the equivalence relations it denotes—we will consider
each lattice separately, ignoring the labels in the other lattice.

6565

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

• As a regular language L(R), defined in the usual way
(after ignoring annotations).

• As a family of equivalence relations ∼k⊆ (L(R) ×
L(R)) capturing the intuitive notion that two strings
differing only in high-security regions cannot be dis-
tinguished by a low-security observer.

To lighten the notation, when it is clear from context we
will often conflate R and L(R)—e.g., we will write u ∈ R
instead of u ∈ L(R).

In many languages with security-annotated types, the type
structure of the language is relatively simple and so the
definition of the “observability relations” is straightforward.
However, annotated regular expressions have features like
non-disjoint unions that make the intended semantics less
obvious—indeed, there seem to be several reasonable al-
ternatives. We describe here a simple semantics based on a
notion of erasing inaccessible substrings that we find natural
and discuss alternatives toward the end of the section.

Formally, we define the equivalence relations using a
function that erases substrings that are inaccessible to a
k-observer and take a pair of strings to be equivalent if
their erased versions are identical. For ease of exposition,
we will describe the erasing function as the composition
of two functions: one that marks the inaccessible regions
of a string and another that erases marked regions. Let #
be a fresh symbol, hash(R) be the function that transforms
strings in L(R) by rewriting every character to #,

hash(R)(u) , #···#︸ ︷︷ ︸
|u| times

and let mark(R, k) be a relation that marks inaccessible
characters:

mark(∅, k) , {}
mark(u, k) , {(u, u)}

mark(R1·R2, k) , mark(R1, k)·mark(R2, k)
mark(R1 | R2, k) , mark(R1, k) & (L(R1) \ L(R2))

∪ mark(R2, k) & (L(R2) \ L(R1))
∪ mark(R1, k) & mark(R2, k)

mark(R1
∗, k) , mark(R1, k)∗

mark(R1:j, k) ,

{
mark(R1, k) if k w j
hash(R1) otherwise

The definition of mark uses the operations of union, con-
catenation, and iteration, which we lift to relations in the
obvious way. The most interesting case is for union. In
general, the languages denoted by a pair of annotated regular
expressions can overlap, so we need to specify how to mark
strings that are described by both expressions as well as
strings that are only described by one of the expressions.
There are three cases: To handle the strings described by
only one of the expressions, we use an intersection operator
that restricts a marking relation Q to a regular language L:

Q & L , {(u, v) | (u, v) ∈ Q ∧ u ∈ L}

To handle strings described by both expressions, we use an
intersection operator that merges markings

Q1 & Q2 , {(u,merge(v1, v2)) | (u, vi) ∈ Qi},

where:

merge(ε, ε) = ε
merge(#·v1, ·v2) = #·merge(v1, v2)
merge(·v1,#·v2) = #·merge(v1, v2)
merge(c·v1, c·v2) = c·merge(v1, v2).

The effect is that characters marked by either relation are
marked in the result.

Although mark is a relation in general, we are actually
interested in cases where it is a function. Unfortunately,
the operations of concatenation, and iteration used in the
definition of mark do not yield a function in general due to
ambiguity. Thus, we impose the following condition:

4.1 Definition: R is well-formed iff every subexpres-
sion of the form R1·R2 is unambiguously concatenable
(L(R1)·!L(R2)) and every subexpression of the form R∗

is unambiguously iterable (L(R)!∗).

4.2 Proposition: If R is well formed, then mark(R, k) is
a function.

In what follows, we will tacitly assume that all annotated
expressions under discussion are well formed. (And when
we define typing rules for our secure lens combinators,
below, we will be careful to ensure well-formedness.)

Let erase be the function on (Σ ∪ {#}) that copies
characters in Σ and erases # symbols. We define ∼k as
the relation induced by marking and then erasing:

hidek(u) , erase(mark(R, k)(u))
∼k , {(u, v) | hidek(u) = hidek(v)}

It is easy to see that ∼k is an equivalence relation.

4.3 Lemma: Let R1 and R2 be well-formed annotated
regular expressions over a finite lattice K. It is decidable
whether R1 and R2 are equivalent.

Proof sketch: Equivalence for the regular languages
L(R1) and L(R2) is straightforward. Moreover, each re-
lation ∼k is induced by hidek(−), which is definable
as a rational function—a class for which equivalence is
decidable [3, Chapter IV, Corollary 1.3]. �

As examples to illustrate the semantics, consider a two-
point lattice ({P,S},v) with P v S and take R1 to be the
annotated expression [a-z]: S. Then for every string u in
L(R1) we have mark(R1,P)(u) = #, and so hideP(u) =
ε, and ∼P is the total relation. For the annotated relation
R1
∗, the equivalence ∼P is again the total relation because

every u in L(R1
∗) maps to a sequence of # symbols by

6666

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

mark(R1
∗,P), and so hideP(u) = ε. More interestingly,

for R2 defined as

([a-z]:P)·([0-4]:S) | ([a-z]:P)·([5-9]:S),

and any string c·n in L(R2) we have mark(R2,P)(c·n) =
c# and so hideP(c·n) = c. It follows that cn ∼P c′n′

iff c = c′. Finally, for R2
∗ the equivalence ∼P identifies

(c1·n1 ···ci·ni) and (d1·m1 ···dj ·mj) iff i = j and ci = di

for i from 1 to n.
As we remarked above, there are other reasonable ways

to define ∼k. For example, instead of marking and eras-
ing, we could instead compose mark with a function that
compresses sequences of # symbols into a single #. The
equivalence induced by this function would allow low-
security observers to determine the presence and location of
high-security data, but would obscure its content. We could
even take the equivalence induced by the mark function
itself! This semantics would reveal the presence, location,
and length of high-security data to low-security observers.
There may well be scenarios where one of these alternative
semantics more accurately models the capabilities of low-
security observers. For simplicity, we will use the erasing
semantics in the rest of the paper.

5. Secure String Lens Combinators

We now turn to defining secure versions of the core lenses
found in Boomerang [7]. The functional components of these
secure lenses are identical to their basic lens versions, but
their typing rules are enhanced with an information-flow
analysis that guarantees the secure lens laws.

Copy The simplest lens, copy E, takes a well-formed
annotated regular expression as an argument. It copies
strings belonging to E in both directions.

E well-formed
copy E ∈ E ⇐⇒ E

get s = s
put v s = v
create v = v

The rule of inference at the top of this box should be read as
a lemma asserting that if E is well-formed then (copy E) is
a well-behaved secure lens at E ⇐⇒ E: i.e., its components
are total functions that obey the PUTGET, CREATEGET,
GETPUT, and GETNOLEAK laws.

Const The next lens, const, takes as arguments two well-
formed annotated regular expressions E and F , with F a
singleton, and a string d that belongs to E. It maps every
source string in E to the unique element of F in the get
direction, and restores the discarded source string in the
reverse direction. The d argument is used as the default
source by the create function.

E,F well-formed |F | = 1 d ∈ E
const E F d ∈ E ⇐⇒ F

get s = rep(F)
put v s = s
create v = d

Typically F will just be a bare string u, but occasionally it
will be useful to decorate it with integrity labels (e.g., see
the discussion following the union combinator below). The
typing rule for const places no additional labels on the source
and view types. This is safe: the get function maps every
string in E to rep(F), so GETNOLEAK holds trivially. The
put restores the source exactly—including any high-integrity
data—so GETPUT also holds trivially. Using const, we can
define some additional lenses as derived forms:

E ↔ F , const E F rep(E) ∈ E ⇐⇒ F

del E , E ↔ ε ∈ E ⇐⇒ ε

ins F , ε↔ F ∈ ε⇐⇒ F

E ↔ F is like const but chooses an arbitrary element of
E as the default; del E deletes a source string belonging to
E in the get direction and restores it in the put direction;
ins F inserts the fixed string rep(F) in the get direction and
removes it in the put direction.

Union The union combinator behaves like a conditional
operator on lenses. Its typing rule uses some new notation,
which will be explained shortly.

(S1 ∩ S2) = ∅
l1 ∈ S1 ⇐⇒ V1 l2 ∈ S2 ⇐⇒ V2

q =
∨
{k | k min obs. V1 6= V2 ∧ V1 & V2 agree}
p =

∨
{k | k min obs. (S1 ∩ S2) = ∅}

l1 | l2 ∈ (S1 | S2):q ⇐⇒ (V1 | V2):p

get s =

{
l1.get s if s ∈ S1

l2.get s if s ∈ S2

put v s =


l1.put v s if s ∈ S1 ∧ v ∈ V1

l2.put v s if s ∈ S2 ∧ v ∈ V2

l1.create v if s ∈ S2 ∧ v ∈ (V1 \ V2)
l2.create v if s ∈ S1 ∧ v ∈ (V2 \ V1)

create v =

{
l1.create v if v ∈ V1

l2.create v if v ∈ (V2 \ V1)

In the forward direction, the union lens uses a membership
test on the source string to select a lens. As usual with
conditionals, the typing rule for union needs to be designed
carefully to take implicit flows of confidential information
into account. To see why, consider the union of the following
two lenses:

l1 , [0-4]:S↔ A ∈ ([0-4]:S)⇐⇒ A
l2 , [5-9]:S↔ B ∈ ([5-9]:S)⇐⇒ B

6767

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

We might be tempted to assign it the type obtained by taking
the unions of the source and view types of the smaller lenses:

(l1 | l2) ∈ ([0-4]:S | [5-9]:S)⇐⇒ (A | B)

But this would be wrong: in general, the get function leaks
information about which branch was selected, as demon-
strated by the following counterexample to GETNOLEAK.
By the semantics of annotated regular expressions, we have
0 ∼P 5, since hideP maps both to the empty string. But:

(l1 | l2).get 0 = A 6∼P B = (l1 | l2).get 5

Most languages with information-flow type systems deal
with these implicit flows by raising the security level of
the result. Formally, they escalate the label on the type of
the result by joining it with the label of the data used in
the conditional test. Our typing rule for the union lens is
based on this idea, although the computation of the label
is somewhat complicated because the conditional test is
membership in S1 or S2, so “the label of the data used
in the conditional test” is the least label that can distinguish
strings in S1 from those in S2. Returning to our example
with (l1 | l2) and the two-point lattice, S is the only such
label, so we label the entire view as secret.

For annotated regular expressions, we can decide whether
a given label distinguishes strings in S1 from those in S2,
and so we can compute the least such label (as P is finite).
Let k be a label in P . We say that k observes (S1∩S2) = ∅
iff for every string s1 ∈ S1 and s2 ∈ S2 we have s1 6∼k s2.
Note that k observes (S1 ∩ S2) = ∅ iff the codomains of
the rational function hidek(−) for S1 and S2 are disjoint.
As the codomain of a rational function is computable and
a regular language, we can decide whether k observes the
disjointness of S1 and S2. In a general lattice there may be
several labels that observe the disjointness of S1 and S2.
The label p we compute for the view type is the join of the
set of minimal labels that observe their disjointness.

In the put direction, the union lens selects a lens using
membership tests on the source and the view (the test on
the view takes priority, with the test on the source breaking
any ties). Here we need to consider the integrity of the source
data since modifying the view can result in l2 being used
for the put function even though l1’s get function was used
to generate the original view, or vice versa. To safely handle
these situations, we need to treat the source string as more
tainted. For example, consider the union of:

l1 , (del [0-4]:E)·(copy [A-Q]:T)
∈ ([0-4]:E·[A-Q]:T)⇐⇒ ([A-Q]:T)

l2 , (del [5-9]:E)·(copy [F-Z]:T)
∈ ([5-9]:E·[F-Z]:T)⇐⇒ ([F-Z]:T)

This lens does not have secure lens type obtained by taking
the union of the source and view types

(l1 | l2) ∈ ([0-4]:E·[A-Q]:T) | ([5-9]:E·[F-Z]:T)
⇐⇒ ([A-Q]:T | [F-Z]:T)

because the put function sometimes fails to maintain the
integrity of the number in the source, as demonstrated by the
following counterexample to GETPUT. By the semantics of
annotated regular expressions, we have Z ≈E A, since hideE

maps both to the empty string. But

(l1 | l2).put Z 0A = 5Z 6≈E 0A

To obtain a sound typing rule for union, we need to raise the
integrity label on the source—i.e., consider the source more
tainted. We do this by annotating the source type with the
least label q such that we can transform a string belonging
to (V1 \ V2) to a string belonging to V2 (or vice versa) by
modifying q-tainted data.

Formally, we compute q as the join of the minimal set of
labels in Q that observe that V1 and V2 are not identical—
e.g., for the lens above, T. For technical reasons—to ensure
that v ∈ V1 and s ∈ S1 and v ≈(S1|S2)

k (l1 | l2).get s implies
v ≈S1

k l1.get s—we also require that q observe that V1 and
V2 denote the same equivalence relations on strings in their
intersection; we write this condition as “V1 & V2 agree.”
Both of these properties can be decided for annotated regular
expressions using elementary constructions.

An important special case arises when V1 and V2 coincide.
Then, since both lenses are capable of handling the entire
view type, the same lens is always selected for put as was
selected for get. For example, the union of

l1 , (del [0-4]:E)·(copy [A-Z]:T)
∈ ([0-4]:E·[A-Z]:T)⇐⇒ ([A-Z]:T)

l2 , (del [5-9]:E)·(copy [A-Z]:T)
∈ ([5-9]:E·[A-Z]:T)⇐⇒ ([A-Z]:T)

does have the type:

([0-4]:E·[A-Z]:T) | ([5-9]:E·[A-Z]:T)⇐⇒ [A-Z]:T

Our typing rule captures this case: if V1 = V2 then q is the
join of the empty set, which equals the minimal element E.
Annotating with E, the least element in Q, is semantically
equivalent to having no annotation at all.

Concatenation The next operator takes two lenses and
forms a lens that operates on the concatenations of their
source and view types.

l1 ∈ S1 ⇐⇒ V1 S1·!S2

l2 ∈ S2 ⇐⇒ V2 V1·!V2

q =
∨
{k | k min obs. V1·!V2}

p =
∨
{k | k min obs. S1·!S2}

l1·l2 ∈ (S1·S2):q ⇐⇒ (V1·V2):p

get (s1·s2) = (l1.get s1)·(l2.get s2)
put (v1·v2) (s1·s2) = (l1.put v1 s1)·(l2.put v2 s2)
create (v1·v2) = (l1.create v1)·(l2.create v2)

The get function takes the source string, splits it in two,
applies the get component of l1 and l2 to these smaller

6868

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

strings, and concatenates the result. We write (s1·s2) to
indicate that s1 and s2 are the unique substrings belonging
to S1 and S2 (which are unambiguously concatenable).

As with the union lens, the typing rule for concatenation
also needs to be designed carefully to take implicit flows of
information into account. Here the implicit flows stem from
the way that the concatenation operator splits strings. As an
example, consider a lens l1 that maps a0 to A and a1 to a,
and a lens l2 that maps b0 to B and b1 to b, where all of
the source data is private except for the 1, which is public:

l1 , ((a:S)·(1:P)↔ A) | ((a:S)·(0:S)↔ a)
∈ (a:S·(0:S | 1:P))⇐⇒ (A | a)

l2 , ((b:S)·(1:P)↔ B) | ((b:S)·(0:S)↔ b)
∈ (b:S·(0:S | 1:P))⇐⇒ (B | b)

The concatenation of l1 and l2 does not have the type
obtained by concatenating their source and view types,

l1·l2 ∈ ((a:S·(0:S | 1:P))·(b:S·(0:S | 1:P)))
⇐⇒ ((A | a)·(B | b)),

because the get function exposes the way that the source
string was split, as demonstrated by a counterexample to
GETNOLEAK:

a1b0 ∼P a0b1
but (l1·l2).get a1b0 = Ab 6∼P aB = (l1·l2).get a0b1.

As with union, we deal with this implicit flow of information
by raising the confidentiality level of the data in the view,
annotating the view type with the least label that observes
the unambiguous concatenation of the source types.

Formally, we say k observes (S1·!S2) iff for every s1·s2
and s′1·s′2 ∈ S1·S2 with s1·s2 ∼k s

′
1·s′2 we have s1∼k s

′
1 and

s2 ∼k s
′
2. We can effectively compute whether a given label

observes the unambiguous concatenation of two annotated
regular expressions using an elementary construction.

In the reverse direction, the concatenation lens splits the
source and view strings in two, applies the put components
of l1 and l2 to the corresponding pieces of each, and con-
catenates the results. An analogous problem now arises with
integrity, so we escalate the label on the source type with
the least label that observes the unambiguous concatenation
of the view types.

Iteration The next combinator iterates a lens.

l ∈ S ⇐⇒ V S!∗ V !∗

q =
∨
{k | k min obs. V !∗}

p =
∨
{k | k min obs. S!∗}

l∗ ∈ (S∗):q ⇐⇒ (V ∗):p

get (s1 ···sn) = (l.get s1)···(l.get sn)
put (v1 ···vn) (s1 ···sm) = s′1 ···s′n

where s′i =
{
l.put vi si i ∈ {1, ...,min(m,n)}
l.create vi i ∈ {m+ 1, ..., n}

create (v1 ···vn) = (l.create v1)···(l.create vn)

As with union and concatenation, we need to escalate the
confidentiality label on the view side and the integrity label
on the source side. To see why, consider the following lens:

l , A:S↔ B:P ∈ A:S⇐⇒ B:P

It is not the case that

l∗ ∈ (A:S)∗ ⇐⇒ (B:P)∗,

as demonstrated by the following counterexample to
GETNOLEAK:

AAA ∼P AA
but l∗.get AAA = BBB 6∼P BB = l∗.get BB.

The problem is that get leaks the length of the source string,
which is secret. Thus, we need to escalate the confidentiality
label on the view type by the least label observing the
unambiguous iterability of the source type.

Likewise, if we consider integrity, it is not the case that
the iteration of

l , [0-9]:E↔ A:T ∈ [0-9]:E⇐⇒ A:T

has type
l∗ ∈ ([0-9]:E)∗ ⇐⇒ (A:T)∗,

as demonstrated by the following counterexample to
GETPUT:

A ≈E AAA = l∗.get 123
but l∗.put A 123 = 1 6≈E 123.

Here the problem is that the update shortens the length
of the view, which causes the iteration operator to discard
endorsed data in the source. Thus, we need to escalate
the integrity label by the join of the minimal label that
observes the unambiguous iterability of V . These labels
can be computed from annotated regular expressions using
elementary constructions.

Sequential Composition The next operator composes
lenses sequentially.

l1 ∈ S ⇐⇒ T l2 ∈ T ⇐⇒ V

l1; l2 ∈ S ⇐⇒ V

get s = l2.get (l1.get s)
put v s = l1.put (l2.put v (l1.get s)) s
create v = l1.create (l2.create v)

In the forward direction it applies the get of l1 followed by
the get of l2, and in the reverse direction it applies the put of
l2 followed by the put of l1 (using l1’s get to generate a T
to use as the source argument for l2’s put). The typing rule
requires that the view type of the first lens and the source
type of the second must be identical.

Filter The filter lens takes as arguments two well-formed
annotated regular expressions E and F , which must be

6969

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

disjoint, and produces a lens that, in the get direction, takes
a string of Es and F s and filters away the F s, and, in the put
direction, weaves together an updated view with the original
source, propagating the changes made to the list of Es in the
view and restoring the F s from the source by position. It is
tempting to define filter as (copy E | del F)∗ but our type
system disallows this grouping of combinators—the view
type of lens being iterated is not unambiguously iterable (as
it contains ε); moreover, its put function does not have the
same behavior as unfilter, which always restores all the F s
from the source. But we can easily define a primitive lens
that has the following filter and unfilter functions as its get
and put components.

let rec filter E xs = match xs with
| ε → ε
| x·xs ′ → if x ∈ E then x·(filter E xs ′) else (filter E xs ′)

let rec unfilter F es xs = match es, xs with
| ε, → filter F xs
| e·es ′, x·xs ′ →

if x ∈ F then x·(unfilter es xs ′)
else e·(unfilter es ′ xs ′)

The definition of the filter lens is as follows.

E,F well-formed E ∩ F = ∅ (E | F)!∗

q =
∨
{k | k min obs. E!∗}

p w
∨
{k | k observes E·!F and F ·!E}

filter E F ∈ (E:q | F:p)∗ ⇐⇒ E∗

get (s1 ···sn) = filter E (s1 ···sn)
put (v1 ···vn) (s1 ···sm) = unfilter F (v1 ···vn) (s1 ···sm)
create (v1 ···vn) = (v1 ···vn)

The typing rule for filter captures the fact that none of the
F s are leaked to the view, and so the F s in the source
can be assigned any confidentiality label (that observes the
unambiguous concatenation of Es and F s). Since observers
with clearance lower than p cannot distinguish source strings
that differ only in the F s, it is simple to show GETNOLEAK:
two source strings are related by ∼P exactly when their
filterings—i.e., the views computed by get—are related by
∼P. In the reverse direction, we need to escalate the integrity
label on the Es by the join of the minimal label that observes
that E is unambiguously iterable. However, the F s are
restored exactly, so their integrity level does not need to
be escalated.

Subsumption Secure lenses also admit a rule of subsump-
tion that allows us to escalate the integrity level on the source
and the confidentiality level on the view.

l ∈ S ⇐⇒ V q ∈ Q p ∈ P
l ∈ (S:q)⇐⇒ (V :p)

It may seem silly to escalate labels arbitrarily, but it is

occasionally useful—e.g., to make the types agree when
forming the sequential composition of two lenses.

6. Dynamic Secure Lenses

Using the static type system to track tainted source data
is effective, but conservative—it forces us to label source
data as tainted if the put function ever produces a tainted
result, even if there are many inputs for which it does not. In
this section, we explore the idea of augmenting lenses with
dynamic tests to check whether put can preserve the integrity
of the endorsed data in the source for a particular view
and source. This generalization makes it possible for lenses
to make very fine-grained decisions about which views to
accept and which to reject, and allows us to assign relaxed
types to many of our lens primitives while still retaining
strong guarantees about integrity.

At the same time that we extend lenses with these
dynamic tests, we also address a subtle interaction between
confidentiality and integrity that we have ignored thus far. In
the preceding sections, we have assumed that the confiden-
tiality and integrity annotations are completely orthogonal—
the semantics of types treats them as independent, and
each behavioral law only mentions a single kind of label.
However, the protocol for propagating updates to views,
in which the owner of the source data tests whether the
original and updated views agree on endorsed data, can re-
veal information—possibly confidential—about the source.
In this section, we eliminate the possibility of such leaks by
adding a new behavioral law requiring that testing whether
a given view can be handled (now using arbitrary dynamic
tests) must not leak confidential information. (An analogous
fix can be made in the purely static type system described
in the preceding section.)

Formally, we let C ⊆ P × Q be a set of clearances.
A user with clearance (j, k) is allowed to access data at
confidentiality level j and modify data tainted at integrity
level k. We extend lenses with a new function

l.safe ∈ C −→ L(V) −→ L(S) −→ B

that returns true iff a user with clearance (j, k) can safely
put a particular view and source back together. We replace
the hypothesis that v ≈k s in the GETPUT law with safe,
requiring, for all (j, k) ∈ C and s ∈ S and v ∈ V that

l.safe (j, k) v s
l.put v s ≈k s

(GETPUT)

and we revise the protocol for propagating updates to the
view accordingly: before allowing the user of a view to
invoke put, the owner of the source checks that the original
and updated views are safe for the user’s clearance.

As discussed above, these safe functions, which are arbi-
trary functions, can reveal information about source data. We
therefore add a new law stipulating that safe must not reveal

7070

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

confidential data, formulated as a non-interference property
for every (j, k) ∈ C, every s, s′ ∈ S, and v, v′ ∈ V :

v ∼j v
′ s ∼j s

′

l.safe (j, k) v s = l.safe (j, k) v′ s′
(SAFENOLEAK)

For technical reasons—to prove that the safe component
of the sequential composition operator, which is defined in
terms of the put function of one of its sublenses, satisfies
SAFENOLEAK—we also need a law stipulating that the put
function must be non-interfering for all (j, k) ∈ C and for
all s, s′ ∈ S and v, v′ ∈ V :

v ∼j v
′ s ∼j s

′

l.safe (j, k) v s l.safe (j, k) v s′

l.put v s ∼j l.put v′ s′
(PUTNOLEAK)

With these refinements, we can now present revised versions
of each of our secure string lens combinators.

For copy the safe function checks whether the new view
and original source agree on k-integrity data.

E well-formed ∀ (j, k) ∈ C. ∼j ⊆ ≈k

copy E ∈ E ⇐⇒ E

safe (j, k) v s = v ≈k s

To ensure that safe does not leak information, we add a
hypothesis to the typing rule requiring that ∼j must refine
≈k for every (j, k) ∈ C. This condition captures the essential
interaction between the confidentiality and integrity lattices.

For const, the view type is a singleton, so there is only one
possible update—a no-op. Hence, we choose a safe function
that always returns true.

E,F well-formed |F | = 1 d ∈ E
const E F d ∈ E ⇐⇒ F

safe (j, k) v s = true

For the concatenation lens, we choose a safe function that
tests if the unique substrings of the source and view are
safe for l1 and l2. It also checks whether j observes the
unambiguous concatenation of the source and view types—
this is needed to prove PUTNOLEAK and SAFENOLEAK.

l1 ∈ S1 ⇐⇒ V1 S1·!S2

l2 ∈ S2 ⇐⇒ V2 V1·!S2

p =
∨
{k | k min obs. S1·!S2}

l1·l2 ∈ (S1·S2)⇐⇒ (V1·V2):p

safe (j, k) v1.v2 s1.s2 =
j observes S1·!S2 and V1·!V2

∧ l1.safe (j, k) v1 s1 ∧ l2.safe (j, k) v2 s2)

For the union lens, the safe function tests whether the
source and view can be processed by the same sublens.
(Additionally, because safe can be used to determine whether

the source came from S1 or S2, it only returns true if j
observes their disjointness and if V1 and V2 agree in their
intersection.)

(S1 ∩ S2) = ∅
l1 ∈ S1 ⇐⇒ V1 l2 ∈ S2 ⇐⇒ V2

p =
∨
{k | k min obs. (S1 ∩ S2) = ∅}

l1 | l2 ∈ (S1 | S2)⇐⇒ (V1 | V2):p

safe (j, k) v s =
j observes (S1 ∩ S2) = ∅ and V1 & V2 agree

∧
l1.safe (j, k) v s if v ∈ V1 ∧ s ∈ S1

l2.safe (j, k) v s if v ∈ V2 ∧ s ∈ S2

false otherwise

For the iteration lens, safe checks that the view is the
same length as the one generated from the source. Because
safe can be used to determine the length of the source, we
require that j observe the unambiguous concatenation of
S and V (which implies that j can distinguish strings of
different lengths).

l ∈ S ⇐⇒ V
p =

∨
{k | k min obs. S!∗}

l∗ ∈ S∗ ⇐⇒ (V ∗):p

safe (j, k) (v1 ···vn) (s1 ···sm) =
j observes S!∗ and V !∗

∧n = m ∧ l.safe (j, k) vi si for i ∈ {1, ..., n}

For sequential composition, the safe function requires the
conditions implied by l1’s safe function on the intermediate
view computed by l2’s put on the view and the original
source.

l1 ∈ S ⇐⇒ T l2 ∈ T ⇐⇒ V

l1; l2 ∈ S ⇐⇒ V

safe (j, k) s v = l1.safe (j, k) (l2.put v (l1.get s)) s

Note that the composition operator is the reason we need
the PUTNOLEAK law and that SAFENOLEAK needs to
require that safe be non-interfering in both its source and
view arguments (rather than just its source argument). We
could relax these conditions by only requiring PUTNOLEAK
of lenses used as the second argument to a composition op-
erator and the full version of SAFENOLEAK of lenses used
as the first argument. This would give us yet more flexibility
in designing safe functions (at the cost of complicating the
type system since we would need to track several different
kinds of lens types). We defer this extension to future work.

Finally, the safe function for the filter lens checks that
the new view and filtered source agree on k-endorsed data.
Additionally, to ensure that safe does not leak information
about the source, safe also checks that j observes the way

7171

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

the way that Es and F s are split in the source, as well as
the unambiguous iterability of E.

E,F well-formed E ∩ F = ∅ (E | F)!∗

p w
∨
{k | k observes E·!F and F ·!E}
∀ (j, k) ∈ C. ∼E

j ⊆ ≈E
k

filter E F ∈ (E | F:p)∗ ⇐⇒ E∗

safe (j, k) (v1 ···vn) (s1 ···sm) =
j observes E·!F and F ·!E ∧ j and k observe E!∗

∧ (v1 ···vn) ≈k (filter E (s1 ···sm))

The revised lens definitions in this section illustrate how
dynamic tests can be incorporated into the secure lens
framework, providing fine-grained mechanisms for updating
security views and relaxed types for many of our secure
string lens combinators. However, they represent just one
point in a large design space. We can imagine wanting
to equip lenses with several different safe functions—e.g.,
some accepting more views but offering weaker guarantees
about the integrity of source data, and others that accept
fewer views but offer correspondingly stronger guarantees.
We plan to investigate the tradeoffs along these axes in the
future.

7. Related Work

This paper builds on our previous work on lenses [19], [8],
[7], [21]. A number of other bidirectional languages have
also been proposed [37], [41], [26], [9], [24], [35], [17], [23],
[30], [28]. The original lens paper [19] includes an extensive
survey of the relationship between lenses and approaches to
the view update problem in the database literature.

Views have long been used to enforce security boundaries
in relational database systems. They were first proposed
as a security mechanism for XML data by Stoica and
Farkas [38] and were later studied extensively by Fan and
his colleagues in a series of papers [14], [15], [16]. The
key difference between previous work on security views and
the framework proposed in this paper, of course, is support
for updates. Additionally, previous systems do not provide
a way to formally characterize the data kept confidential
by the view—the query that defines the view essentially
is the privacy policy. Lastly, views in previous systems
have typically been virtual, while the views constructed
using lenses are materialized. Fan [14] has argued that
materializing views is not practical, because many different
security views are often needed when policies are complex.
We find this argument compelling in the traditional database
setting, where data sources are typically very large, but
believe that there are also many applications where building
materialized security views will be practical. Moreover, in
at least some applications, views must be materialized—e.g.,
in the Intellipedia system discussed in the introduction, the

regraded documents need to be sent over the network and
displayed in a web browser.

The idea of using static analyses to track flows of in-
formation in programs was originally proposed by Denning
and Denning [13] and has since been applied in a variety of
languages, including Jif [32], a secure variant of Java, and
FlowCaml [33], a secure variant of OCaml. The excellent
survey article by Sabelfeld and Myers [34] gives a general
overview of the entire area and provides numerous citations.

Rather less work has focused on applying information-
flow analyses to data processing languages. The developers
of CDuce, a functional language for processing XML data,
studied an extension of the language where labels corre-
sponding to security levels are propagated dynamically [2].
Foster, Green, and Tannen proposed a mechanism for en-
suring non-interference properties of tree transformations
using a semantics that propagates dynamic provenance an-
notations [18]. The Fable language also propagates security
labels dynamically [39], [11]. Fable does not fix a particular
semantics for label propagation, but instead provides a
general framework that enforces a strict boundary between
ordinary program code, which must treat labels opaquely,
and security code, which may manipulate labels freely.
Thus, it can be used to implement a variety of static and
dynamic techniques for tracking information flows in pro-
grams. Cheney, Ahmed, and Ucar have introduced a general
framework for comparing static and dynamic approaches to
many dependency analyses including information flow [10].

Integrity can be treated as a formal dual to confidentiality,
as was first noted by Biba [5]. Thus, most of the languages
discussed above can also be used to track integrity properties
of data. However, as noted by Li, Mao, and Zdancewic [25],
information-flow analyses provide weaker guarantees for
integrity compared to confidentiality when code is untrusted.
Specific mechanisms for tracking integrity have also been
included in a variety of languages: Perl has a simple taint
tracking mechanism for data values [42]. Wassermann and
Su proposed a more powerful approach based on a dynamic
analysis of generated strings that tracks tainted data in PHP
scripts [43]. Shankar et al. developed a taint analysis for C
code using the cqual system. Finally, researchers at IBM
have recently implemented a taint analysis tool for Java
designed to scale to industrial-size web applications [40].

The Intellipedia example discussed in the introduction is
partly inspired by a system for building “tearline” security
views of MediaWiki documents developed by Galois Inc.

8. Future Work

We are adding the features described in this paper to the
Boomerang implementation. We can already use Boomerang
to develop lens programs that define updatable security
views, since the functional components of the secure lens
combinators and their basic lens versions are identical.

7272

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

However, the type system in the current implementation only
tracks regular types. To bring it up to speed, we need an
implementation of annotated regular types, which in turn
requires implementing a library for representing rational
functions and deciding properties such as equivalence and
the various observability conditions in the typing rules.

We have presented both a static type system for secure
lenses and an approach using dynamic very well behaved
lenses. We would like to explore connections with other
dynamic approaches—e.g., languages that propagate dy-
namic labels [44], [36] and provenance metadata. We hope
that these languages will suggest mechanisms for enforcing
security properties at finer levels of granularity than our
current, static, approach can track. We would also like to
explore declassification operators [31], quantitative measures
of information flow [27], and formal notions of privacy [29].

We would also like to further explore some of the alterna-
tive semantics for annotated regular types that we mentioned
in Section 3. We chose to work with the erasing semantics
in this paper because it seems simplest, but we expect there
will be applications where the redacting semantics is a more
natural fit. We are also interested in relations for integrity
capturing the notion that a modified string “extends” another.

Finally, we would like to develop security-annotated type
systems and secure lenses in other settings besides strings—
e.g., trees, relations, and graphs. For relations, the bidirec-
tional language proposed by Bohannon et al. [8] should be
a good starting point.

Acknowledgments We are grateful to Mike Hicks, An-
drew Myers, Jeff Vaughan, and Geoff Washburn for stimu-
lating discussions; to Philip Wadler for suggesting that we
investigate dynamic very well behavedness; and to Davi
Barbosa, Kathleen Fisher, and the anonymous referees for
helpful comments on an earlier draft. Our work is sup-
ported by the National Science Foundation under grants IIS-
0534592 Linguistic Foundations for XML View Update, and
CT-0716469 Manifest Security.

References

[1] François Bancilhon and Nicolas Spyratos. Update semantics
of relational views. ACM Transactions on Database Systems,
6(4):557–575, December 1981.

[2] Vronique Benzaken, Marwan Burelle, and Giuseppe
Castagna. Information flow security for XML
transformations. In Advances in Computing Science:
Programming Languages and Distributed Computation
(ASIAN), Mumbai, India, volume 2896 of Lecture Notes in
Computer Science, pages 33–53, 2003.

[3] Jean Berstel. Transductions and Context-Free Languages.
Teubner Verlag, 1979.

[4] Jean Berstel, Dominique Perrin, and Christophe Reutenauer.
Codes and Automata. Cambridge University Press,

2009. To appear. Manuscript available from http://
www-igm.univ-mlv.fr/~berstel/LivreCodes/.

[5] Kenneth J. Biba. Integrity considerations for secure computer
systems. Technical Report ESD-TR 76-372, The MITRE
Corporation, 1977.

[6] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie, and Jérôme Siméon. XQuery 1.0:
An XML Query Language. W3C, January 2007. Available
from http://www.w3.org/TR/xquery.

[7] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. Boomerang: Re-
sourceful lenses for string data. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), San Francisco, CA, pages 407–419, January
2008.

[8] Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C.
Pierce. Relational lenses: A language for updateable views. In
ACM SIGACT–SIGMOD–SIGART Symposium on Principles
of Database Systems (PODS), Chicago, TL, 2006. Extended
version available as University of Pennsylvania technical
report MS-CIS-05-27.

[9] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Dual syntax for XML languages. Information Systems, 33(4–
5):385–406, 2008. Short version in DBPL ’05.

[10] James Cheney, Amal Ahmed, and Umut A. Acar. Provenance
as dependency analysis. In Symposium on Database Program-
ming Languages (DBPL), Vienna, Austria, pages 138–152,
2007.

[11] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks.
Combining provenance and security policies in a web-
based document management system. In On-line Pro-
ceedings of the Workshop on Principles of Prove-
nance (PrOPr), Edinburgh, Scotland, November 2007.
http://homepages.inf.ed.ac.uk/jcheney/propr/.

[12] Umeshwar Dayal and Philip A. Bernstein. On the correct
translation of update operations on relational views. ACM
Transactions on Database Systems, 7(3):381–416, September
1982.

[13] Dorothy E. Denning and Peter J Denning. Certification of
programs for secure information flow. Communications of
the ACM, 20(7):504–513, 1977.

[14] Wenfei Fan, Chee Yong Chan, and Minos N. Garofalakis.
Secure XML querying with security views. In ACM SIG-
MOD International Conference on Management of Data
(SIGMOD), Paris, France, pages 587–598, 2004.

[15] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Ke-
mentsietsidis. SMOQE: A system for providing secure access
to XML. In International Conference on Very Large Data
Bases (VLDB), Seoul, Korea, pages 1227–1230, September
2006.

[16] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Ke-
mentsietsidis. Rewriting regular XPath queries on XML
views. In International Conference on Data Engineering
(ICDE), Istanbul, Turkey, pages 666–675, April 2007.

7373

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

[17] Kathleen Fisher and Robert Gruber. PADS: a domain-specific
language for processing ad hoc data. In ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI), Chicago, IL, pages 295–304, 2005.

[18] J. Nathan Foster, Todd J. Green, and Val Tannen. Anno-
tated XML: Queries and provenance. In ACM SIGACT–
SIGMOD–SIGART Symposium on Principles of Database
Systems (PODS), Vancouver, BC, pages 271–280, June 2008.

[19] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for
bidirectional tree transformations: A linguistic approach to
the view update problem. ACM Transactions on Programming
Languages and Systems, 29(3), May 2007.

[20] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic.
Updatable security views. Technical Report MS-CIS-09-05,
Department of Computer & Information Science, University
of Pennsylvania, 2009.

[21] J. Nathan Foster, Alexandre Pilkiewcz, and Benjamin C.
Pierce. Quotient lenses. In ACM SIGPLAN International
Conference on Functional Programming (ICFP), Victoria,
BC, pages 383–395, September 2008.

[22] G. Gottlob, P. Paolini, and R. Zicari. Properties and update se-
mantics of consistent views. ACM Transactions on Database
Systems (TODS), 13(4):486–524, 1988.

[23] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A
programmable editor for developing structured documents
based on bidirectional transformations. Higher-Order and
Symbolic Computation, 21(1–2), June 2008.

[24] Shinya Kawanaka and Haruo Hosoya. bixid: a bidirectional
transformation language for XML. In ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP),
Portland, Oregon, pages 201–214, 2006.

[25] Peng Li, Yun Mao, and Steve Zdancewic. Information
Integrity Policies. In Proceedings of the First Workshop
on Formal Aspects in Security and Trust (FAST), Pisa, Italy,
September 2003.

[26] David Lutterkort. Augeas–A configuration API. In Linux
Symposium, Ottawa, ON, pages 47–56, 2008.

[27] Stephen McCamant and Michael D. Ernst. Quantitative
information flow as network flow capacity. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), Tuscon, AZ, pages 193–205, 2008.

[28] Lambert Meertens. Designing constraint maintainers
for user interaction, 1998. Manuscript, available from
ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps.

[29] Gerome Miklau and Dan Suciu. A formal analysis of
information disclosure in data exchange. Journal of Computer
and Systems Sciences, 73(3):507–534, 2007.

[30] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An
algebraic approach to bi-directional updating. In ASIAN Sym-
posium on Programming Languages and Systems (APLAS),
pages 2–20, November 2004.

[31] Andrew Myers and Barbara Liskov. A decentralized model
for information flow control. In ACM Symposium on Oper-
ating Systems Principles (SOSP), Saint Malo, France, pages
129–142, 1997.

[32] Andrew C. Myers. Jflow: Practical mostly-static information
flow control. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), San Antonio,
TX, pages 228–241, 1999.

[33] Franois Pottier and Vincent Simonet. Information flow infer-
ence for ML. ACM Transactions on Programming Languages
and Systems, 25(1):117–158, January 2003.

[34] Andrei Sabelfeld and Andrew C. Myers. Language-Based
Information-Flow Security. IEEE Journal on Selected Areas
in Communications, 21(1), 2003.

[35] Andy Schürr. Specification of Graph Translators with
Triple Graph Grammars. In International Workshop Graph-
Theoretic Concepts in Computer Science, Herrsching, Ger-
many, volume 903 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[36] Paritosh Shroff, Scott F. Smith, and Mark Thober. Dynamic
dependency monitoring to secure information flow. In 20th
IEEE Computer Security Foundations Symposium (CSF),
pages 203–217, July 2007.

[37] Perdita Stevens. Bidirectional model transformations in QVT:
Semantic issues and open questions. In International Confer-
ence on Model Driven Engineering Languages and Systems
(MoDELS), Nashville, TN, volume 4735 of Lecture Notes in
Computer Science, pages 1–15. Springer-Verlag, 2007.

[38] Andrei Stoica and Csilla Farkas. Secure XML views. In IFIP
WG 11.3 International Conference on Data and Applications
Security (DBSEC), Cambridge, UK, pages 133–146, 2002.

[39] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable:
A language for enforcing user-defined security policies. In
Proceedings of the IEEE Symposium on Security and Privacy
(Oakland), pages 369–383, May 2008.

[40] Omer Tripp, Marco Pistoia, Stephen Fink, Manu Sridharan,
and Omri Weisman. TAJ: Effective taint analysis of web
applications. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Dublin,
Ireland, 2009. To appear.

[41] Janis Voigtländer. Bidirectionalization for free! In ACM
SIGPLAN–SIGACT Symposium on Principles of Program-
ming Languages (POPL), Savannah, GA, pages 165–176,
January 2009.

[42] Larry Wall, Tom Christiansen, and Jon Orwant. Programming
Perl (3rd Edition). O’Reilly, July 2000.

[43] Gary Wassermann and Zhendong Su. Sound and precise
analysis of web applications for injection vulnerabilities.
In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), San Diego, CA, pages
32–41, 2007.

[44] Lantian Zheng and Andrew C. Myers. Dynamic security
labels and static information flow control. International
Journal of Information Security, 6(2–3):67–84, March 2007.

7474

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2009 at 13:41 from IEEE Xplore. Restrictions apply.

