
ENABLING MORE ACCURATE AND EFFICIENT STRUCTURED PREDICTION

David Weiss

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2013

Supervisor of Dissertation

Ben Taskar

Associate Professor, Computer and Information Science

Graduate Group Chairperson

Val Tannen, Professor, Computer and Information Science

Dissertation Committee:

Kostas Daniilidis, Professor, Computer and Information Science

Daniel Lee, Professor, Computer and Information Science

Camillo J. Taylor, Associate Professor, Computer and Information Science

Pedro Felzenszwalb, Associate Professor, Computer Science, Brown University

ENABLING MORE ACCURATE AND EFFICIENT STRUCTURED PREDICTION

COPYRIGHT

2013

David Weiss

For Ben: My advisor, mentor, and friend; I miss you.

iii

Acknowledgements

I would like to first thank and acknowledge my advisor, Ben Taskar. This thesis would

simply not exist without his unwavering expert guidance, encouragement, and support. His

boundless energy and enthusiasm for our work pushed me to achieve what I thought was

impossible. I could not have asked for a better advisor.

I am grateful to Kostas Daniliidis, the chair of my committee, for his consistent advice

and confidence in me. I would also like to thank the rest of my committee–Dan Lee,

CJ Taylor, and Pedro Felzenszwalb–for helping me forge my years of effort into a single

coherent document. I am also indebted to my original co-advisor Michael Kearns, who

shaped the start of my time in graduate school.

During my time at Penn, I was fortunate to be surrounded by an amazing community of

colleagues and friends. I count myself lucky to have had the opportunity to work so closely

with Benjamin Sapp. Without Andrew King, I would have missed out on an amazing paper

title and acronym. Many thanks to Alex, Alex, Cody, Chris, Christine, Emily, Joao, Jenny,

Katie, Katerina, Kuzman, Matthieu, Ryan, Steve, and Umar. I would not have made it

through this process without you.

Finally, I am only the person I am today because of my family: my parents, Robert

and Margaret, and my brothers, Michael and Jonny. Their love kept me going through the

difficult times where I needed it most.

iv

ABSTRACT

ENABLING MORE ACCURATE AND EFFICIENT STRUCTURED PREDICTION

David Weiss

Ben Taskar

Machine learning practitioners often face a fundamental trade-off between expressiveness

and computation time: on average, more accurate, expressive models tend to be more com-

putationally intensive both at training and test time. While this trade-off is always applica-

ble, it is acutely present in the setting of structured prediction, where the joint prediction

of multiple output variables often creates two primary, inter-related bottlenecks: inference

and feature computation time.

In this thesis, we address this trade-off at test-time by presenting frameworks that en-

able more accurate and efficient structured prediction by addressing each of the bottlenecks

specifically. First, we develop a framework based on a cascade of models, where the goal

is to control test-time complexity even as features are added that increase inference time

(even exponentially). We call this framework Structured Prediction Cascades (SPC); we

develop SPC in the context of exact inference and then extend the framework to handle

the approximate case. Next, we develop a framework for the setting where the feature

computation is explicitly the bottleneck, in which we learn to selectively evaluate features

within an instance of the mode. This second framework is referred to as Dynamic Struc-

tured Model Selection (DMS), and is once again developed for a simpler, restricted model

before being extended to handle a much more complex setting. For both cases, we evaluate

our methods on several benchmark datasets, and we find that it is possible to dramatically

improve the efficiency and accuracy of structured prediction.

v

Contents

Acknowledgements iv

1 Introduction 1

1.1 Thesis Overview . 4

2 Related Work 6

2.1 Controlling computation of multi-class classification 8

2.1.1 Computational trade-offs during model selection 8

2.1.2 Predicting with fixed test-time budgets 9

2.1.3 Resource allocation for batch testing 10

2.1.4 Classifier cascades . 11

2.1.5 More general multi-stage decision systems 11

2.1.6 Feature extraction policies . 12

2.2 Related approaches for structured prediction 14

2.2.1 Coarse-to-fine reasoning . 14

2.2.2 Early stopping cascade . 15

2.2.3 Prioritized inference . 16

2.2.4 Meta-learners/predicting model accuracy 16

2.2.5 Applications of preliminary works 16

2.3 Summary . 17

3 Structured Prediction: An Overview 18

vi

3.1 Supervised learning . 18

3.2 Structured prediction . 19

3.2.1 Representing structure with factor graphs 21

3.2.2 Complexity of inference . 21

3.2.3 Max-margin parameter learning 24

3.3 Trading off computation and expressiveness 25

3.4 Summary . 26

4 Structured Prediction Cascades (SPC) 28

4.1 Enabling complexity via filtering Y . 29

4.2 Cascaded inference with max-marginals 30

4.3 Learning structured prediction cascades 36

4.4 Generalization analysis . 40

4.5 Experiments . 41

4.5.1 Speed: Part-of-speech (POS) tagging 42

4.5.2 Accuracy: Handwriting recognition 45

4.6 Summary . 46

5 Ensemble-SPC: SPC for Loopy Graphs 48

5.1 Decomposition without agreement constraints 49

5.2 Safe filtering . 51

5.3 Learning with ensembles . 52

5.4 Generalization analysis . 53

5.5 Experiments . 53

5.5.1 Synthetic loopy graphs with Ensemble-SPC 54

5.5.2 Articulated pose tracking cascade 57

5.6 Summary . 59

6 Dynamic Structured Model Selection (DMS) 61

6.1 Meta-learning with a value-based selector 63

vii

6.2 Learning the models and selector . 64

6.3 Application to sequential prediction . 67

6.3.1 Handwriting recognition . 67

6.3.2 Human pose estimation in video 72

6.3.3 Evaluation of MODEC+S . 75

6.3.4 Evaluation of DMS for MODEC+S 76

6.4 Summary . 79

7 DMS-π: Policy-based Model Selection 80

7.1 Q-Learning a feature extraction policy . 82

7.2 Design of the information-adaptive predictor h 88

7.3 Batch mode inference . 92

7.4 Experiments . 93

7.4.1 Tracking of human pose in video 95

7.4.2 Handwriting recognition . 96

7.5 Summary . 98

8 Future Work 99

8.1 Combining SPC and DMS-π . 99

8.1.1 SPC-π on Linear-chains . 102

8.1.2 Extending to loopy graphs . 102

8.1.3 Summary . 103

9 Conclusion 104

A Theorem Proofs 105

A.1 Proofs of Theorems 1 and 2 . 105

A.1.1 Proof of Theorem 1 . 107

A.1.2 Proof of Theorem 2 . 111

viii

List of Tables

4.1 Summary of key notation. 33

4.2 Summary of WSJ results . 45

4.3 Summary of handwriting recognition results 47

7.1 Pose trade-off for accuracy/computation 88

ix

List of Illustrations

3.1 Several common factor graphs . 22

3.2 Agglomerating variable states . 24

3.3 Removing loops from a trigram model . 26

4.1 High level overview of SPC framework 31

4.2 Sample cascade output . 32

4.3 Computing max-marginals . 34

4.4 Thresholing bigrams using max-marginals 35

4.5 Sparsity of inference . 43

5.1 Example tree decomposition . 50

5.2 Schematic overview of Ensemble-SPC . 55

5.3 Synthetic segmentation results . 56

5.4 Qualitative Ensemble-SPC test results . 58

5.5 Prediction error on videopose dataset . 60

6.1 Trade-off on handwriting recognition task 66

6.2 MODEC+S exceeds state-of-the-art . 68

6.3 Dynamic model selection on the CLIC dataset 71

6.4 Expansion distribution of DMS . 77

6.5 Qualitative results on CLIC dataset . 78

7.1 Overview of framework architecture . 83

x

7.2 Trade-off curves on the pose dataset . 91

7.3 Controlling overhead on OCR dataset . 97

xi

Chapter 1

Introduction

This thesis is motivated by the inherent trade-off in applied machine learning of expressive-

ness vs. computation. To make this concrete, we consider supervised discrete prediction

problems where the goals is to predict a discrete output variable Y given some input X .

Specifically, we assume we have a linear hypothesis of the form:

h(x) = argmax
y∈Y

w>f(x,y) (1.1)

where Y is the domain of Y (the output space), w is a parameter weight vector and f is a

feature generating function. This linear prediction framework encompasses most standard

supervised learning settings and algorithms, where the goal is to learn a parameter vector

w in order to minimize some expected error for a prediction task in a given domain.

In this thesis, we are instead primarily concerned with the question: what are the com-

putational requirements of evaluating h(x)? As an example, consider an instance of the

standard multi-class classification problem from computer vision is image classification,

where x is an input image, Y = {1, . . . , K} (where K is the number of classes of images),

and f computes a vector of image features such as SIFT. The computation required for h(x)

is two steps: first, we compute the image features (SIFT), then, we score the feature vector

for each class in Y and find the argmax. In general, we see that there are two potential

bottlenecks for h(x): (1) computing the features f(x,y), and (2) computing the argmax in

(1.1) given the scored feature vectors. If computing features is the computational bottle-

1

neck, then the expressiveness vs. computation trade-off is intuitively very simple: adding

more features to the model increases the expressiveness of the model at additional compu-

tational cost.

Given a set of models of varying expressiveness and computational cost, the standard

static model selection problem is to choose a model that which is closest to a given target

in the space of possible trade-offs. For example, we might desire the most accurate face

detector that runs in less than a fraction of a second on a typical server, or we might desire

the most efficient face detector that still achieves 99.9% recall on a standard benchmark.

To make the example still more concrete, suppose we have a hierarchy of feature generat-

ing functions f1 ⊆ f2 . . . fD, each requiring more time to compute than the previous. One

simple model selection technique would be to learn parameter vectors w1, . . . ,wD sepa-

rately for each model using standard machine learning techniques, evaluate each one on a

development data set, and choose the one that best satisfies our problem constraints using

estimates of runtime and accuracy on the development set.

In contrast, in this thesis we study test-time model selection methods that, given a

model hierarchy, can achieve a much more accurate hybrid model with the same or better

expected runtime as the static model selection scheme just described. For example, the

highly influential classifier cascade of Viola and Jones (2002) provided a significant leap

in state-of-the-art performance for face detection. At a high level, the classifier cascade

approach to model selection is use a hybrid model that utilizes the cheapest model fj in

f1, . . . , fD that has margin w>j fj(x,y) above some threshold; in this way, “easy” examples

will be evaluated quickly while “hard” examples will be assigned more computation time;

on average, the accuracy can reach that of the most expensive model, while the computation

time remains much lower. The contributions of this thesis can best be understood within

the space of multi-stage, hybrid model selection techniques.

In particular, we present methods for improving the expressiveness-computation trade-

off over static training-time model selection for the setting of structured prediction, where

which features are computed is often more important to computation time than how many

2

features are computed. Put simply, structured prediction is the joint prediction of multi-

ple discretely-valued output variables, and this problem arises in many application areas of

machine learning. For example, one problem studied in this thesis is handwriting recogni-

tion, or the joint prediction of the English letters associated with a sequence of handwritten

characters. Note that this problem still falls in the general framework for h(x) from (1.1);

for a sequence of length ` and an alphabet of size K, we simply have that Y is the product

of ` discrete spaces {1, . . . , K}. The key empirical finding is that structured prediction–

making predictions for each character simultaneously–provides far more accurate results

on this task than the alternative of making separate predictions for each character indepen-

dently. The reason that the data is not generated independently for each character: because

the writer is writing English words, the assignment of each letter in the word carries infor-

mation on nearby letters.

Structured prediction is a natural framework both for learning high-order statistics of

the data, and for incorporating hard constraints on the output space. By explicitly represent-

ing such interactions as features, structured prediction allows one to learn the higher-order

statistics of the training data, and thereby ensure that predictions properly take into account

interactions between output variables at test time. Furthermore, in certain settings, there

exist hard constraints on the interactions between output variables: for instance, in natu-

ral language processing, producing a dependency parse of a sentence requires predicting a

parent-child relationship for each word such that the resulting directed graph is a tree.

As might be expected, the additional expressiveness of structured prediction over inde-

pendent predictions comes at an increased computational cost: because Y is exponentially

large (|Y| = K`, as defined above), naively computing the argmax becomes practically

infeasible for any reasonably sized problem, and therefore is often the primary bottleneck,

rather than feature computation. Fortunately, better inference algorithms do exist. How-

ever, the run-time complexity of these algorithms is determined by the particular structure

of the features; for instance, if we model pairwise interactions between neighboring char-

acters, complexity of inference in the handwriting recognition problem is O(`K2), while

3

if we add triplets of neighboring characters, the complexity is O(`K3). Thus, for struc-

tured prediction, the expressiveness-computation trade-off can be summarized as follows:

introducing additional features increases expressiveness at the cost of increased feature

computation time, but may additionally increase inference time, possibly to the point of

making the problem infeasible.

1.1 Thesis Overview

The primary contribution of this thesis is to provide two different and complementary meth-

ods for obtaining better expressiveness-computation trade-offs in the setting of structured

prediction. The key to each of our approaches is to learn to control the complexity of in-

ference or feature computation at test time, on a per-example basis. As we will see, the

first methods we discuss are meant to address the inference bottleneck; the next methods

are meant to address the feature computation time bottleneck. Specifically, we outline the

organization of this thesis as follows:

• Chapter 2 - Related work. In this chapter, we place the thesis in context by re-

viewing the relevant literature that either precedes or competes with our approaches;

much of the ideas in this work stem from related work in multi-class classification,

while we compete with alternative methods in the structured prediction community.

• Chapter 3 - Structured Prediction. We next provide a brief overview of the

key technical details of structured prediction, to provide a common foundation with

which we can present and analyze the frameworks described in this thesis. Note that

a complete tutorial is outside the scope of this thesis; see e.g. Nowozin and Lampert

(2011) for a more complete tutorial. The purpose of this chapter is to provide enough

background to understand the bottlenecks of inference and feature computation time

that we address in this thesis.

• Chapter 4 - Structured Prediction Cascades (SPC). In the next chapter, we de-

velop the first of the frameworks considered in this thesis: Structured Prediction

4

Cascades (SPC). The goal of SPC is to progressively filter or prune the output space

such that sparse, exact inference remains feasible even when very complex features

are added to the model. This chapter is based on the preliminary work (Weiss and

Taskar, 2010).

• Chapter 5 - Ensemble-SPC. The major limitation of SPC is that it requires exact

inference to be feasible in every model in the cascade; thus, in the next chapter, we

extend SPC to the setting where exact inference is intractable by using ensembles of

models. This chapter is based on preliminary work (Weiss et al., 2010).

• Chapter 6 - Dynamic structured model selection (DMS). We next turn to the prob-

lem of feature computation time. We propose a framework for selectively allocating

resources across a batch of test examples by running a cascade of arbitrarily con-

structed structured models. This is based on preliminary work (Weiss and Taskar,

2013).

• Chapter 7 - DMS-π. In this chapter, we revisit the feature extraction problem for

structured models and provide a more fine-grained formulation using principles from

reinforcement learning. This allows us to selectively compute features within specific

examples and learn a non-myopic feature extraction policy, which leads to large gains

in efficiency over the original DMS approach. This is based on preliminary work

under review at the NIPS2013 conference.

• Chapter 8 - Future work. Finally, we propose unifying the SPC and DMS-π frame-

works into a single framework capable of trading off both the inference and feature

computation bottlenecks.

5

Chapter 2

Related Work

The basic expressiveness-computation trade-off has been studied in the machine learning

literature in various settings and for a variety of reasons. In this section, we review the

relevant literature and place this thesis in a broader context. As discussed previously, there

is a significant amount of related work studying the expressiveness-computation tradeoff in

multi-class classification. While many of the principles or high level ideas of the same–e.g.,

applying a cascade of models or using reinforcement learning to model feature extraction–

applying these ideas to the structured case is not trivial, and many new insights are to be

gained in the process. Thus, we first review the multi-class literature and then delve into

related or competing approaches for structured prediction.

However, there are several themes that consistently arise in both the multi-class and

structured setting. Generally speaking, we can categorize the related literature along several

axes:

• Training time vs. test time. Much prior work has focused on model selection during

training–efficiently finding the most accurate fixed model with bounded complexity.

In contrast, the contributions of this thesis allow for adaptive complexity chosen

dynamically at test-time.

• Single- vs. multi-stage. One point of emphasis in prior work is limiting the compu-

tational complexity of a single model (1.1). This can be achieved either statically at

6

training or dynamically at test-time, for example by selectively computing a subset

of the possible features to limit the cost. An alternative is to propose a multi-stage

approach that makes a series of increasingly expensive decisions. In this case the

depth of processing of a certain example determines the cost of evaluation. The work

of this thesis spans both of these cases: in DMS-π, we selectively compute features in

a single structured model, while in SPC and DMS, we use a cascade of increasingly

expensive models.

• Myopic vs. non-myopic. Both the work in this thesis and related approaches allocate

resources at test-time in an piecemeal fashion, repeatedly deciding whether or not

more computation is necessary for a given example. One important property of such

approaches is whether or not computation is allocated myopically, i.e. without a

belief of how early steps in the computation will affect later outcomes. A typical

approach to learning non-myopic strategies is to borrow techniques from the field of

reinforcement learning, and that is the approach taken in this thesis for DMS-π in

Chapter 7.

• Implicit vs. explicit meta-level reasoning. One distinction of the work in this thesis

that has received far less prior attention is the idea of explicit meta-level reasoning:

i.e. learning a distinct model with seperate meta-level features that can examine the

current state of the predictive system and reason about how to proceed. For example,

while our SPC framework is based around eliminating low-scoring outputs based on

adaptive thresholds, the DMS/DMS-π framework explicitly learns a separate model

that evaluates the output of the structured predictor and computes values that guide

further computation. Most prior work, on the other hand, falls into the implicit cate-

gory.

Finally, for the purely empirical contributions of this thesis–state-of-the-art results in

several structured predicton tasks–we will review the related work in the presentation of

the experiments.

7

2.1 Controlling computation of multi-class classification

The general ideas inspiring the particular methods proposed in this thesis are not new; in

many cases, our intuition comes from prior work studying the computational trade-offs in

the setting of multi-class classification. In many ways, one of the goals of this thesis is to

translate ideas and advances from the multi-class case into the structured prediction setting.

In what follows, we provide an overview of the themes from the flat classification literature

that are related to or (in some cases) directly inspired the work of this thesis.

2.1.1 Computational trade-offs during model selection

Model selection has long been studied within the framework of empirical risk minimization

(Bartlett et al., 2002; Vapnik and Chervonenkis, 1974), in which the primary criteria is

the trade-off between approximation error (the bias of the model) and estimation error

(overfitting, or the variance of the parameter estimates). For this case, model selection

again consists of finding the most accurate model that falls within a complexity constraint.

However, unlike the model selection considered in this thesis, the complexity measure is

not defined with regards to computation. Rather, it is defined with respect to the expressive

power of the model. The general intuition in this case is that as more data is obtained, the

parameter estimates for more more expressive models become useful.

Several recent works have considered incorporating the optimization error into the

model selection criteria, which is the additional error due to optimizing an objective within

a fixed precision during the estimation procedure. These works attempt to solve a re-

lated but different problem to that which we focus on in this thesis: namely, how do we

best allocate resources during training to achieve better model selection? Notably, Bottou

and Bousquet (2008) show analytically that for large-scale classification, stochastic/online

methods yield smaller asymptoptic error rates than batch-methods when the model and

training time are fixed. Furthermore, Shalev-Shwartz and Srebro (2008) show empirically

that training time to reach a given overall error rate for stochastic sub-gradient methods

decreases as more data is added. These results suggest that when plenty of training data

8

is available and computation time at training is limited, stochastic optimization methods

should be used. Since our setting assumes both properties, we employ such such stochastic

learning techniques in this thesis.

Both of these works assume a single fixed class of models, while in more recent theoret-

ical work, Agarwal et al. (2011) propose methods for model selection under training time

computational constraints when given a hierarchy of increasingly complex models. This

problem is more similar to that addressed in this thesis, but, as above, Agarwal et al. (2011)

study the problem of allocating computation time during training, with no constraints on

fixed test-time computational costs.

2.1.2 Predicting with fixed test-time budgets

More directly related to the work in this thesis is prior work on explicitly controlling the

fixed test-time cost of the model through regularization during training. These works at-

tempt to answer the question: how do we efficiently learn an accurate model that has hard

constraints on a fixed test-time cost? A popular approach is to express test-time com-

plexity as convex regularization term that penalizes expensive models during training, for

example learning sparse (Langford et al., 2009) or low rank (Harchaoui et al., 2012) param-

eter vectors. Sparse models use only subset of the features, and therefore certain features

may not need to be computed; low rank models use an intermediate representation that is

shared among different classes, speeding up the argmax problem for multi-class classifica-

tion when K is very large. However, while these works also seek to control test-time costs,

these approaches yield a single model of fixed computational cost for every test example.

In contrast, the methods presented in this thesis learn models for expected run-time that

compute different features for each different test-example.

Furthermore, although we only consider linear methods in this thesis, there has also

been significant research into constructing non-linear classifiers (e.g. boosted decision

trees) with controlled test-time evaluation cost. For example, Sheng and Ling (2006) learn

decision trees for the medical domain to optimize a trade-off between accuracy, feature

9

evaluation cost, and a delay cost corresponding to the time taken to perform medical tests.

More recently, Grubb and Bagnell (2012) propose a boosting algorithm designed to maxi-

mize accuracy for any fixed test-time cost, while Xu et al. (2012) propose a boosting-type

algorithm for learning ensembles of decision trees that explicitly trade-off computing new

features vs. re-using already computed features in later stages of boosting.

Finally, another related area for controlling test-time complexity at training is in the

domain of kernelized methods: kernelized models’ computational cost at test-time is de-

termined primarily by the number of support vectors retained during training to implicitly

parameterize the feature vector of the model. Learning kernelized models on a budget has

been well studied in the on-line setting (Crammer et al., 2003; Dekel et al., 2008), where

an active set of support vectors is maintained and updated as new examples are observed.

However, we do not study kernelized models in this thesis, and therefore the notion of

budget as number of support vectors is qualitatively different from the budget we define in

terms of the cost of computing features.

2.1.3 Resource allocation for batch testing

In practice, we often care about the cost of evaluating a predictor on more than a single ex-

ample in isolation. Given a batch of test examples, we can define the problem of allocating

limited computational resources in order to maximize accuracy on the batch as a whole. For

example, Kanani and Melville (2008) study the problem of choosing to acquire features at

test-time for different instances based on estimating the reduction in uncertainty over class

labels of adding features to each instance, while Grubb and Bagnell (2012) use the margin

of a ensemble classifier to determine which examples should have more weak classifiers in-

corporated into the ensemble. We also study the problem of batch-time resource allocation

when we present our DMS and DMS-π frameworks.

10

2.1.4 Classifier cascades

A significant source of related work to the approaches proposed here is the study of clas-

sifier cascades, in which a pre-determined series of classification models are sequentially

applied to a test example. For binary classification problems with a highly skewed class

distribution with very few true positives, these works typically obtain efficiency via an

“early-exit” strategy: at test-time, simpler models may reject an example as negative with-

out needing to evaluate the more complex models farther along the cascade. This approach

has long been highly successful for object detection, using boosting methods to train the

cascade of classifiers (Viola and Jones, 2002). Significant effort has been put into frame-

works for jointly learning the classifiers of the cascade (Lefakis and Fleuret, 2010) or con-

structing cascades automatically (Saberian and Vasconcelos, 2010). Feature computation

cost was not incorporated specifically into the learning procedure until more recently. For

example, Raykar et al. (2010) and Chen et al. (2012) propose training procedures for jointly

training a cascade that explicitly represent a trade-off between accuracy and a measure of

runtime complexity. These works inspired our SPC framework, which translates the idea

of early-exit cascades into the structured setting.

2.1.5 More general multi-stage decision systems

There have been a number of more general formulations of a multi-stage classifier that

expand on the idea of classifier cascades. For multi-class problems, the “early-exit” strategy

for classifying negative examples does not apply directly, since there is no negative class.

Instead, a more natural formulation is introduce an additional “reject” class to form a (K+

1)-way classification problem; if a classifier predicts “reject,” the example is passed to the

next classifier (Trapeznikov and Saligrama, 2013). In this way, predicting anything besides

“reject” can be seen as an early exit strategy.

In order to learn such multi-stage classifiers, Trapeznikov et al. (2013) propose a multi-

stage empirical risk minimization framework, where the risk trades-off expected accuracy

and cost of running the system. In practice, their algorithm consists of a series of K-class

11

classifiers and two additional components: one to estimate the confidence of the classifier

and another to non-myopically determine a rejection threshold based on the confidence. If

the classifier is not confident enough, then the “reject” action is taken for a given stage. The

whole system is learned in an iterative stage-wise fashion. A similar approach is taken by

Busa-Fekete et al. (2012), who assume that the series of classifiers is fixed a priori–learned

via AdaBoost–and instead introduce an additional “skip” action that allows the system to

short-circuit the decision process. Unlike Trapeznikov et al. (2013), Busa-Fekete et al.

(2012) use standard reinforcement learning techniques to learn a policy to determine the

actions taken at prediction time. While the models used in these frameworks differs greatly

from the structured setting we study, we use similar principles from reinforcement learning

to non-myopically learn a policy for feature extraction in our DMS-π framework.

Another multi-stage framework addressing a somewhat different problem than those

just mentioned is closely related to SPC: This is the label tree framework for large multi-

class tasks, first proposed by Bengio et al. (2010). A label tree is a decision tree where

each decision node eliminates a fraction of the label space, such that at the leave nodes

only comparison between a small number of classes is needed. At a high level, this idea is

similar to that of SPC proposed in this thesis, except that instead of scoring, filtering, and

maintaining a list of multiple overlapping partitions of the output space, the tree maintains

and repeatedly filters only a single partition. However, Deng et al. (2011) show how the

label tree can be explicitly optimized for accuracy and efficiency in a manner similar to the

objectives posed for SPC. More recently, Liu et al. (2013) show how to learn probabilistic

classifiers at each decision node to dramatically improve the performance of the tree; how-

ever, this is significantly different from the non-probabilistic approach taken throughout

this thesis.

2.1.6 Feature extraction policies

The idea of learning a feature extraction policy, as in our DMS-π framework, is not in-

herently new. Much prior work takes a generative approach that models the distribution

12

of feature values, and the policy chooses individual features to evaluate. This generative

setting differs greatly from the discriminative setting studied in this thesis; in the generative

approach, one models a distribution P (f(X), Y) and uses Bayes rule to make predictions.

One approach to feature extraction given a generative model is to maximize the value of in-

formation, which is a measure of the information about P (Y | f(X)) gained by observing

new features, subject to cost constraints. Though generally infeasible, approximations exist

given graphical models of the data or for special cases (Bilgic and Getoor, 2007; Krause

and Guestrin, 2005, 2009). The policies can also be learned using reinforcement learning

techniques; e.g. Ji and Carin (2007) formulate the feature extraction problem as a Par-

tially Observable MDP (POMDP) and use Gaussian Mixture Models (GMM) to model the

features, while Bayer-Zubek (2004) use discrete distributions in a standard MDP frame-

work. It’s noteworthy that in both cases, the best empirical policies are defined myopically,

greedily optimizing a heuristic, despite formulating the problem using the standard rein-

forcement learning frameworks.

There has been less work on discriminative approaches to feature extraction policies.

Recently, several works have proposed modeling the value of a classifier in terms of the

features used. For instance, Gao and Koller (2011) explicitly model the information gain

of introducing additional features for a particular example, based on a pre-trained pool of

classifiers that use different subsets of features; in this case, a GMM is used to model a

joint distribution over possible classifier outputs and class labels, rather than modeling the

features directly. Additionally, He et al. (2012)–who use an imitation learning approach

for dynamic feature selection–avoid modeling a value function altogther and instead learn

a classifier using meta-features of previous outputs in order to classify which feature subset

to compute next. Note that although both of these approaches are similar in spirit to the

reinforcement learning framework used for DMS-π, neither of these approaches apply to

the structured setting.

13

2.2 Related approaches for structured prediction

In this next section, we review prior work that also attempts to solve the expressiveness-

computation trade-off in the structured setting. These methods are more directly com-

parable to our work than the literature discussed in the previous section, so we focus on

highlighting the distinction between previous, related work and the work presented in this

thesis.

2.2.1 Coarse-to-fine reasoning

The SPC framework proposed in this work can be considered as an instance of coarse-to-

fine reasoning: as implemented in practice, early stages of the cascade eliminate outputs

using a much coarser partitioning of the output space than the later stages. This basic idea

has been used before in the structured setting, and we review some key examples here.

The simplest approach to coarse-to-fine reasoning is to use a two-step inference proce-

dure: before running inference in a complex model, a simpler model computes marginals

over the state space, and any states with low probability are eliminated. In natural lan-

guage parsing, many works (e.g. Carreras et al. (2008); Charniak (2000)) utilize this idea:

the marginals of a simple context free grammar or dependency model are used to prune

the parse chart for a more complex grammar. The key difference with our work is that we

explicitly learn a sequence of models tuned specifically to filter the space accurately and ef-

fectively; furthermore, because we use discriminative max-marginals instead of probabilis-

tic marginals, we can provide theoretical bounds on the generalization error of our filtering

steps. Somewhat closer to our work is that of Petrov (2009), where an entire hiearchy of

coarse-to-fine grammars is learned; however, we do not learn the structure of the hierarchy

of models but assume it is given by the designer, and again we use a different objective for

learning the coarse-to-fine hierarchy and a different filtering scheme at test-time.

In the computer vision community, coarse-to-fine reasoning also has been well estab-

lished. E.g. Fleuret and Geman (2001) propose a coarse-to-fine sequence of binary tests

to detect the presence and pose of objects in an image. The learned sequence of tests

14

is trained to minimize expected computational cost. More recently, Pedersoli et al. (2011)

use coarse-to-fine processing in the structured setting by utilizing the scores of parts in low-

resolution object models to prune the search space over part locations in high-resolution

models. Once again, however, our work proposes a different filtering scheme and a differ-

ent learning objective–and most importantly, our filtering criterion integrates information

from an entire structured model rather than using local scores to prune hypotheses.

Raphael (2001) provide a provably correct coarse-to-fine method for solving arbitrary

dynamic programs. This approach relies on partitioning the full state space into “super-

states,” and then efficiently computing upper and lower bounds on all possible transitions

between the constituents within superstates; superstates can be eliminated from the search

procedure once their bounds indicate the solution does not lie within. In a certain sense,

the SPC approach proposed in this thesis substitutes efficiently computing bounds with

efficiently computing max marginals, which is more useful in practice, but at the cost of

potential sub-optimality if the learned filters are incorrect on a given example.

2.2.2 Early stopping cascade

Felzenszwalb et al. (2010) proposed a cascade for a structured parts-based object detection

model. Their cascade works by early stopping while evaluating individual parts, if the

combined part scores are less than fixed thresholds. While the form of this cascade can be

posed in the general SPC framework (a cascade of models with an increasing number of

parts), we differ from Felzenszwalb et al. (2010) in that our pruning is based on thresholds

that adapt based on inference in each test example, and we explicitly learn parameters in

order to prune safely and efficiently. However, the SPC idea and that of Felzenszwalb

et al. (2010) are complementary, in the sense that Felzenszwalb et al. (2010) provide an

early-exit strategy to speed up MAP inference (for a complex model), while SPC uses

MAP inference (in simpler models) as a sub-routine; one could apply the same early-exit

strategy at any point during SPC inference to quickly reject low-scoring outputs during a

detection problem.

15

2.2.3 Prioritized inference

While modeling the feature extraction process as an MDP has been studied in the multi-

class setting, using reinforcement learning to speed-up evaluation of structured models has

been less well studied. One significant prior work is Jiang et al. (2012), who apply imitation

learning to speed up inference in a syntatic parsing model; however, the state of their MDP

is defined solely in terms of the inference procedure and does not explore feature sets in

any way. In contrast, the DMS-π framework we propose focuses on feature extraction as a

bottleneck, not inference as a bottleneck.

2.2.4 Meta-learners/predicting model accuracy

Another core component of the DMS/DMS-π approach is the idea of using meta-features

to evaluate the progress of a structured model; this basic idea of predicting the accuracy

of a model has been studied before, albeit in different contexts. E.g. Bedagkar-Gala and

Shah (2010) attempt to predict various video analysis algorithm’s performance (similar

in spirit to the selector we propose), but based on measures of image quality rather than

properties of model output. Jammalamadaka et al. (2012) propose an evaluator for human

pose estimators, but only for single-frame images, and propose only learning “correct or

not” coarse-level distinctions, whereas we attempt to predict a measure of the error of each

model directly. In the speech community, Lanchantin and Rodet (2010) propose a parallel

method of “dynamic model selection” in which several models are continually re-evaluated

in an online fashion using a generative model, which is a very different setting than that we

analyze here.

2.2.5 Applications of preliminary works

The SPC framework proposed in this thesis appeared in preliminary form in Weiss and

Taskar (2010); Weiss et al. (2010), and since then several authors applied the ideas to

specific applications outside the scope of this work. Specifically, Sapp et al. (2010) ap-

16

plied the SPC framework to human pose estimation in static images, using a coarse-to-fine

multi-resolution framework similar to that used in section 5.5.2 of this thesis. Subsequent

to Weiss et al. (2010), Sapp et al. (2011) applied the summation of max marginals from

Ensemble-SPC in a different model of human pose in order to further advance state-of-the-

art in pose tracking. However, in this work, we show how a sequence model built on the

output of Sapp and Taskar (2013) yields faster, more accurate predictions, and we propose

DMS to further speedup the evaluation of this model.

In natural language processing, Rush and Petrov (2012) apply the ideas developed in

our preliminary work to the problem of dependency parsing in natural language processing.

They learn a cascade of simplified parsing models using the objective presented in section

4.3 to achieve state-of-the-art performance in dependency parsing across several languages

at about two orders of magnitude less time.

2.3 Summary

We have reviewed a broad cross-section of related work to the ideas proposed in this thesis.

A significant source of related work is in the multi-class classification literature, where

high-level ideas similar to those proposed here are applied to speed up computation of

features or allow for scaling to very large problems. In this sense, our work represents a

translation of these ideas into the structured setting in a novel (when compared to other

work in the structured prediction domain), empirically effective, and principled fashion.

17

Chapter 3

Structured Prediction: An Overview

In this chapter, we provide a short tutorial and overview of the structured prediction meth-

ods that form a basis for the work in this thesis. We also introduce notation and language

that will be used throughout.

3.1 Supervised learning

Given an input space X , output space Y , and a training set {(x1, y1), . . . , (xn, yn)} of n

samples from a joint distribution D(X, Y), the standard supervised learning task is to learn

a hypothesis h : X 7→ Y that minimizes the expected loss ED [L (h(X), Y)] for some

non-negative loss function L : Y ×Y → R+. This minimization is performed with respect

to some hypothesis space H. For example, in the linear binary classification setting, we

typically have Y = {−1,+1} being the binary label, L(Y, Y ′) = 1 [Y 6= Y ′] being the 0-1

loss indicating whether or not a prediction is correct, and learn linear hypotheses of the

form h(x) = sign(w>f(x)), where w ∈ Rm parameterizes the model as a linear function

of a computed feature vector f .

In practice, minimizing the expected error in this setting can be difficult for three rea-

sons:

• The 0-1 loss is not a convex function of the parameters w.

18

• We can only estimate the loss via the n samples of the training set, and minimize

with respect to this estimate.

• We may run out time trying to estimate the parameters for h or even compute h(x).

The standard solution to the first problem is to replace L with a convex upper bound; the

choice of bound leads to different flavors of optimization problems. However, the second

problem leads to a trade-off: as we increase the expressiveness of the model (as measured

by the number of parameters m), we decrease the reliability of our estimate of the loss of

the minimizer h? for any fixed number of training samples n. In other words, we trade

off approximation error with estimation error; a simpler model may make mistakes due

to approximating D(X, Y) poorly, but a more complex model may make mistakes due to

poorly estimating w. This classical trade-off between approximation and estimation error

(bias/variance) is fundamental in machine learning and has been well studied. Standard sta-

tistical model selection techniques (Akaike, 1974; Barron et al., 1999; Bartlett et al., 2002;

Devroye et al., 1996; Vapnik and Chervonenkis, 1974) control this trade-off to minimize

expected error by exploring a hierarchy of models of increasing complexity.

In this thesis, we are primarily concerned with the third final problem, which also yields

a trade-off: as discussed in Chapter 1, increasing the expressiveness of the model also

typically leads to increased computation time. In the next section, we make this problem

concrete for the structured setting, and make explicit the two primary potential bottlenecks

(inference and feature extraction). Note that for the structured setting, as in the general

supervised case, the first two problems still apply.

3.2 Structured prediction

In the setting of structured prediction, Y is a `-vector of discrete multi-class variables.

Specifically, we say that Y = Y1 × · · · × Y`, where Yi = {1, . . . , K}. For a complete

output y, we denote the i’th component as yi. In many settings, the number of random

variables, `, differs depending on input X , in which case we denote the x-specific output

19

space as Y(x), but for simplicity of notation, we assume a fixed ` here. Thus, making a

prediction for a given input x requires predicting ` K-valued outputs jointly. We consider

linear hypotheses of the following form (1.1) (reproduced here):

h(x) = argmax
y∈Y

w>f(x,y),

where the prediction h(x) is the highest scoring output y according to the inner product of

the parameter vector w and a feature function f : X × Y 7→ Rm mapping (x,y) pairs to a

vector of features. The problem of computing the argmax is called the inference problem

(it is equivalent to the problem of MAP inference for certain types of probabilistic models.)

Note that as written, (1.1) is an unconstrained discrete optimization problem over an

exponentially large search space; furthermore, there is no way to exactly compute (1.1) for

any f without searching the entire space. Therefore, we inject structure into the problem

through two complementary approaches:

• Factorizing the feature generating function f(x,y) over subsets of Y . For ex-

ample, given a graph G = (V , E), we can define unary features fi(x, yi) for each

i ∈ V and pairwise features fij(x, yi, yj) for each (i, j) ∈ E . One possible feature

generating function is then just the sum of all factored features:

f(x,y) =
∑

i∈V

fi(x, yi) +
∑

(i,j)∈E

fij(x, yi, yj) (3.1)

Expressing feature functions as the sum of factors is an efficient and useful way of

encoding the structure of the relationships between different output variables in the

model. Most importantly, it provides a template to which we can apply a generic

dynamic programming inference algorithm, which yields exact solutions in some

cases and approximate solutions in the others. We will describe inference in more

detail using factorized representations in Section 3.2.2. Furthermore, since we con-

sider linear hypotheses, we discuss factorizing the scoring function w>f(x,y) and

factorizing the feature function interchangably.

• Introducing constraints on the output space Y . For example, in the problem of de-

pendency parsing from natural language processing, each yi represents the a directed

20

edge from the yi’th word to the i’th word. For y to be a valid parse, these edges

must form a directed tree. Thus, we constrain Y to only contain y such that y is a

valid parse tree. For certain feature functions, this problem can be solved efficiently

even though the generic message passing algorithm does not apply (McDonald et al.,

2005). In general, introducing constraints in this way can prevent the use of generic

inference algorithms, making the inference problem more difficult to solve in prac-

tice. In this thesis, we will only consider problems with no constraints or constraints

that can be easily incorporated into the generic inference algorithm.

3.2.1 Representing structure with factor graphs

A convenient form of representing the factorization of the scoring function is a factor

graph. A factor graph is a bipartite undirected graph G, where there are ` vertices for

the output variables y1, . . . , y` and F vertices, each representing one factor in the scoring

function. Each factor is connected via an edge to each variable in its scope (equivalently,

each variable is connected via an edge to each factor it participates in.) Typically, factor

graphs are represented visually using round vertices for variables and squares for factors.

Factor graphs are useful both as a visual aid to help understand the assumed structure of a

model and as a scaffold for efficient inference.

Several examples of common factor graph structures are presented in Figure 3.1.

3.2.2 Complexity of inference

Given a factor graph, let Fi be the set of factors that the i’th variable Yi participates in,

and Yc be the scope of the factor c. Inference proceeds by passing messages from factors

nodes to variable nodes and from variable nodes to factor nodes. Each message is a list of

21

y1 y2 y3 y4

y1 y2 y3 y4

y11 y21 y31 y41

y12 y22 y32 y42

y13 y23 y33 y43

Figure 3.1: Examples of several common factor graphs. Top: Bigram (1-order) linear-

chain model. Middle: Tri-gram (2-order) linear-chain model. Bottom: Grid model.

K values: the messages are defined as follows,

ωc→Yi(k) = max
yc:yi=k

w>fc(x,yc) +
∑

j∈Yc\i

ωYj→c(yj), (3.2)

ωYi→c(k) =
∑

c′∈Fi\c

ωc′→Yi(k), (3.3)

where ωc→Yi(k) is the message from factor c to variable i for state k, and ωYi→c is the

message from variable i to factor c for state k. If the factor graph is a tree, then the messages

have the following natural intuition. Each variable is separated by its factors from the rest

of the variables in the graph; the message ωc→Yi(k) is the maximum score achievable by the

rest of the graph (separated from Yi by c) if Yi takes on the value k. Similarly, the message

ωYi→c(k) is the maximum score achievable by the component of the graph connected to the

22

variable Yi if the factor c is not used and Yi takes on value k. Note that certain messages

depend upon other messages being precomputed. However, if the factor graph is a tree,

then clearly any leaf of the tree can start the process by sending its message to its sole

neighbor, and all messages will eventually be computed.

What is the complexity of this inference scheme? For a factor of size d, computing a

single element of the message table involves taking a maximization over d − 1 variables,

each of which can take on K values. Computing the entire message table is therefore

O(Kd) operations; if there are F factors, then the entire inference procedure is O(KdF).

However, if the graph is not a tree (i.e. it contains a cycle), the recursive definition

of messages implies that we cannot guarantee exact computation of messages in a finite

amount of time. We can still obtain an approximate answer by running message passing

scheme anyway; we simply choose an arbitrary start point and re-compute messages as the

inputs change, stopping when messages converge or after a pre-determined period of time.

This approximate inference scheme is a variant of loopy belief propagation (LBP), one of

many different approximate inference algorithms for cyclic factors. There is a large body

of research on approximate inference algorithms that is outside the scope of this thesis;

see e.g. Boykov et al. (2001); Koller and Friedman (2009); Murphy et al. (1999); Sontag

(2010) for more information.

Note that a cyclic graph does not imply that exact inference is impossible; simply that

we cannot apply the message passing algorithm without modification. In fact, we can

transform a loopy factor graph into an equivalent tree factor graph by creating auxiliary

variable nodes that represent conjunctions of the original variables; we pay the price that

these auxiliary variables may have exponentially large state spaces, so we cannot guarantee

that exact inference will be efficient. We also need to introduce consistency constraints

to ensure that auxiliary variables that share some underlying variable yi agree about the

maximizing assignment to yi. We’ll return to this idea for a specific set of factor graphs in

section 3.3.

23

y1

y2

y3

y4

y5

y1y3y2

y4

y5

Figure 3.2: Agglomerating variable states.

3.2.3 Max-margin parameter learning

We now turn to the question of how to learn w to provide useful predictions from the

inference procedure. We follow the structured max-margin framework (Taskar et al., 2005),

which aims to solve the following:

min
w,ξ≥0

λ||w||2 +
1

n

∑

i

ξi s.t. w>f(xi,yi) ≥ max
y∈Y

w>f(xi,y) + ∆(yi,y) + ξi, ∀i.

(3.4)

Above, ∆ is a loss function, such that ∆(yi,y) measures the difference between the target

output yi and any given output y. For most of this work, we use the Hamming loss,

∆(y,y′) =
∑̀

i=0

1 [yi 6= y′i] (3.5)

However, other losses may be used in practice. Intuitively, (3.4) balances a standard `2 reg-

ularization term with a penalty for violating a set of margin constraints. In order to satisfy

the margin constraints, the true output yi must have higher score than every alternative y

by margin ∆(yi,y); thus, outputs that are closer to the ground truth (i.e. more correct)

need less margin than those that are farther away, as measured by the loss ∆.

Although there are a variety of approaches to solving (3.4), there is a common thread

to all of the solvers used in this thesis: they each require inference as a sub-problem. In-

tuitively, efficiently solving (3.4) requires computing which of the constraints are violated,

either to compute a sub-gradient or to add constraints to a working set (Joachims et al.,

2009). Thus, the complexity of learning is highly dependent on the complexity of infer-

ence.

24

3.3 Trading off computation and expressiveness

As we have seen, the complexity of inference is a function of the structure of the factor

graph and of the feature functions fc(x,y), and inference is often a bottleneck during pa-

rameter learning. Therefore, we have a fundamental trade-off between the expressiveness

of the model and the computation required to use it effectively.

Linear-chain models. As an example, consider a first-order linear-chain model (Figure

3.1). This model has two types of factors: pairwise factors between consequtive variables

yi and yi+1 and unary factors for each variable yi. For ease of notation, we avoid using the

subscript fc and incorporate the scope of the factor directly, as follows:

f(x,y) =
∑̀

i=1

f(x, yi, yi+1) + f(x, yi) (3.6)

Since we have ` − 1 pairwise factors and ` unary factors, the complexity of inference

using the message passing algorithm is O(K2` + K`) = O(K2`). We will revisit such

linear-chain models several times in this thesis; since the features can capture sequential

dependencies between predictions, such models are well suited for tasks such as phoneme

recognition, handwriting recognition, or visual tracking tasks.

Two channels for more expressiveness. Given the basic first-order linear-chain, we can

introduce more expressiveness into the model through two main channels. The first is

simply to incorporate more features into the unary or pairwise terms. For example, when

tracking an object in video, optical flow (Horn and Schunck, 1981) – estimating the move-

ment of each pixel in an image from one frame to the next – is an expensive but often very

useful pairwise feature.

The second channel is to increase the scope of the factors in the model, or to introduce

additional factors. This allows for more accurate modeling of the higher-order statistics of

the data. In the case of linear-chain models, we can widen the scope of the pairwise factors

to incorporate three sequential variables at a time. Note that this introduces a loop into

25

y1 y2 y3 y4

y1 y1y2 y2y3 y4

Figure 3.3: Removing loops from a trigram model. Top: The trigram linear-chain model

contains loops due to incorporating triplets into a new 2-order factor. Bottom: By agglom-

erating neighboring states, we obtain a bigram model with no loop, but where the conjoined

variables have K2 possible assignments instead of K.

the tree structure (Figure 3.3). However, we can still perform exact inference by applying

the junction method we described in the previous section; we introduce auxiliary variables

representing the conjunction of sequential variables as shown in Figure 3.3. Note that

the size of the state space of the auxiliary variables increases by a factor of K for each

additional variable we incorporate, so exact inference in a d-gram linear-chain model takes

O(Kd`) time. Note that we also must introduce consistency requirements into the inference

procedure: variables y1y2 and y2y3 must agree on the value of y2 in order to map from an

assignment in the new model back to a sequence of state assignments in the original model.

However, these agreement constraints can be easily added by introducing a new indicator

feature into the pairwise factors that measures such agreement, taking on the value −∞
when agreement is not satisfied.

3.4 Summary

In this section, we have reviewed the relevant basic aspects of structured prediction: fac-

tor graphs, inference, and learning. The rest of the thesis is concerned with learning to

26

explicitly control the the trade-off between expressiveness and computation. As we have

seen, there are two primary modes through which we can increase expressiveness: in-

creasing factor scope, or adding features to factors. In the next chapters, we propose the

SPC/Ensemble-SPC frameworks to address the former and allow for higher order factors

or over finer discretizations of the state space, and the DMS/DMS-π frameworks to address

the latter, and allow for more expensive features computed within a fixed set of factors.

27

Chapter 4

Structured Prediction Cascades (SPC)

Overview. As we have discussed, model complexity is limited by computational con-

straints at prediction time in practice, either explicitly by the user or implicitly because of

the limits of available computation power. We therefore need to balance expected error

with inference time. A common solution is to use heuristic pruning techniques or approx-

imate search methods in order to make higher order models feasible. While it is natural

and commonplace to prune the state space of structured models, the problem of explicitly

learning to control the error/computation tradeoff has not been addressed.

In this chapter, we formulate the problem of learning a cascade of models of increasing

complexity that progressively filter a given structured output space, minimizing overall

error and computational effort at prediction time according to a desired tradeoff. The key

principle of our approach is that each model in the cascade is optimized to accurately filter

and refine the structured output state space of the next model, speeding up both learning

and inference in the next layer of the cascade. Although complexity of inference increases

(perhaps exponentially) from one layer to the next, the state-space sparsity of inference

increases exponentially as well, and the entire cascade procedure remains highly efficient.

We call our approach Structured Prediction Cascades (SPC).

Contributions. We first introduce SPC in the next section, and propose a novel method

of filtering the output space of structured models based on max marginals. We analyze

28

Algorithm 1: Overview of SPC Inference.
input : Example x, models w0, . . . ,wT ,f0, fT .

output: Approximate prediction h(x).

1 initialize S0 = Y;

2 for t = 0 to T − 1 do

3 Run sparse inference over St using model wt, f t;

4 Eliminate a subset of low-scoring outputs;

5 Output St+1 for the next model;

6 Predict using the final level: h(x) = argmaxy∈ST ψwT (x,y)

this filtering method and propose two novel loss functions that bound the accuracy and

efficiency of a single level of the cascade. We show how to optimize these losses and pro-

vide theoretical analysis in the form of generalization bounds–to our knowledge, these are

the first generalization bounds for the accuracy/efficiency trade-off of a structured model.

We propose a stage-wise learning algorithm (Algorithm 2) for SPC and apply it to two se-

quential prediction tasks: part-of-speech (POS) tagging and handwriting recognition. SPC

provides a significant increase in efficiency on the POS tagging task and a dramatic increase

in accuracy on the handwriting recognition task.

4.1 Enabling complexity via filtering Y

In this section, we introduce the SPC framework to handle problems for which the infer-

ence problem in (1.1) is prohibitively expensive. Rather than learning a single monolithic

model, we define a structured prediction cascade to be a coarse-to-fine sequence of increas-

ingly complex models w0, . . . ,wT with corresponding features f0, . . . , fT . As discussed

in section 3.3, there are many ways in which “increasingly complex” can be defined. How-

ever, for the purposes of introducing the method, the increasing complexity can be entirely

encapsulated in the feature functions f i. We will later define specific instances of the cas-

29

cade for specific problems: for sequential prediction problems, we will define f i to be a

linear-chain model of order i, while for pose estimation problems we will define each f i to

be a pose model of increasing resolution.

Regardless of the specific layout of the cascade, the goal of each model is to filter out

a large subset of the possible values for y without eliminating the correct one. The idea is

that by eliminating possibilities for y, inference in the next model will require searching a

much smaller space. Thus, the filtering process is feed-forward; simpler, faster models are

used to quickly eliminate unlikely outputs at first while richer, more complex models can

quickly search among the remaining possibilities to produce a final output.

In summary, a high-level overview of the SPC inference framework is given in Algo-

rithm 1. Here, St denotes a sparse (filtered) version of the output space Y . The process is

also illustrated in Figure 4.1. See Figure 4.2 for a concrete example of the output of a the

first two stages of a cascade for handwriting recognition and human pose estimation. We

will discuss how to represent and choose St in the next section. The key challenge is that St

are exponential in the number of output variables, which rules out explicit representations.

The representation we propose is implicit and concise. It is also tightly integrated with

parameter estimation algorithm for wt that optimizes the overall accuracy and efficiency of

the cascade.

4.2 Cascaded inference with max-marginals

In order to represent and filter low-scoring outputs, we use max-marginals, for reasons that

we detail below. For any value of yc, we define the max-marginal ψ?w(x,yc) to be the

maximum score of any full output y that is consistent with the (partial) assignment yc:

ψ?w(x,yc) , max
y′:y′

c=yc
ψw(x,y′). (4.1)

Max-marginals can be computed exactly and efficiently for any factor c in low-treewidth

graphs, although the computational cost is exponential in |c| (the number of variables in

the factor) when the state-space is not filtered. Note that max-marginals can be computed

30

model&complexity&/&representa2onal&power&

state&space&sparsity&

Final&predic2on&S2S1S0

w0
w0 w0

w1
w1 w2

Figure 4.1: A high-level overview of the SPC inference framework. As the cascade pro-

gresses, the representational power of the models increases, yet tractability is maintained

by sufficient filtering of the state space.

over any subset of variables c, not just the factors used in the feature function f ; for ex-

ample, in Section 5.5.2, we compute max-marginals over single variables (i.e., yc = yj)

when performing human pose estimation, but at increasingly higher resolutions. On the

other hand, in Section 4.5 we compute max-marginals over increasingly large factors for

sequence models (e.g. bigram, trigrams, and quadgrams).

Exact computation of max-marginals for a factor c requires the same amount of time to

run as standard exact MAP inference. This process is visualized in Figure 4.3: once for-

ward and backward max-sum messages have been computed for MAP inference, the max-

marginal for a given value yc is simply the sum of the score ψw(x,yc) plus the incoming

messages to the variables in c. Note that in practice, both stages of computation become

faster as the output space becomes increasingly sparse as the input proceeds through the

cascade. This algorithm can also compute the maximizing assignment for each yc,

y?w(x, yc) , argmax
y′:y′

c=yc

ψw(x,y′). (4.2)

31

al
ec
el
er

ce
le
re !b

ca
la
le
ra

bc
bl
br

b
h
u

c
f
l
r

a
e
k
r
u
z

c
l
r

a
e
f
g
n
o
p

!"#$!%#$

Figure 4.2: Sample output from the first two layers of a cascade. Circles represent output

variables, and the dashed lines indicate factors that are being filtered at a given level of the

cascade, with the attached tables representing the sparse state space. The solid lines indi-

cate the graph used for inference and features. (a) Output from a handwriting recognition

cascade (Section 4.5) of increasing Markov order. The first level outputs a sparse set of

possible letters for each image. The second level takes as input the sparse set of letters,

and further refines this to a very sparse set of bigrams at each position. (b) Output from a

coarse-to-fine human pose cascade (Sapp et al., 2010). The colored areas indicate valid 2D

locations for each joint. Unlike the sequence cascade (a), the factors stay the same from

one layer to another. Instead, the resolution of the state space doubles with each additional

layer.

32

Symbol Meaning

X , X, x input space, variable and value

Y,Y, Yi,y, yi output space, variables and value

F , c,yc set of factors, individual factor, factor assignment

f(x,y) features of input/output pair

fc(x,yc) features of a factor assignment

ψw(x,y) , w>f(x,y) score of input/output pair

ψw(x,yc) , w>fc(x,yc) score of a factor assignment

ψ?w(x,yc) , maxy′:y′
c=yc ψw(x,y

′) max-marginal of a factor assignment yc

y?w(x, yc) , argmaxy′:y′c=yc ψw(x, y
′) best scoring output consistent with factor assign-

ment yc

Table 4.1: Summary of key notation.

We call y?w(x,yc) the argmax-marginal or witness for yc (it might not be unique, so we

break ties in an arbitrary but deterministic way).

Once max-marginals have been computed, we filter the output space by discarding any

factor assignments yc for which ψ?w(x,yc) ≤ t for a threshold t (Figure 4.4). This filtering

rule has two desirable properties for the cascade that follow immediately from the definition

of max-marginals:

Lemma 1 (Safe Filtering). If ψw(x,y) > t, then ∀c ψ?w(x,yc) > t.

Lemma 2 (Safe Lattices). If maxy′ ψw(x,y′) > t, then ∃y ∀c ψ?w(x,yc) > t.

By Lemma 1, ensuring that the score of the true label ψw(x,y) is greater than the

threshold is sufficient (although not necessary) to guarantee that no marginal assignment

yc consistent with the true global assignment y will be filtered. This condition will allow us

to define a max-marginal based loss function that we propose to optimize in Section 4.3 and

will analyze in Section 4.4. Lemma 2 follows from Lemma 1, which states that so long as

the threshold is less than the maximizing score, there always exists a global assignment y

with no pruned factors (i.e., a valid assignment always exists after pruning). Thus, Lemma

33

c 33.7
f 23.0
l 44.9
r 33.1

a 68.3
e 60.5
k 50.4
r 47.8
u 64.6
z 63.4

a e k r u z
c 20 20 18 -5 -9 -7
f 3 24 1 -5 9 -6
l 18 26 1 -6 -9 -5
r 22 20 17 8 -10 -9

= Edge Max Marginal Forward Backward Edge Score

+w>f(x, y2, y3)+ max
y4,...,y`

X̀

j=3

w>f(x, yj , yj+1)max
y1

2X

j=1

w>f(x, yj�1, yj) = ?
w(x,y2:3)

 ?
w(x,y23 = le) = 132.3

 ?
w(x,y23 = ra) = 123.4

 ?
w(x,y23 = fk) = 75.3

Figure 4.3: Computing max-marginals over bigrams via message passing. The input is the

same as in Figure 4.2. Once forward and backward messages have been computed, the

max-marginal is simply the sum of incoming messages and the score of the factor over

bigrams.

2 guarantees that |S i+1| ≥ 1 in the SPC algorithm introduced above, and therefore the

cascade will always produce a valid output. Note that neither property generally holds for

standard sum-product marginals p(yc|x) of a log-linear CRF (where p(y|x) ∝ eψw(x,y)),

which motivates our use of max-marginals.

The next component of the inference procedure is choosing a threshold t for a given

input x (Figure 4.4). Note that the threshold cannot be defined as a single global value but

should instead depend strongly on the input x and ψw(x, ·) since scores are on different

scales for different x. We also have the constraint that computing a threshold function

must be fast enough such that sequentially computing scores and thresholds for multiple

models in the cascade does not adversely effect the efficiency of the whole procedure. One

might choose a quantile function to consistently eliminate a desired proportion of the max-

marginals for each example. However, quantile functions are discontinuous in ψw(x, ·)
function, and we instead approximate a quantile threshold with a threshold function that

is continuous and convex in ψw(x, ·). We call this the max-mean-max threshold function

(Figure 4.4), and define it as a convex combination of the maximum score and the mean of

34

!b

!h

br

bl

ul

hl

hf

hc

bf

hr

le

la

ra

ca

ck

rk

ce

re

fe

lk

fa

fk

el

ec

al

kc

le

ce

lo

lg

!u

bc

uf

ur

uc

ac

kl co

lp

M
ax

 M
ar

gi
na

l

Fi
lte

re
d

at

Error at

Fi
lte

re
d

at
 �

=
0.

5

↵
=

0

� = 0.5

⌧w,0(x)

 w(x, brace)

⌧w,0.5(x)

max
y

 w(x,y)

? w

(x
,y

c
)

Figure 4.4: Thresholding bigrams using max-marginals. The input is the same as in Fig-

ure 4.2. The sparse set of unfiltered bigrams is shown at each position according to the

max-marginal score. The bigrams corresponding to the correct label sequence, brace,

are highlighted in green. The green dashed line indicates the score of the correct label se-

quence. Note that the max-marginals of the correct sequence are at least the score of the

correct sequence. The black dashed line indicates the maximum score of any sequence,

which is the maximum filtering threshold. The largest max-marginal values are all ex-

actly equal to this score. The red dashed lines indicate two candidate filtering thresholds

τw,α(x) = 0 and τw,α(x) = 0.5 and corresponding sets of filtered bigrams are highlighted.

Note that a filtering error occurs at the more aggressive level of α = 0.5.

35

the max-marginals:

τw,α(x) = αmax
y

ψw(x,y) + (1− α)
1∑

c∈F |Yc|
∑

c∈F

∑

yc∈Yc

ψ?w(x,yc). (4.3)

Choosing a threshold using (4.3) is therefore equivalent to picking a α ∈ [0, 1). Note that

τw,α(x) is a convex function of w (in fact, piece-wise linear), which combined with Lemma

1 will be important for learning the filtering models and analyzing their generalization. In

our experiments, we found that the distribution of max-marginals was well centered around

the mean, so that choosing α ≈ 0 resulted in≈ 50% of max-marginals being eliminated on

average. As α approaches 1, the number of max-marginals eliminated rapidly approaches

100%.1

In summary, the inner loop of the SPC algorithm can be detailed as follows. The sparse

output space S i is a list of valid assignments yc for each factor c in the model fi (e.g., Figure

4.2):

S i = {Yc | ∀c ∈ F} (list of valid factor values for all factors) (4.4)

Next, sparse max-sum message passing is used to compute max-marginals ψ?w(x,yc) (4.1)

for each value yc ∈ Yc of each factor c of interest. Finally, for a given α, a threshold is

computed and low-scoring values of ψ?w(x,yc) are eliminated. Depending on the model in

the next layer of the cascade, further transformation of the states may be necessary: For

example, in the coarse-to-fine pose cascade (Section 6.3.2), valid 2-D locations for each

limb are halved either vertically or horizontally to produce finer-resolution states for the

next model (Figure 4.2b).

4.3 Learning structured prediction cascades

When learning a cascade, we have two competing objectives that we must trade off:

• Accuracy: Minimize the number of errors incurred by each level of the cascade to

ensure an accurate inference process in subsequent models.
1We use cross-validation to determine the optimal α in our experiments (see Section 4.5).

36

• Efficiency: Maximize the number of filtered max-marginals at each level in the cas-

cade to ensure an efficient inference process in subsequent models.

Given a training set, we can measure the accuracy and efficiency of our cascade, but what

is unknown is the performance of the cascade on test data. In section 4.4, we provide a

guarantee that our estimates of accuracy and efficiency will be reasonably close to the true

performance measures with high probability. This suggests that optimizing parameters to

achieve a desired trade-off on training data is a good idea.

We begin by quantifying accuracy and efficiency in terms of max-marginals, as used

by SPC. We define the filtering loss Lf to be a 0-1 loss indicating a mistakenly eliminated

correct assignment. As discussed in the previous section, Lemma 1 states that an error can

only occur if ψw(x,y) ≤ τw,α(x). We also define the efficiency loss Le to simply be the

proportion of unfiltered factor assignments.

Definition 1 (Filtering loss). A filtering error occurs when a max-marginal of a factor

assignment of the correct output y is pruned. We define filtering loss as

Lf (x,y;w, α) = 1 [ψw(x,y) ≤ τw,α(x)] . (4.5)

Definition 2 (Efficiency loss). The efficiency loss is the proportion of unpruned factor

assignments:

Le(x,y;w, α) =
1∑

c∈F |Yc|
∑

c∈F ,yc∈Yc

1 [ψ?w(x,yc) > τw,α(x)] . (4.6)

We now turn to the problem of learning parameters w and tuning of the threshold pa-

rameter α from training data. We have two competing objectives, accuracy (Lf) and effi-

ciency (Le), that we must trade off. Note that we can trivially minimize either of these at

the expense of maximizing the other. If we set (w, α) to achieve a minimal threshold such

that no assignments are ever filtered, then Lf = 0 and Le = 1. Alternatively, if we choose

a threshold to filter every assignment, then Lf = 1 while Le = 0. To learn a cascade of

practical value, we can minimize one loss while constraining the other below a fixed level

ε. Since the ultimate goal of the cascade is accurate classification, we focus on the problem

37

Algorithm 2: Forward Batch Learning of Structured Prediction Cascades.
input : Data {(xi,yi)}n1 , features f0, . . . , fT and parameters α0, . . . , αT−1

output: Cascade parameters w0, . . . ,wT

1 initialize S0(xi) = Y(xi) for each example.;

2 for t = 0 to T − 1 do

3 Optimize (4.8) with sparse inference over the valid set St to find wt ;

4 Generate St+1(xi) from St(xi) by filtering low-scoring factor assignments yc:

ψ?wt(xi,yc) ≤ τwt,αt(x
i)

5 Learn wT to maximize (3.4) over final sparse state spaces ST (xi) ;

of minimizing efficiency loss while constraining the filtering loss to be below a desired

tolerance.

We express the cascade learning objective for a single level of the cascade as a joint

optimization over w and α:

min
w,α

EX,Y [Le(X, Y ;w, α)] s.t. EX,Y [Lf (X, Y ;w, α)] ≤ ε. (4.7)

We solve this problem for a single level of the cascade as follows. First, we define a con-

vex upper-bound (4.8) on the filter error Lf , making the problem of minimizing Lf convex

in w (given α). We learn w to minimize filter error for several settings of α (thus control-

ling filtering efficiency). Given several possible values for w, we optimize the objective

(4.7) over α directly, using estimates of Lf and Le computed on a held-out development

set, and choose the best w. Note that in Section 4.4, we present a theorem bounding the

deviation of our estimates of the efficiency and filtering loss from the expectation of these

losses.

For the first step of learning a single level of the cascade, we learn the parameters w for

a fixed α using the following convex margin optimization problem:

SPC : min
w

λ

2
||w||2 +

1

n

∑

i

H(xi,yi;w, α), (4.8)

38

where H is a convex upper bound on the filter loss Lf ,

H(xi,yi;w, α) = max{0, `+ τw,α(xi)− ψw(xi, yi)}.

The upper-bound H is a hinge loss measuring the margin between the filter threshold

τw,α(xi) and the score of the truth ψw(xi,yi); the loss is zero if the truth scores above

the threshold by margin ` (in practice, the length ` can vary by example). We solve (4.8)

using stochastic sub-gradient descent. Given a sample (x,y), we apply the following up-

date if H(w,x,y) (i.e., the sub-gradient) is non-zero:

w′ ← (1− ηλ)w + ηf(x,y)− ηαf(x,y?)− η(1− α)
1∑
c |Yc|

∑

c∈F ,yc∈Y

f(x,y?w(x,yc)).

(4.9)

Above, η is a learning rate parameter. The key distinguishing feature of this update com-

pared to the structured perceptron update is that it subtracts features included in all max-

marginal assignments y?w(x,yc).

Note that because (4.8) is λ-strongly convex, we can choose ηt = 1/(λt) and add a

projection step to keep w in a fixed norm-ball. The update then corresponds to the Pegasos

update with convergence guarantees of Õ(1/ε) iterations for ε-accurate solutions (Shalev-

Shwartz et al., 2007).

An overview of the entire learning process for the whole cascade is given in Algorithm

2. Levels of the cascade are learned incrementally using the output of the previous level of

the cascade as input. Note that Algorithm 2 trades memory efficiency for time efficiency

by storing the sparse data structures St for each example. A more memory-efficient (but

less time efficient) algorithm would instead run all previous layers of the cascade for each

example during sub-gradient descent optimization of (4.8).

Finally, in our implementation, we can sometimes achieve better results by further tun-

ing the threshold parameters αt using a development set. We first learn wt using some fixed

αt as before. However, we then choose an improved ᾱt by maximizing efficiency subject

to the constraint that filter loss on the development set is less than a tolerance εt:

ᾱt ← argmin
0≤α′<1

n∑

i=1

Le(xi,yi;wt, α′) s.t.
1

n

n∑

i=1

Lf (xi,yi;wt, α′) ≤ εt.

39

Furthermore, we can repeat this tuning process for several different starting values of αt

and pick the (wt, ᾱt) pair with the optimal trade-off, to further improve performance. In

practice, we find that this procedure can substantially improve the efficiency of the cascade

while keeping accuracy within range of the given tolerance.

4.4 Generalization analysis

We now present generalization bounds on the filtering and efficiency loss functions for a

single level of a cascade. To achieve bounds on the entire cascade, these can be combined

provided that a fresh sample is used for each level. To prove the following bounds, we make

use of Gaussian complexity results from Bartlett and Mendelson (2002), which requires

vectorizing scoring and loss functions in a novel structured manner (details in Appendix

A.1). The main theorem in this section depends on Lipschitz dominating cost functions Lγf
and Lγe that upper bound Lf and Le. Note that as γ → 0, we recover Lf and Le.

Definition 3 (Margin-augmented losses). We define margin-augmented filtering and effi-

ciency losses using the usual γ-margin function:

rγ(z) =





1 if z < 0

1− z/γ if 0 ≤ z ≤ γ

0 if z > γ.

(4.10)

Lγf (x,y;w, α) = rγ(ψw(x,y)− τw,α(x)) (4.11)

Lγe (x,y;w, α) =
1∑

c∈F |Yc|
∑

c∈F ,yc∈Yc

rγ(τw,α(x)− ψ?w(x,yc). (4.12)

Theorem 1. Fix α ∈ [0, 1] and let Θ be the class of all scoring functions ψw with ||w||2 ≤
B, let |F| be the total number of factors, m =

∑
c∈F |Yc| be the total number of factor

assignments, ||fc(x,yc)||2 ≤ 1 for all x ∈ X , c ∈ F and yc ∈ Yc. Then there exists a

constant c such that for any integer n and any 0 < δ < 1 with probability 1 − δ over

40

samples of size n, every ψw ∈ Θ satisfies:

E [Lf (X, Y ;w, α)] ≤ Ê
[
Lγf (X, Y ;w, α)

]
+
cmB

√
|F|

γ
√
n

+

√
8 ln(2/δ)

n
, (4.13)

E [Le(X, Y ;w, α)] ≤ Ê [Lγe (X, Y ;w, α)] +
cmB

√
|F|

γ
√
n

+

√
8 ln(2/δ)

n
, (4.14)

where Ê is the empirical expectation with respect to the sample.

Theorem 1 provides theoretical justification for the definitions of the loss functions Le
and Lf and the structured cascade objective; if we observe a highly accurate and efficient

filtering model (w, α) on a finite sample of training data, it is likely that the performance of

the model on unseen test data will not be too much worse as n gets large. Theorem 1 is the

first theoretical guarantee on the generalization of accuracy and efficiency of a structured

filtering model.

4.5 Experiments

Linear-chain Markov models. In this section, we apply the structured prediction cas-

cades framework to sequence prediction tasks with increasingly high order linear-chain

models. We first introduced these models in section 3.3. To review, the state space of a

linear chain model is ∀i : Yi = {1, . . . , K}, where K is the number of possible states.

Thus, the size of the state space is K. A d-order linear-chain model has maximal factors

{x, yi, yi−1, . . . , yi−d}. Thus, for an order d factor, there are Kd+1 possible factor assign-

ments, although we find that in practice very few high-order factor assignments survive the

first few levels of the cascade (see Table 4.3.)

For a d-order linear-chain model, the standard factorization of the score of an output

y is given by a combination of unary features fu that depend on the input x and a set of

transition features fc that depend only on the assignment of a given factor yc:

ψw(x,y) =
∑̀

i=1

w>fu(x, yi) +
∑̀

i=1

d∑

j=1

w>fcj(yi, . . . , yi−j), (4.15)

41

where fcj are the features for the factor of size |c| = j + 1. I.e. for a 2-order model,

we have unary features fu(x, yi), bigram features fc1(yi, yi−1), and trigram features fc2

(yi, yi−1, yi−2).

In general, any d-order linear-chain model can be equivalently represented as a bigram

(2-order) model with Kd states. Thus, it is simplest to implement a cascade of sequence

models of increasing order as a set of bigram models where the state space is increasing

exponentially by a factor ofK from one model to the next. Given a list of valid assignments

St in a d-order model, we can generate an expanded list of valid assignments St+1 for a

(d+ 1)-order model by concatenating the valid d-grams with all possible additional states.

Note that this means that filtering occurs over edges in each bigram model, as opposed to

the traditional method of filtering states.

4.5.1 Speed: Part-of-speech (POS) tagging

Experimental setup. We first evaluated our approach on a standard benchmark for part-

of-speech (POS) tagging in English. Our objective was to rigorously compare the efficacy

of our approach to alternative methods on a problem while reproducing well-established

benchmark prediction accuracy. The goal of POS tagging is to assign a label to each word

in a sentence. For English, we followed the standard benchmark by using volumes 0-17

of the Wall Street Journal portion of the Penn TreeBank (Marcus et al., 1993) for training,

volumes 18-20 for development, and volumes 21-24 for testing. For these experiments,

we focused on comparing the efficiency of our approach to the efficiency of several alter-

native approaches. We again used a set of Markov models of increasing order; however,

to increase filtering efficiency, we computed max marginals over subcliques representing

(d − 1) order state assignments rather than d-order cliques representing transitions. Thus,

the bigram model filters unigrams and the trigram model filters bigrams, etc. Although we

ran the cascades up to 5-gram models, peak accuracy was reached with trigrams on the

POS task.

42

−20

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r o

f G
ra

m
s

Unigrams
Bigrams
Trigrams
Quadrigrams

Student Version of MATLAB

−20

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r o

f G
ra

m
s

Unigrams
Bigrams
Trigrams
Quadrigrams

Student Version of MATLAB

−20

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r o

f G
ra

m
s

Unigrams
Bigrams
Trigrams
Quadrigrams

Student Version of MATLAB

−20

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r o

f G
ra

m
s

Unigrams
Bigrams
Trigrams
Quadrigrams

Student Version of MATLAB

Figure 4.5: Sparsity of inference during an example sequence cascade. Each panel shows

the complexity of inference on a different example from the OCR dataset at each position

in the sequence. The total height of each bar represents the size of the valid assignments

St, while the shaded portion represents the remaining assignments after thresholding. Al-

though complexity rises as unigrams are expanded into bigrams, filtering with bigrams and

trigrams quickly reduces complexity to a few possible assignments at each position.

43

Baselines. We compared our SPC method to two baselines: the standard structured per-

ceptron (SP) and a maximum a posteriori CRF. All methods used the same standard set of

binary features: namely, a feature each (word,tag) pair 1 [Xt = xt, Yt = yt] and feature for

each d-gram in the model. For the baseline methods, we trained to minimize classification

error (for SP) or log-loss (for CRF) and then chose α ∈ [0, 1] to achieve minimum Le sub-

ject to Lf ≤ ε on the development set. For the CRF, we computed sum-product marginals

P (yc|x) =
∑

y′:y′
c=yc

P (y′|x), and used the threshold τw,α(x) = α to eliminate all yc such

that P (yc|x) ≤ α. For all algorithms, we used grid search over several values of η and λ, in

addition to early stopping, to choose the optimal w based on the development set. For SPC

training, we considered initial α’s from the candidate set {0, 0.2, 0.4, 0.6, 0.8}. To ensure

accuracy of the final predictor, we set a strict threshold of ε = 0.01%. All methods were

trained using a structured perceptron for the final classifier.

SPC improves efficiency while preserving accuracy. The results are summarized in

Table 4.2. SC was compared to CRF, an unfiltered SP model (Full), and a heuristic baseline

in which only POS tags associated with a given word in the training set were searched

during inference (Tags). SC was two orders of magnitude faster than the full model in

practice, with the search space reduced to only≈ 4 states per position in inference (roughly

the complexity of a greedy approximate beam search with 4 beams.) SC also outperformed

CRF by a factor of 2.6 and the heuristic by a factor of 6.8. Note that because of the trade-

off between accuracy and efficiency, CRF suffered less filter loss relative to SC due to

pruning less aggressively, although neither method suffered enough filtering loss to affect

the accuracy of the final classifier. Finally, training the full trigram POS tagger with exact

inference is extremely slow and took several days to train; training the SC cascade took

only a few hours, despite the fact that more models were trained in total.

44

Model: Full SPC CRF Tags

Accuracy (%) 96.83 96.82 96.84 —

Filter loss (%) 0 0.121 0.024 0.118

Test Time (ms) 173.28 1.56 4.16 10.6

Avg. Num States 1935.7 3.93 11.845 95.39

Table 4.2: Summary of WSJ Results. Accuracy is the accuracy of the final trigram model. Filter

loss is the number of incorrectly pruned bigrams at the end of the cascade. The last row is the

average number of states considered at each position in the test set.

4.5.2 Accuracy: Handwriting recognition

Experimental setup. We evaluated the accuracy of the cascade using the handwriting

recognition dataset from Taskar et al. (2003). This dataset consists of 6877 handwritten

words, with average length of ∼8 characters, from 150 human subjects, from the data set

collected by Kassel (1995). Each word was segmented into characters, each character was

rasterized into an image of 16 by 8 binary pixels. The dataset is divided into 10 folds; we

used 9 folds for training and a single withheld for testing (note that Taskar et al. (2003)

used 9 folds for testing and 1 for training due to computational limitations, so our results

are not directly comparable). Results are averaged across all 10 folds.

Our objective was to measure the improvement in predictive accuracy as higher order

models were incorporated into the cascade. We trained six cascades, up to a sixth-order

(sexagram) linear-chain model. This is significantly higher order than the typical third-

order (trigram) models typically used in sequence classification tasks. Note that in practice,

the additional accuracy gained by increasing the order of the model might be offset by the

additional filtering errors incurred due to lengthening the cascade. Thus, each level of each

cascade was tuned to achieve maximum efficiency subject to a maximum error tolerance ε,

whereby α was set such that no more than ε filtering error was incurred by each level of the

cascade.

45

SPC dramatically improves accuracy. Results are summarized in Table 4.3. We found

that using higher order models led to a dramatic gain in accuracy on this dataset, increasing

character accuracy from 77.35% to 98.54% and increasing word accuracy from 26.74%

to 96.16%. It is interesting to note that the word level accuracy of the sixth-order model

is roughly equivalent to the character-level accuracy of the trigram model. Furthermore,

using a development set, we found that a stricter tolerance was required to gain accuracy

from fifth- and sixth-order models, as reflected in Table 4.3. Finally, compared to previous

approaches on this dataset, our accuracies are much higher; the best previously reported

result on this dataset was 90.19% (Daumé et al., 2009).

In fact, the extremely high accuracies of our approach on this dataset highlight the par-

ticular features of this data. Due to the high number of subjects used, there are only 55

unique words in the handwriting recognition dataset. In fact, if just the first three letters of

each word are given exactly, one can guess the identity of the word with 94.5% accuracy.

Given more letters, it is possible to uniquely identify the word with 100% accuracy. How-

ever, due to inter-subject variance, previous approaches have not been able to approach this

theoretical performance. By being able to utilize very high order factors, SPC overcomes

this limitation.

To gain intuition about the inference process of SPC, a detailed picture of the com-

plexity of inference for a few representative examples is presented in Figure 4.5 for the

fourth-order cascade model. This figure also demonstrates the flexibility of the cascade:

although a single threshold is chosen, the max marginals around unambiguous portions of

the input are eliminated first.

4.6 Summary

We presented Structured Prediction Cascades, a framework for adaptively increasing the

complexity of structured models on a per-example basis while maintaining efficiency of

inference. This allows for the construction and training of structured models of far greater

complexity than was previously possible. We proposed two novel loss functions, filtering

46

Model Order 1 2 3 4 5 6

Accuracy, Char. (%) 77.35 85.02 96.20 97.21 98.27 98.54

Accuracy, Word (%) 26.74 45.67 88.25 91.35 93.74 96.16

Filter Loss (%) — 0.50 0.73 1.00 0.75 0.57

Tolerance (%) 1.00 1.00 1.00 1.00 0.50 0.25

Avg. Num n-grams 26.0 127.97 101.84 18.80 82.12 73.36

Table 4.3: Summary of handwriting recognition results. For each level of the cascade,

we computed prediction accuracy (at character and word levels) using a standard voting

perceptron algorithm as well as the filtering loss and average number of unfiltered n-grams

per position for the SPC on the test set.

loss and efficiency loss, that measure the two objectives balanced by the cascade, and pro-

vided generalization bounds for these loss functions. We proposed a simple sub-gradient

based learning algorithm to minimize these losses, and presented a stage-wise learning al-

gorithm for the entire cascade in Algorithm 2. Finally, we demonstrated empirically that

SPC is an effective method for obtaining better accuracy/computation trade-offs on two

sequential prediction tasks.

47

Chapter 5

Ensemble-SPC: SPC for Loopy Graphs

Overview. In the previous chapter, we developed the SPC framework by thresholding

max-marginals to filter the output space and speed up sparse inference. Computing max-

marginals is therefore the critical component of SPC inference (Algorithm 1). However, as

discussed in Chapter 3, there are loopy factor graph structures where it is not feasible to run

exact inference, even with only pairwise factors. One example is tracking of human pose

in video; while the model for pose in a single frame is tree-structured and tractable (Figure

4.2b), adding dependencies between each limb in neighboring frames introduces loops that

make inference intractable (Figure 7.1a).

In this chapter, we propose a novel method for learning structured cascades when in-

ference is intractable due to loops in the graphical structure. The key idea of our approach

is to decompose the loopy model into a collection of equivalent tractable sub-models for

which inference is tractable; we can then sum the max-marginals for each model to produce

an approximate max-marginal that still allows for generalization analysis as in the previ-

ous chapter. What distinguishes our approach from other decomposition based methods

e.g., Bertsekas (1999); Komodakis et al. (2007)) is that, because the cascade’s objective is

filtering and not decoding, our approach does not require enforcing the constraint that the

sub-models agree on which output has maximum score. This makes our method far more

efficient than other decomposition based approximate inference techniques. In preliminary

48

work (Weiss et al., 2010), this approach was called structured ensemble cascades, here we

simply refer to it as Ensemble-SPC.

Contributions. We first introduce the Ensemble-SPC framework: decomposition of an

intractable model into a set of sub-models that cover each factor in the original graph.

We define a novel loss function based on the sum of max-marginals from each constituent

component, and provide generalization bounds on the filtering error of an Ensemble-SPC

cascade. We first evaluate our approach on a synthetic grid model to establish the utility

of the decomposition approach, and then apply our approach to a coarse-to-fine cascade

for the human pose tracking problem. On the tracking problem, our approach obtains a

significant improvement over state-of-the-art.

5.1 Decomposition without agreement constraints

Thus far, we have assumed that (sparse) inference is feasible, so that max marginals can be

computed. In this section, we describe how to apply SPC when exact max-sum message

passing is computationally infeasible due to loops in the graph structure of the model.

In order to simplify the presentation in this section, we will assume that the structured

cascade under consideration operates in a “node-centric” coarse-to-fine manner as follows:

For each variable yj in the model, each level of the cascade filters a current set of possible

states Yj , and any surviving states are passed forward to the next level of the cascade

by substituting each state with its set of descendants in a hierarchy. For example, such

hierarchies arise in pose estimation (Section 6.3.2) by discretizing the articulation of joints

at multiple resolutions, or in image segmentation due to the semantic relationship between

class labels (e.g., “grass” and “tree” can be grouped as “plants,” “horse” and “cow” can be

grouped as “animal.”) Thus, in the pose estimation problem, surviving states are subdivided

into multiple finer-resolution states; in the image segmentation problem, broader object

classes are split into their constituent classes for the next level.

Given a loopy (intractable) graphical model, it is always possible to express the score

49

�(x, y) = �1(x, y) + �2(x, y) + �3(x, y) +

�4(x, y) + �5(x, y) + �6(x, y)

(a) (b)

Figure 2: (a) Example decomposition of a 3 � 3 fully connected grid into all six constituent “comb” trees. In
general, a n� n grid yields 2n such trees. (b) Improvement over Loopy BP and constituent tree-models on the
synthetic segmentation task. Error bars show standard error.

4.1 Asymptotic Filtering Accuracy

We first evaluated the filtering accuracy of the max-marginal ensemble on a synthetic 8-class seg-
mentation task. For this experiment, we removed variability due to parameter estimation and focused
our analysis on accuracy of inference. We compared our approach to Loopy Belief Propagation
(Loopy BP) [8], a state-of-the-art method for approximate inference, on a 11⇥ 11 two-dimensional
grid MRF.⇥ For the ensemble, we used 22 unique “comb” tree structures to approximate the full grid
model (i.e. Figure 2(a)). To generate a synthetic instance, we generated unary potentials ⇤i(k) uni-
formly on [0, 1] and pairwise potentials log-uniformly: ⇤ij(k, k⇤) = exp�v, where v ⇤ U [�25, 25]
was sampled independently for every edge and every pair of classes. (Note that for the ensemble,
we normalized unary and edge potentials by dividing by the number of times that each potential was
included in any model.) It is well known that inference for such grid MRFs is extremely difficult
[8], and we observed that Loopy BP failed to converge for at least a few variables on most examples
we generated.

Ensemble outperforms Loopy BP. We evaluted our approach on 100 synthetic grid MRF in-
stances. For each instance, we computed the accuracy of filtering using marginals from Loopy BP,
the ensemble, and each individual sub-model. We determined error rates by counting the number of
times “ground truth” was incorrectly filtered if the top K states were kept for each variable, where
we sampled 1000 “ground truth” examples from the true joint distribution using Gibbs sampling.
To obtain a good estimate of the true marginals, we restarted the chain for each sample and allowed
1000 iterations of mixing time. The result is presented in Figure 2(b) for all possible values of
K (filter aggressiveness.) We found that the ensemble outperformed Loopy BP and the individual
sub-models by a significant margin for all K.

Effect of sub-model agreement. We next investigated the question of whether or not the ensem-
bles were most accurate on variables for which the sub-models tended to agree. For each variable
yij in each instance, we computed the mean pairwise Spearman correlation between the ranking of
the 8 classes induced by the max marginals of each of the 22 sub-models. We found that complete
agreement between all sub-models never occured (the median correlation was 0.38). We found that
sub-model agreement was significantly correlated (p < 10�15) with the error of the ensemble for all
values of K, peaking at ⇥ = �0.143 at K = 5. Thus, increased agreement predicted a decrease in
error of the ensemble. We then asked the question: Does the effect of model agreement explain the
improvement of the ensemble over Loopy BP? In fact, the improvement in error compared to Loopy
BP was not correlated with sub-model agreement for any K (maximum ⇥ = 0.0185, p < 0.05).
Thus, sub-model agreement does not explain the improvement over Loopy BP, indicating that sub-
model disagreement is not related to the difficulty in inference problems that causes Loopy BP to
underperform relative to the ensembles (e.g., due to convergence failure.)

�
We used the UGM Matlab Toolbox by Mark Schmidt for the Loopy BP and Gibbs MCMC sections of this experiment. Publicly available at:

http://people.cs.ubc.ca/ schmidtm/Software/UGM.html

6

�(x, y) = �1(x, y) + �2(x, y) + �3(x, y) +

�4(x, y) + �5(x, y) + �6(x, y)

(a) (b)

Figure 2: (a) Example decomposition of a 3 � 3 fully connected grid into all six constituent “comb” trees. In
general, a n� n grid yields 2n such trees. (b) Improvement over Loopy BP and constituent tree-models on the
synthetic segmentation task. Error bars show standard error.

4.1 Asymptotic Filtering Accuracy

We first evaluated the filtering accuracy of the max-marginal ensemble on a synthetic 8-class seg-
mentation task. For this experiment, we removed variability due to parameter estimation and focused
our analysis on accuracy of inference. We compared our approach to Loopy Belief Propagation
(Loopy BP) [8], a state-of-the-art method for approximate inference, on a 11⇥ 11 two-dimensional
grid MRF.⇥ For the ensemble, we used 22 unique “comb” tree structures to approximate the full grid
model (i.e. Figure 2(a)). To generate a synthetic instance, we generated unary potentials ⇤i(k) uni-
formly on [0, 1] and pairwise potentials log-uniformly: ⇤ij(k, k⇤) = exp�v, where v ⇤ U [�25, 25]
was sampled independently for every edge and every pair of classes. (Note that for the ensemble,
we normalized unary and edge potentials by dividing by the number of times that each potential was
included in any model.) It is well known that inference for such grid MRFs is extremely difficult
[8], and we observed that Loopy BP failed to converge for at least a few variables on most examples
we generated.

Ensemble outperforms Loopy BP. We evaluted our approach on 100 synthetic grid MRF in-
stances. For each instance, we computed the accuracy of filtering using marginals from Loopy BP,
the ensemble, and each individual sub-model. We determined error rates by counting the number of
times “ground truth” was incorrectly filtered if the top K states were kept for each variable, where
we sampled 1000 “ground truth” examples from the true joint distribution using Gibbs sampling.
To obtain a good estimate of the true marginals, we restarted the chain for each sample and allowed
1000 iterations of mixing time. The result is presented in Figure 2(b) for all possible values of
K (filter aggressiveness.) We found that the ensemble outperformed Loopy BP and the individual
sub-models by a significant margin for all K.

Effect of sub-model agreement. We next investigated the question of whether or not the ensem-
bles were most accurate on variables for which the sub-models tended to agree. For each variable
yij in each instance, we computed the mean pairwise Spearman correlation between the ranking of
the 8 classes induced by the max marginals of each of the 22 sub-models. We found that complete
agreement between all sub-models never occured (the median correlation was 0.38). We found that
sub-model agreement was significantly correlated (p < 10�15) with the error of the ensemble for all
values of K, peaking at ⇥ = �0.143 at K = 5. Thus, increased agreement predicted a decrease in
error of the ensemble. We then asked the question: Does the effect of model agreement explain the
improvement of the ensemble over Loopy BP? In fact, the improvement in error compared to Loopy
BP was not correlated with sub-model agreement for any K (maximum ⇥ = 0.0185, p < 0.05).
Thus, sub-model agreement does not explain the improvement over Loopy BP, indicating that sub-
model disagreement is not related to the difficulty in inference problems that causes Loopy BP to
underperform relative to the ensembles (e.g., due to convergence failure.)

�
We used the UGM Matlab Toolbox by Mark Schmidt for the Loopy BP and Gibbs MCMC sections of this experiment. Publicly available at:

http://people.cs.ubc.ca/ schmidtm/Software/UGM.html

6

�(x, y) = �1(x, y) + �2(x, y) + �3(x, y) +

�4(x, y) + �5(x, y) + �6(x, y)

(a) (b)

Figure 2: (a) Example decomposition of a 3 � 3 fully connected grid into all six constituent “comb” trees. In
general, a n� n grid yields 2n such trees. (b) Improvement over Loopy BP and constituent tree-models on the
synthetic segmentation task. Error bars show standard error.

4.1 Asymptotic Filtering Accuracy

We first evaluated the filtering accuracy of the max-marginal ensemble on a synthetic 8-class seg-
mentation task. For this experiment, we removed variability due to parameter estimation and focused
our analysis on accuracy of inference. We compared our approach to Loopy Belief Propagation
(Loopy BP) [8], a state-of-the-art method for approximate inference, on a 11⇥ 11 two-dimensional
grid MRF.⇥ For the ensemble, we used 22 unique “comb” tree structures to approximate the full grid
model (i.e. Figure 2(a)). To generate a synthetic instance, we generated unary potentials ⇤i(k) uni-
formly on [0, 1] and pairwise potentials log-uniformly: ⇤ij(k, k⇤) = exp�v, where v ⇤ U [�25, 25]
was sampled independently for every edge and every pair of classes. (Note that for the ensemble,
we normalized unary and edge potentials by dividing by the number of times that each potential was
included in any model.) It is well known that inference for such grid MRFs is extremely difficult
[8], and we observed that Loopy BP failed to converge for at least a few variables on most examples
we generated.

Ensemble outperforms Loopy BP. We evaluted our approach on 100 synthetic grid MRF in-
stances. For each instance, we computed the accuracy of filtering using marginals from Loopy BP,
the ensemble, and each individual sub-model. We determined error rates by counting the number of
times “ground truth” was incorrectly filtered if the top K states were kept for each variable, where
we sampled 1000 “ground truth” examples from the true joint distribution using Gibbs sampling.
To obtain a good estimate of the true marginals, we restarted the chain for each sample and allowed
1000 iterations of mixing time. The result is presented in Figure 2(b) for all possible values of
K (filter aggressiveness.) We found that the ensemble outperformed Loopy BP and the individual
sub-models by a significant margin for all K.

Effect of sub-model agreement. We next investigated the question of whether or not the ensem-
bles were most accurate on variables for which the sub-models tended to agree. For each variable
yij in each instance, we computed the mean pairwise Spearman correlation between the ranking of
the 8 classes induced by the max marginals of each of the 22 sub-models. We found that complete
agreement between all sub-models never occured (the median correlation was 0.38). We found that
sub-model agreement was significantly correlated (p < 10�15) with the error of the ensemble for all
values of K, peaking at ⇥ = �0.143 at K = 5. Thus, increased agreement predicted a decrease in
error of the ensemble. We then asked the question: Does the effect of model agreement explain the
improvement of the ensemble over Loopy BP? In fact, the improvement in error compared to Loopy
BP was not correlated with sub-model agreement for any K (maximum ⇥ = 0.0185, p < 0.05).
Thus, sub-model agreement does not explain the improvement over Loopy BP, indicating that sub-
model disagreement is not related to the difficulty in inference problems that causes Loopy BP to
underperform relative to the ensembles (e.g., due to convergence failure.)

�
We used the UGM Matlab Toolbox by Mark Schmidt for the Loopy BP and Gibbs MCMC sections of this experiment. Publicly available at:

http://people.cs.ubc.ca/ schmidtm/Software/UGM.html

6

 w(x,y)

 w1
(x,y) + w2

(x,y) + w3
(x,y) +

 w4
(x,y) + w5

(x,y) + w6
(x,y)

Figure 5.1: Example decomposition of a 3× 3 fully connected grid into all six constituent

“comb” trees. In general, a n× n grid yields 2n such trees.

of a given output ψw(x,y) as the sum of P scores ψwp(x,y) under sub-models that col-

lectively cover every edge in the loopy model: ψw(x,y) =
∑

p ψwp(x,y) (Figure 5.1).

However, it is not the case that optimizing each individual sub-model separately will yield

the single globally optimum solution. Instead, care must be taken to enforce agreement be-

tween sub-models. For example, in the method of dual decomposition (Komodakis et al.,

2007), it is possible to solve a relaxed MAP problem in the (intractable) full model by run-

ning inference in the (tractable) sub-models under the constraint that all sub-models agree

on the argmax solution. Enforcing this constraint requires iteratively re-weighting unary

potentials of the sub-models and repeatedly re-running inference until each sub-model con-

vergences to the same argmax solution.

However, for the purposes of SPC, we are only interested in computing the max-

marginals ψ?w(x, yj). In other words, we are only interested in knowing whether or not

a configuration y consistent with yj that scores highly in each sub-model ψwp(x,y) exists.

We show in the remainder of this section that the requirement that a single y consistent with

yj optimizes the score of each submodel (i.e, that all sub-models agree) is not necessary

for the purposes of filtering. Thus, because we do not have to enforce agreement between

sub-models, we can apply SPC to intractable (loopy) models, but pay only a linear (factor

50

of P) increase in inference time over the tractable sub-models.

Formally, we define a single level of the Ensemble-SPC as a set of P models such

that ψw(x,y) =
∑

p ψwp(x,y). We let ψ?wp(x,yc), ψ?wp(x) and τwp,α(x) denote the max-

marginals, max score, and threshold of the p’th model, respectively. Recall that the argmax-

marginal or witness y?wp(x, yj) is defined as the maximizing complete assignment of the

corresponding max-marginal ψ?wp(x, yj). Then we have that

ψ?w(x, yj) =
∑

p

ψ?wp(x, yj) (with agreement: y = y?wp(x, yj), ∀p) (5.1)

ψ?w(x, yj) ≤
∑

p

ψ?wp(x, yj) (in general) (5.2)

Note that if we do not require the sub-models to agree, then ψ?w(x, yj) is strictly less

than
∑

p ψ
?
wp(x, yj). Nonetheless, as we show next, the approximation ψ?w(x, yj) ≈

∑
p

ψ?wp(x, yj) is still useful and sufficient for filtering in a structured cascade.

5.2 Safe filtering

We now show that if a given label y has a high score in the full model, it must also have

a large ensemble max-marginal score, even if the sub-models do not agree on the argmax.

This extends Lemma 1 for the ensemble case, as follows:

Lemma 3 (Joint Safe Filtering). If
∑

p ψwp(x,y) > t, then
∑

p ψ
?
wp(x, yj) > t for all j.

Proof. In English, this lemma states that if the global score is above a given threshold,

then the sum of sub-model max-marginals is also above threshold (with no agreement con-

straint). The proof is straightforward. For any yj consistent with y, we have ψ?wp(x, yj) ≥
ψwp(x,y). Therefore

∑
p ψ

?
wp(x, yj) ≥

∑
p ψwp(x,y) > t.

Therefore, we see that an agreement constraint is not necessary in order to filter safely:

if we ensure that the combined score
∑

p ψwp(x,y) of the true label y is above threshold,

then we can filter without making a mistake if we compute max-marginals by running

inference separately for each sub-model. However, there is still potentially a price to pay

51

for disagreement. If the sub-models do not agree, and the truth is not above threshold, then

the threshold may filter all of the states for a given variable yj and therefore “break” the

cascade. This results from the fact that without agreement, there is no single argmax output

y? that is always above threshold for any α; therefore, we do not have an equivalent to

Lemma 2 for the ensemble case. However, we note that in our experiments (Section 5.5.2),

we never experienced such breakdown of the cascades.

5.3 Learning with ensembles

It is straightforward to adapt Algorithm 2 for the Ensemble-SPC case. As in the previous

chapter, we first define the natural loss function for sums of max-marginals, as suggested

by Lemma 3. We define the joint filtering loss as follows,

Definition 4 (Joint Filtering Loss).

Ljoint(x,y;w, α) = 1

[∑

p

ψwp(x,y) ≤
∑

p

τwp,α(x)

]
. (5.3)

We now discuss how to minimize the joint filter loss (5.3) given a dataset. We rephrase

the SPC optimization problem (4.8) using the ensemble max-marginals to form the ensem-

ble cascade margin problem,

min
w1,...,wP ,ξ≥0

λ

2

∑

p

||wp||2 +
1

n

∑

i

ξi s.t.
∑

p

ψwp(x
i,yi) ≥

∑

p

τwp,α(xi) + `i − ξi.

(5.4)

Seeing that the constraints can be ordered to show ξi ≤∑p τwp,α(xi)−∑p ψwp(x
i,yi)+`i,

we can form an equivalent unconstrained minimization problem,

min
w1,...,wP

λ

2

∑

p

||wp||2 +
1

n

∑

i

[∑

p

τwp,α(xi)− ψwp(x
i,yi) + `i

]

+

, (5.5)

where [z]+ = max{z, 0}. Finally, we take the subgradient of the objective in (5.5) with

respect to each parameter wp. This yields the following update rule for the p’th model:

wp ← (1− λ)wp +





0 if
∑

p ψwp(x
i,yi) ≥∑p τwp,α(xi) + `i,

∇ψwp(x
i,yi)−∇τwp,α(xi) otherwise.

(5.6)

52

This update is identical to the original SPC update with the exception that we update each

model individually only when the ensemble has made a mistake jointly. Thus, learning

to filter with the ensemble requires only P times as many resources as learning to filter

with any of the models individually. We simply replace the optimization over (4.8) step in

Algorithm 2 with an optimization over (5.5).

5.4 Generalization analysis

We now turn to ensemble setting and define an appropriate margin-augmented loss:

Definition 5 (Ensemble margin-augmented loss).

Lγjoint(x,y;w, α) = rγ

(∑

p

ψwp(x,y)− τwp,α(x)

)
(5.7)

Theorem 2. Fix α ∈ [0, 1] and let ||wp||2 ≤ B/P for all p, and ||fc(x,yc)||2 ≤ 1 for all x

and yc. Then there exists a constant c such that for any integer n and any 0 < δ < 1 with

probability 1− δ over samples of size n, every w = {w1, . . . ,wP} satisfies:

E [Ljoint(X, Y ;w, α)] ≤ Ê
[
Lγjoint(X, Y ;w, α)

]
+
cmBP

√
|F|

γ
√
n

+

√
8 ln(2/δ)

n
, (5.8)

where Ê is the empirical expectation with respect to the sample.

The proof of Theorem 2 is given in Appendix A.1.

5.5 Experiments

We evaluated Ensemble-SPC in two experiments. First, we analyzed the “best-case” fil-

tering performance of the summed max-marginal approximation to the true marginals on a

synthetic image segmentation task, assuming the true scoring function ψw(x, y) is available

for inference. Second, we evaluated the real-world accuracy of our approach on a difficult,

real-world human pose dataset (VideoPose). In both experiments, the max-marginal en-

semble outperforms state-of-the-art baselines.

53

5.5.1 Synthetic loopy graphs with Ensemble-SPC

Experimental setup. We first evaluated the filtering accuracy of the max-marginal en-

semble on a synthetic 8-class segmentation task. For this experiment, we removed vari-

ability due to parameter estimation and focused our analysis on accuracy of inference. We

compared our approach to Loopy Belief Propagation (Loopy BP) (McEliece et al., 1998;

Murphy et al., 1999; Pearl, 1988), on a 11 × 11 two-dimensional grid MRF.1 For the en-

semble, we used 22 unique “comb” tree structures to approximate the full grid model. To

generate a synthetic instance, we generated unary potentials ωi(k) uniformly on [0, 1] and

pairwise potentials log-uniformly: ωij(k, k′) = e−v, where v ∼ U [−25, 25] was sampled

independently for every edge and every pair of classes. (Note that for the ensemble, we

normalized unary and edge potentials by dividing by the number of times that each po-

tential was included in any model.) It is well known that inference for such grid MRFs is

generally difficult (Koller and Friedman, 2009), and we observed that Loopy BP failed to

converge for at least a few variables on most examples we generated.

Ensemble outperforms Loopy BP. We evaluated our approach on 100 synthetic grid

MRF instances. For each instance, we computed the accuracy of filtering using marginals

from Loopy BP, the ensemble, and each individual sub-model. We determined error rates

by counting the number of times “ground truth” was incorrectly filtered if the top K states

were kept for each variable, where we sampled 1000 “ground truth” examples from the true

joint distribution using Gibbs sampling. To obtain a good estimate of the true marginals, we

restarted the chain for each sample and allowed 1000 iterations of mixing time. The result

is presented in Figure 5.3 for all possible values of K (filter aggressiveness.) We found

that the ensemble outperformed Loopy BP and the individual sub-models by a significant

margin for all K.

1We used the UGM Matlab Toolbox by Mark Schmidt for the Loopy BP and Gibbs MCMC comparisons,

see: http://people.cs.ubc.ca/˜schmidtm/Software/UGM.html.

54

http://people.cs.ubc.ca/~schmidtm/Software/UGM.html

Inference Sum

+

Level m

n

Thresholding Refinement

Full
Model

Sub-models

Inference Sum

+

Level m+1

n

Thresholding Refinement

Full
Model

Sub-models

Ym+2Ym+1Ym Ym+1

 ?
wm(x, yj)  ⌧wm,↵(x) ?

wm+1(x, yj)  ⌧wm+1,↵(x)

Inference Sum

+

Level m

n

Thresholding Refinement

Full
Model

Sub-models

Inference Sum

+

Level m+1

n

Thresholding Refinement

Full
Model

Sub-models

Ym+2Ym+1Ym

⇥�m(x, yj)  tm(x, �)

Ym+1

⇥�m+1(x, yj)  tm+1(x, �)

(a)

(b)

!"#$%&'&& !"#$%&(&& !"#$%&)&&

*%+%,&!"

!"#$%&'&& !"#$%&(&& !"#$%&)&&

*%+%,&!#$&

!"#$%"&'('")$*&+,%"&'-*.+")#/' 0'1*2',)34'' 0')$56+',)34'' 0'+")#"'

(a)

Figure 5.2: (a) Schematic overview Ensemble-SPC for human pose tracking. The m’th

level of the cascade takes as input a sparse set of states Ym for each variable yj . The full

model is decomposed into constituent sub-models (above, the three tree models used in

the pose tracking experiment) and sparse inference is run. Next, the max marginals of the

sub-models are summed to produce a single max marginal for each variable assignment:

ψ?w(x, yj) =
∑

p ψ
?
wp(x, yj). Note that each level and each constituent model will have

different parameters as a result of the learning process. Finally, the state spaces are thresh-

olded based on the max-marginal scores and low-scoring states are filtered. Each state is

then refined according to a state hierarchy (e.g., spatial resolution, or semantic categories)

and passed to the next level of the cascade. This process can be repeated as many times as

desired. In (b), we illustrate two consecutive levels of the ensemble cascade on real data,

showing the filtered hypotheses left for a single video example.

55

Figure 5.3: Improvement over Loopy BP and constituent tree-models on the synthetic seg-

mentation task. Error bars show standard error.

56

Effect of sub-model agreement. We next investigated the question of whether or not the

ensembles were most accurate on variables for which the sub-models tended to agree. For

each variable yij in each instance, we computed the mean pairwise Spearman correlation

between the ranking of the 8 classes induced by the max marginals of each of the 22 sub-

models. We found that complete agreement between all sub-models never occurred (the

median correlation was 0.38). We found that sub-model agreement was significantly corre-

lated (p < 10−15) with the error of the ensemble for all values ofK, peaking at ρ = −0.143

at K = 5. Thus, increased agreement predicted a decrease in error of the ensemble. We

then asked the question: Does the effect of model agreement explain the improvement of the

ensemble over Loopy BP? In fact, the improvement in error compared to Loopy BP was not

correlated with sub-model agreement for any K (maximum ρ = 0.0185, p < 0.05). Thus,

sub-model agreement does not explain the improvement over Loopy BP, indicating that

sub-model disagreement is not related to the difficulty in inference problems that causes

Loopy BP to under perform relative to the ensembles (e.g., due to convergence failure.)

5.5.2 Articulated pose tracking cascade

Experimental setup. The VideoPose dataset2 consists of 34 video clips of approximately

50 frames each. The clips were harvested from three popular TV shows: 3 from Buffy the

Vampire Slayer, 27 from Friends, and 4 from LOST. Clips were chosen to highlight a variety

of situations and and movements when the camera is largely focused on a single actor. In

our experiments, we use the Buffy and half of the Friends clips as training (17 clips), and

the remaining Friends and LOST clips for testing. In total we test on 901 individual frames.

The Friends are split so no clips from the same episode are used for both training and

testing. We further set aside 4 of the Friends test clips to use as a development set. Each

frame of each clip is hand-annotated with locations of joints of a full pose model; for

simplicity, we use only the torso and upper arm annotations in this work, as these have the

strongest continuity across frames and strong geometric relationships.

2The VideoPose dataset is available online at http://vision.grasp.upenn.edu/video/.

57

Figure 5.4: Qualitative test results. Points shown are the position of left/right shoulders and

torsos at the last level of the ensemble SC (blue square, green dot, white circle resp.). Also

shown (green line segments) are the best-fitting hypotheses to groundtruth joints, selected

from within the top 4 max-marginal values. Shown as dotted gray lines is the best guess

pose returned by Ferrari et al. (2008).

Articulated pose model. All of the models we evaluated on this dataset share the same

basic structure: a variable for each limb’s (x, y) location and angle rotation (torso, left

arm, and right arm) with edges between torso and arms to model pose geometry. We refer

to this basic model, evaluated independently on each frame, as the “Single Frame” ap-

proach. For the VideoPose dataset, we augmented this model by adding edges between

limb states in adjacent frames (Figure 7.1), forming an intractable, loopy model. Our fea-

tures in a single frame are the same as in the beginning levels of the pictorial structure

cascade (Section 6.3.2): unary features are discretized Histogram of Gradient (HoG) part

detectors scores, and pairwise terms measure relative displacement in location and angle

between neighboring parts. Pairwise features connecting limbs across time also express

geometric displacement, allowing our model to capture the fact that human limbs move

smoothly over time.

Coarse-to-Fine Ensemble. We learned a coarse-to-fine structured cascade with six levels

for tracking as follows. The six levels use increasingly finer state spaces for joint locations,

discretized into bins of resolution 10×10 up to 80×80, with each stage doubling one of the

state space dimensions in the refinement step. All levels use an angular discretization of 24

bins. For the ensemble cascade, we learned three sub-models simultaneously (Figure 7.1),

with each sub-model accounting for temporal consistency for a different limb by adding

edges connecting the same limb in consecutive frames.

58

Results. A summary of results are presented in Figure 5.5. We compared the single-

frame cascade and the ensemble cascade to a state-of-the-art single-frame pose detector

(Ferrari et al. (Ferrari et al., 2008)) and to one of the individual sub-models, modeling

torso consistency only (“Torso Only”). We evaluated the method from Ferrari et al. (2008)

on only the first half of the test data due to computation time (taking approximately 7

minutes/frame). We found that the ensemble cascade was the most accurate for every joint

in the model, that all cascades outperformed the state-of-the-art baseline, and, interestingly,

that the single-frame cascade outperformed the torso-only cascade. We suspect that the

poor performance of the torso-only model may arise because propagating only torso states

through time leads to an over-reliance on the relatively weak torso signal to determine

the location of all the limbs. Sample qualitative output from the ensemble is presented in

Figure 5.4.

5.6 Summary

In this chapter, we presented Ensemble-SPC, an extension of the SPC framework to allow

for coarse-to-fine inference in loopy factor graphs. Like other approximate inference meth-

ods, we decompose the loopy graph into an ensemble of tractable sub-graphs; however,

our method only requires agreement with respect to a single variable at a time. We also

extended the generalization analysis from Chapter 4 to provide a generalization bound on

the filtering error of the ensemble. Finally, we showed that the method is effective on both

synthetic and real world data.

59

(a) Decoding Error. (b) Top K = 4 Error.

State PCP0.25 Efficiency

Level Dimensions in top K=4 (%)

0 10× 10× 24 – –

2 20× 20× 24 98.8 87.5

4 40× 40× 24 93.8 96.9

6 80× 80× 24 84.6 99.2

(c) Ensemble efficiency.

Figure 5.5: (a),(b): Prediction error for VideoPose dataset. Reported errors are the average

distance from a predicted joint location to the true joint for frames that lie in the [25,75]

inter-quartile range (IQR) of errors. Error bars show standard errors computed with respect

to clips. All SC models outperform Ferrari et al. (2008); the “torso only” persistence

cascade introduces additional error compared to a single-frame cascade, but adding arm

dependencies in the ensemble yields the best performance. (c): Summary of test set filtering

efficiency and accuracy for the ensemble cascade. PCP0.25 measures Oracle % of correctly

matched limb locations given unfiltered states; see Sapp et al. (2010) for more details.

60

Chapter 6

Dynamic Structured Model Selection

(DMS)

Overview. In this chapter, we develop an alternative framework for addressing the ex-

pressiveness v. computation trade-off. Whereas the SPC framework was developed in order

to allow for sparse inference in very large state spaces, this new framework is developed

in order to dynamically control the cost of feature extraction at test-time. Specifically, we

study the problem of managing the cost of low-level vision processing: dense evaluation

of input features common in visual processing (e.g., normalized cut segmentation, optical

flow, contour detection, etc.). In many object detection systems, the cost of computing

these features is several times greater then the time spent on structured inference given the

features. Furthermore, there is a tremendous variation of cost of low-level processing based

on resolution and other accuracy parameters; thus, choosing one global setting is often not

sufficient for complex images and wasteful on simple ones.

The basic principle behind this framework is very simple: at test-time, we selectively

apply different models to different examples. Each model utilizes its own set of features

and represents a different point on the expressiveness-computation trade-off curve. We

treat each model as a black box that takes a fixed cost to run for each example. To simplify

the algorithm, we assume a fixed ordering and hierarchy of models; the first (baseline)

61

model is the cheapest and least expressive, and subsequent models increase the predictive

power at the price of paying an additional cost. Our goal is as follows: given a batch of

test examples, allocate models to examples to maximize accuracy within an overall budget

constraint. We call our approach Dynamic Structured Model Selection (DMS).

We propose a novel two-tier architecture that provides dynamic speed v. accuracy trade-

offs through a simple type of introspection. The key idea is a division of labor between

a hierarchy of models/inference algorithms (tier one) and meta-level model selector (tier

two), which decides when to use expensive models adaptively, where they are most likely

to improve the accuracy of predictions. The two tiers have complementary strengths: Tier

one models provide increasingly accurate and more expensive inference over structured

outputs. Tier two model-selectors use arbitrary sparsely-computed features and long-range

dependencies, which would make inference intractable, in order to evaluate the outputs of

the first tier and decide when to stop. While the first tier optimizes over a combinatorial

set of possibilities using inference over densely computed features, the second tier simply

evaluates proposals of the first. The advantage of this division is that both tiers are efficient

and the second tier has more information than the first that allows it to reason about the

success of the first.

Contributions. We introduce dynamic structured model selection (DMS), a novel two-

tier framework for creating faster and more accurate structured prediction systems. In sec-

tion 6.1, we propose a simple greedy algorithm for maximizing test-time accuracy given a

budgetary constraint. We apply our approach to two sequential modeling tasks: handwrit-

ing recognition (section 6.3.1) and articulated pose estimation in videos (section 6.3.2). On

the handwriting recognition task, we use DMS to achieve a significant increase in accuracy

over baseline while at the same time being nearly 3× faster. On the pose task, we propose

a novel sequence model based re-ranker that utilizes the recently introduced model of Sapp

and Taskar (2013) to achieve state-of-the-art accuracy on a benchmark dataset while be-

ing 23× faster than the previous best method. We then apply DMS to achieve even faster

times on a new, much larger benchmark dataset, reducing the re-ranking model runtime by

62

Algorithm 3: Dynamic structured model selection (DMS).
input : Test set {xj}n1 , hypotheses h1, . . . , hT , costs c1, . . . , cT , selector ν, and

budget B.

output: Predictions y1, . . . ,yn.

1 initialize B′ ← 0, τj ← 1, yj ← h1(x
j) ;

2 initialize priority queue Q with priority-value pairs 〈ν(h2,x
j), j〉 ;

3 while B′ < B and Q is not empty do

4 Pop value j from Q with max priority;

5 if cτj+1 ≤ (B −B′) then

6 τj ← τj + 1;

7 B′ ← B′ + cτj ;

8 yj ← hτj(x);

9 Insert
〈
ν(hτj+1,x

j), j
〉

into Q;

a factor of 2× with no decrease in accuracy for wrist localization.

6.1 Meta-learning with a value-based selector

In this section, we introduce our approach to dynamic model selection and provide an

overview of the algorithm. The core idea behind our approach is very simple: we learn to

predict the value of choosing a more expensive model over a cheaper one using introspec-

tive meta-features, and we use these predicted values to allocate computational resources

at test time. In this fashion, we only apply the computationally expensive models to those

examples where we will receive the most benefit.

Value of a model. We work within the framework presented in Chapter 3 for structured

prediction. For the dynamic model selection problem we consider here, we assume that

we are given a set of models, h1, . . . , hT , that require some amortized cost c1, . . . , cT to

63

evaluate on any given example x. Given a fixed ordering of the models, we define the value

of evaluating model hi on example x,

V (hi,x,y) = L(hi−1(x),y)− L(hi(x),y), (6.1)

where L(y,y′) is a non-negative loss function. Note that a positive value signifies a de-

crease in loss, while a negative value signifies an increase is loss. (While more expen-

sive models usually increase accuracy on average, in practice we find that there are many

examples where the more expensive features hurt performance.) Our proposed goal for

meta-learning is to learn a selector ν(hi,x) to approximate the value function.

Batch inference. Given a set of models h1, . . . , hT , a selector ν, and a test set {x1, . . . ,

xn}, we perform inference using Algorithm 3. The algorithm is very simple: we greedily

optimize the total predicted value,

J(τ1, . . . , τn, η) =
n∑

j=1

τj∑

i=1

ν(hi,x
j), (6.2)

where τj is the stopping point on the j’th example. This can be implemented easily using

a single priority queue. The value for selecting the next model for each example is put in

the queue, and we allocate resources by repeatedly extracting the highest value element

from the queue and computing the next model’s predictions to update the value. Note that

even if all predicted ν(hi,x
j) are negative, Algorithm 3 continues to greedily choose more

expensive models as long as budget is available.

6.2 Learning the models and selector

Learning the models. Although we treat each model as a black box, in this work we

assume the same linear hypothesis class used throughout this thesis (1.1). Each model hi

has an associated weight vector wi and feature function fi. We use the structured max

margin learning framework as outlined in Chapter 3 to learn each model independently.

64

In particular, for the handwriting recognition task, we approximately optimize (3.4)

using the structured perceptron algorithm, which has been shown to work well for this task

(Weiss and Taskar, 2010). For the video pose estimation task, we optimize (3.4) directly

using the recent stochastic Frank-Wolfe block-coordinate descent method of Lacoste-Julien

et al. (2013), which we found to be more robust. In both cases, we choose regularization

parameter λ and a stochastic stopping time through cross-validation using a development

set.

Learning the selector. In order for Algorithm 3 to succeed, the selector ν must provide

a useful estimate of the value V . We formulate the selector as a linear function of meta-

features computed on the output of the models. The key idea is that, while the feature

generating function f for a structured prediction model decomposes over subsets of y in

order to maintain feasible inference, the meta-features φ need only be computed efficiently

for the specific outputs h1(x) through hi−1(x). We provide detail on the specific meta-

features used in each application in section 6.3.

We learn the selector by learning a weight vector β to approximate the value function.

On the training set, we first compute the value for every model on every training example.

We then minimize the following `2-regularized squared loss over a training set,

λ

2
||β||22 +

m∑

i=1

n∑

j=1

(
V (hi,x

j,yj)− β>φ(xj, h1:i−1)
)2

(6.3)

where the function φ is a function generating meta-features that takes all predictions h1,

. . . , hi−1 as input and λ is a regularization parameter chosen via cross validation.

Preventing overfitting. Some care is needed when learning the selector in order to avoid

re-using the same training set for learning both the models and the selector; i.e. if hi was

trained on example (xj,yj), we expect L(hi(x
j),yj) to be unrealistically low and thus the

value may be unrepresentative of the test distribution. However, a simple N -fold cross-

validation scheme suffices to prevent this. We train N different models h1i , . . . , h
N
i in the

standard way and use the model not trained on example j when evaluating (6.3).

65

Figure 6.1: Trade-off on handwriting recognition task, displayed as a function of the effi-

ciency speedup w.r.t the final model (Speedup) vs. the change in error rate w.r.t the final

model (∆Error). To draw each curve, we sweep the budget B or tradeoff parameter η until

we find a point with at least the target speedup and record the error rate. Our approach

(DMS) significantly outperforms imitation learning, yielding an error rate below that of the

final model. The Uniform method consists of picking which element to expand uniformly

at random until all examples use the same model, and the Baseline method consists of

picking a single entire fixed stage of models a priori.

66

6.3 Application to sequential prediction

In the next sections, we discuss two applications of our dynamic structured model selection

framework to computer vision problems: handwriting recognition and human pose estima-

tion from 2D video. In both settings, DMS provides for a far more efficient structured

prediction model.

Sequence model. In both settings, we use the standard linear-chain structured predic-

tion model first introduced in Chapter 1. For completeness, we briefly recap the details:

Given an input x of length `, we wish to predict a sequence of discrete K-valued outputs

y1, . . . , y`, where yi ∈ {1, . . . , K}. For the handwriting recognition problem, each yi cor-

responds to one letter of the written word; for human pose estimation, each yi corresponds

to one of K possible predicted poses. For any given sequence y1, . . . , y`, the combined

score of the sequence is the sum of unary and pairwise potentials,

ψw(x,y) =
∑̀

i=1

w>f(x, yi) +
∑̀

i=2

w>f(x, yi−1, yi), (6.4)

where w is a (learned) weight vector and f is a feature generating function. At test time,

we can efficiently make predictions using the Viterbi algorithm to find the state sequence

that maximizes (6.4).

6.3.1 Handwriting recognition

We first apply our method to the handwriting recognition dataset of Taskar et al. (2003).

For our purposes, this dataset represents a “best case” type of scenario: while there are

thousands of examples of handwritten words in the dataset, examples were generated by

enlisting many different people to rewrite the same list of less than a hundred unique words.

Therefore we expect high-order features (e.g., 5-grams) to be very informative, but these

features are computationally infeasible to include in the linear-chain model directly. In-

stead, they are ideally suited as informative meta-features for the selector. In this way, the

67

Figure 6.2: Exceeding state-of-the-art on VideoPose2 Sapp et al. (2011) and CLIC datasets.

The MODEC+S model matches the much slower ensemble approach of Sapp et al. (2011)

(Ensemble) in elbow accuracy and exceeds it in wrist accuracy (at high precisions), and

provides a significant boost in performance over MODEC. However, MODEC is still com-

petitive and more accurate than previous state-of-the-art Yang and Ramanan (2011) on both

datasets.

68

selector is ideally suited to direct computation at test time, and a very fast and effective

method is the result.

Models. We use three different models for the handwriting recognition problem, differing

only in the unary term features of the sequence model. In each model, we have K2 binary

pairwise features fk,k′(yi−1, yi) = 1 [yi−1 = k, yi = k′] as well as a unary feature for every

binary pixel activation in the 16 × 8 image. The second model h2 computes a coarse

Histogram of Gradients (HoG) in 3× 3 bins and the third model h3 additionally computes

HoG in smaller 2×2 bins. Since the pixels are given as in the input, and HoG takes constant

time for fixed input size, we have c1 = 0, c2 = 1, c3 = 1.

Selector Meta-features. We use two sets of meta-features for the selector. The first are

computed from the output of hi(x), consisting of the relative difference in the scores of

the top two outputs and the average of the mean, min, and max entropies of the marginal

distributions predicted by hi at each position in the sequence1. The second set of meta-

features count the number of times an n-gram was predicted in hi(x) that occurred zero

times in the training set, computed for n = 3, 4, 5. Both of these features take negligible

time to compute compared to the HoG computation.

Imitation learning baseline. We compare to an alternative method for dynamic model

selection inspired by imitation learning methods for feature selection (He et al., 2012). For

this baseline, we first pick a trade-off parameter η, and then for each example (xj,yj) in

the training set independently decide the optimal stopping point,

τ ?j = argmin
τ
L(hτ (x

j),yj) + η · cτ . (6.5)

These stopping points define an optimal policy π?(i,xj) = 1
[
τ ?j < i

]
, where the policy

π?(i,xj) is 1 if computation should continue on example xj after model i and 0 otherwise.

1In addition to Viterbi, we also ran sum-product inference in order to compute probabilistic marginals to

obtain entropies

69

We then learn an approximate policy π(i,xj) using a linear SVM classifier trained with the

same meta-features as the selector uses; we generated training data points by sampling all

trajectories generated by the optimal policy on the training set. Note that for each η, we

obtain one error/cost trade-off point. For all experiments, we swept η across many values

to generate all possible unique optimal policies for each fold of cross validation.

Results. We visualize the trade-off between error rate and computation time on the hand-

writing recognition task in Figure 7.3. All results are plotted in terms relative to the

third, most expensive model. Our approach significantly outperforms imitation learning,

and both imitation learning and our approach provide a significant increase in efficiency

over choosing one of the models a priori or uniformly at random. Most significantly, the

model/selector approach leads to a predictor that is more accurate than the final model

(due to choosing the most accurate models first) while yielding a roughly 2.5× speedup

compared to the most expensive model. Note that we also computed a different uniform

baseline where examples were advanced to the next model uniformly at random without

ensuring that all examples reached the same stage; we found this performed equivalent or

worse than the baseline shown.

Imitation learning vs. DMS. Besides the improvement in accuracy and speedup, there

are several practical advantages of DMS over the imitation learning baseline. Unlike DMS,

each choice of η yields a different policy; in order to sweep a curve, we must re-run learning

for every point we wish to generate on the curve. Furthermore, imitation learning as defined

using equation 6.5 does not guarantee that computation over a batch of test examples will

run within a fixed budget; each choice of η yields a fixed trade-off that will approximately

run at some budget that is a function of the interaction between computation and accuracy

on the given training set.

70

Figure 6.3: Dynamic model selection on the CLIC dataset. See caption of Figure 7.3 for

explanation of axes/baselines. DMS provides a significant increase in speedup with very

little accuracy cost compared to picking elements uniformly at random; e.g. for elbows, a

2× speedup can be obtained for hardly any accuracy cost, while a 5× speedup with DMS

can be obtained for the same accuracy of a 3× speedup when picking uniformly at random.

71

6.3.2 Human pose estimation in video

Our approach to video pose estimation can be summarized as follows. We propose a simple

bigram linear-chain model, one per arm. The model consists of 32 states per frame. We

adapt the efficient and current state-of-the-art MODEC pose model Sapp and Taskar (2013)

to generate the states: each state corresponds to the highest scoring prediction of one of the

32 MODEC sub-models. Next, given the set of states for each clip in our training database,

we learn to predict a path through the states using high level features such as color and flow

consistency. The resulting model is both more accurate than previous state-of-the-art and

is roughly 23× faster. We then apply dynamic model selection to choose the features in the

sequence models on-the-fly for even greater efficiency gains on a new, large dataset.

Related works in pose estimation. There is considerable research into human pose es-

timation from 2D images; far more than we can review here. However, as state-of-the-art

pose estimation can take upwards of several minutes per frame (Ladický et al., 2013; Sapp

et al., 2011) there is significantly less prior work on pose estimation in video clips. Buehler

et al. (2011) use a single pictorial structure model for upper body in the different setting

of extended signing sequences, where e.g. a static background over long periods leads to

useful models of background. Park and Ramanan (2011) propose a related approach to

our method by stitching together N hypothesized poses per frame into video tracks, us-

ing N = 300 and evaluating their approach on 4 video sequences. In contrast, we use

N = 32 proposals from Sapp et al. (2011) (assuming the scale and location of the person is

known), learn additional sequence models using features computed over proposed tracks,

and evaluate on hundreds of short clips from cinema. Sapp et al. (2011) tackles video clips

from TV shows and is therefore the most relevant competitor to our approach, but (as we

demonstrate) our method is both more accurate and an order of magnitude faster.

MODEC Proposals. A key relevant modeling innovation in the MODEC method is the

joint learning of a mixture of 32 articulated part-based models. Each mixture component, or

mode, represents a different canonical pose. To generate our 32 states, we find the argmax

72

arm configuration for each of the 32 modes in MODEC. Note that MODEC models each

arm as a separate pose model, but chooses a single mode for each arm based on a combined

compatibility score between the two poses; for our purposes, we ignore the compatibility

score and take the 32 separate predictions for each arm independently. Experimentally, we

find that with 32 states per arm, at least one state is typically very close to the true arm pose

for a given image (i.e. on the VideoPose2 dataset of Sapp et al. (2011), greater than 80%

of elbows and wrists are within 20 pixels of the ground truth, on average.)

MODEC+S sequence model. Given a video sequence, we generate 32 states for each

arm for each frame independently using the MODEC model. The problem then becomes

selecting which of the 32 poses for each arm and frame to choose. We apply a standard

linear-chain bigram model for this task. Let yi be state at frame i; for each assignment

to yi we have a corresponding MODEC argmax pose on the i’th frame, which we denote

pi(yi). For each state yi in the i’th frame we allow transitions from the 5 closest states y′i−1

in the previous frame, as measured by the distance in joint configuration space ||pi(yi) −
pi−1(y

′
i−1)||2. This yields a total of 160 possible transitions for each frame. At test time,

we can efficiently make predictions using the Viterbi algorithm to find the state sequence

that maximizes (6.4) with practically negligible runtime due to the tiny size of the state and

transition space. We call our approach MODEC+S.

Learning. We learn the scoring functions ψ from a set of n training examples as follows.

Given a video clip xj and a labeled pose pji for each frame i in xj , we define the ground

truth state yji to be the state with the closest pose yji = argmin ||pi(yi)− pji ||2. This results

in the training set {(xj,yj)}nj=1 which we use as the basis for the rest of our analysis.

Features. As in the handwriting recognition task, we use a fixed hierarchy of features

to create a series of four increasingly complex base models. The first model uses unary

features consisting of a prior term and the normalized MODEC score for each mode, and

binary features consisting of a (mode,mode) transition prior and several kinematic terms

73

(angular joint and limb velocities and x, y joint location velocities). The second model adds

an image-dependent pairwise term, the χ2-distance between color histograms of the pre-

dicted arm locations from one frame to the next. The third model adds an image-dependent

unary term; each image is quickly segmented into superpixels using Felzenszwalb and Hut-

tenlocher (2004), and we compute the intersection-over-union (IoU) score between the pre-

dicted arm rectangles and superpixels selected by the rectangles. Finally, the fourth model

computes a very fast and coarse optical flow using Liu (2009); we obtain an estimate of the

foreground flow by subtracting the median flow outside the target bounding box. We then

compute a flow-based pairwise feature as follows: for each predicted arm location in the

first frame, we shift each arm pixel by its estimated flow to produce a predicted arm loca-

tion in the next frame, and compute the IoU between the flow-shifted arm and each possible

predicted arm location in the next frame. Although the computational cost depends on the

size of the input images, for the CLIC dataset (described below), we compute the per-frame

amortized costs of each model (in seconds)2 to be c1 = 0, c2 = 0.41, c3 = 1, and c4 = 5.2

(optical flow is by far the most expensive feature of MODEC+S).

Meta-features. We use similar meta-features as in the handwriting recognition setting

(n-gram occurrences and distribution and entropy of the sequence model marginals) with

one set of additional image-dependent features. For every n-gram in the image, where

n = 2k, we compute the mean and max χ2 distance between a center frame predicted arm

location and the k frames before and after. The feature is then the average number of times

these distances exceed 0.5, indicating a significant difference between the predicted arm

color of the center frame and the surround frames. For k = 1, 2, 3, these features yield a

total of 40 features for the selector. Finally, for computing metafeatures at model level i,

we also compute the features of level i − 1 and the change in these features from i − 1 to

i. The per-frame amortized cost of evaluation is 0.014 seconds.

2All computation was carried out on a AMD Opteron 4284 CPU @ 3.00 GHz with 16 cores.

74

A new dataset. We introduce a new publicly available dataset, Clips Labeled in Cinema

(CLIC).3 This dataset consists of 362 annotated clips from the same movies as the Frames

Labeled in Cinema (FLIC) dataset from Sapp and Taskar (2013), for a total of roughly

15,000 individual frames. The annotations were obtained from a Amazon Mechanical Turk

crowd-sourcing annotation tool. Due to the difficulty of labeling an entire video sequence,

we labeled a significantly larger pool of video clips, but kept only those frames where

inter-annotator agreement was within the 90th percentile of the distribution of agreement

across all frames in all video clips. Each clip is between 10 and 61 frames in length, with

a median clip length of 46 frames. Although all of the data will be publicly available, for

our experiments in the following, we selected half of the clips that contained the most arm

motion to provide for a more challenging dataset.

6.3.3 Evaluation of MODEC+S

Experimental setup. Before applying DMS, we evaluated the utility of the final, most

complex MODEC+S model for articulated pose estimation in video. We first compared to

the approach of Sapp et al. (2011) on the VideoPose2 (VP2) dataset (Sapp et al., 2011),

which represents state-of-the-art in human pose estimation in challenging videos. (We also

compare to state-of-the-art single frame inference, as represented by Yang and Ramanan

(2011)). For the VP2 dataset we used the same train/test partitioning of the VP2 dataset

as Sapp et al. (2011). We next compared our approach on the new CLIC dataset. Due to

excessive runtime, it was infeasible to apply Sapp et al. (2011) to this much larger dataset,

so we compared to single-frame methods Sapp and Taskar (2013) and Yang and Ramanan

(2011). To evaluate on CLIC, we divided the dataset into two halves so that different movies

were contained in different halves. Since our new dataset CLIC uses the same movies as

the FLIC dataset in Sapp and Taskar (2013), we re-trained MODEC on the corresponding

3This dataset was collected and annotated by collaborators, and not the author of this thesis. The primary

contribution of the author was in manually reviewing, fixing errors, and curating a subset of the dataset for

use in this work.

75

movies from FLIC contained in each half and tested MODEC on the other half. To train

and test MODEC+S, we used these test evaluations of MODEC as input, again training

on one half of the data and testing on the other. Note that for all experiments, we ignored

the human detection problem and fed all algorithms pre-localized and scaled images using

the annotations in the data, although only MODEC and Sapp et al. (2011) explicitly take

advantage of this fact.

Results. The results are summarized in Figure 6.2, and qualitative results are presented in

Figure 6.5. On VP2, MODEC+S achieves similar or better accuracies to Sapp et al. (2011),

but whereas the downloadable code package for Sapp et al. (2011) took 367 seconds/frame

of computation time, MODEC+S takes only 16 seconds/frame, a 22.9× speedup. In partic-

ular, the new model is significantly more accurate on the wrist than either the previous best

or the single-frame MODEC model. However, even the single-frame MODEC is close to

state-of-the-art (after smoothing), which is even faster than our approach, and Yang and Ra-

manan (2011) is faster still, though not as competitive. On CLIC, MODEC+S dominates

the other methods by an even more significant margin, and all accuracies are generally

higher than VP2 for all methods.

6.3.4 Evaluation of DMS for MODEC+S

Experimental setup. We evaluated our dynamic model selection framework on the CLIC

dataset with 200 random partitions of the dataset. For each partition, we used 70% of the

data for training, 10% as development, and 20% as test. Within the training set, we ran

3-fold cross-validation to generate model predictions for learning the selector as described

in section 6.1. When learning the selector, we focused on minimizing wrist test error,

counting as an error any frame that the wrist was not localized to within 20 pixels. We also

smoothed the predictions of each model before passing them to the selector since we found

this improved the overall accuracy of the system.

76

Figure 6.4: Expansion distribution of DMS on the CLIC dataset. For each % of budget

used, the distribution of stopping points for the batch examples between the four possible

models is shown. As can be seen, our approach quickly begins using the most expensive

model in order to obtain higher accuracy for less overall computational cost.

Results. The results are shown in Figure 6.3. For wrist localization, our approach was

able to obtain a 2× speedup for little to no accuracy cost, and maintain a significant speedup

compared to the uninformed model selection baseline. For elbow localization, our approach

yields a speedup of 5× at the same accuracy cost as an uninformed 2× speedup, a signif-

icant improvement. Note that these improvements include the slight additional cost of

evaluating the DMS meta-features.

To further shed light on the difference between DMS and the uniform expansion, we

investigated whether or not Algorithm 3 was choosing models to use by simply choosing

the cheapest first (Figure 6.4). We found this not to be the case; instead, the most expensive

model is assigned to examples very early on in the budget allocation process. This suggests

that the computational gains of DMS stem from being able to allocate resources to very

difficult examples very quickly.

77

Figure 6.5: Qualitative results on the CLIC dataset. Shown are the predictions of the 4 base

models (blue, cyan, yellow, red, respectively). The optical flow based features (red) are

often times significantly more accurate than the other features.

78

6.4 Summary

We presented dynamic structured model selection (DMS), a simple but powerful meta-

learning algorithm that leverages typically intractable features in structured learning prob-

lems in order to automatically determine which of several models should be used at test-

time in order to maximize accuracy under a fixed budgetary constraint. In two domains, we

found significant improvements in accuracy and efficiency compared to alternative or unin-

formed approaches. We also established a new state-of-the-art in human pose estimation in

video with an implementation that is 23× faster than the previous standard implementation.

79

Chapter 7

DMS-π: Policy-based Model Selection

Overview. In this chapter, we extend and reformulate the basic DMS framework pre-

sented in the previous chapter to obtain significant improvements in the expressiveness-

computation trade-off. We achieve this improvement by “opening up” the black box mod-

els from the previous section: rather than reason at a meta-level about models, we reason

about features. We call this new framework DMS-π because we redefine the optimization

problem in terms of a feature extraction policy that determines specifically which features

are computed within the linear structured prediction framework of (1.1). Thus, whereas the

goal was previously to choose an optimal stopping point in a series of structured models,

our goal is now to select an optimal set of features that maximize accuracy within a fixed

computational budget.

One approach to this problem is to assume a joint probabilistic model of the input and

output variables and a utility function measuring payoffs. The expected value of informa-

tion measures the increase in expected utility after observing a given variable (Howard,

1966; Lindley, 1956) Unfortunately, the problem of computing optimal conditional obser-

vation plans is computationally intractable even for simple graphical models like Naive

Bayes (Krause and Guestrin, 2009). Moreover, assuming and learning a joint model of

input and output is typically quite inferior to discriminative models of output given input

(Altun et al., 2003; Collins, 2002; Lafferty et al., 2001; Taskar et al., 2003).

80

The approach developed in this chapter is to adapt the two-tier structure of DMS to

the feature extraction problem. Both tiers must change to adapt to the new setting. First,

we can no longer assume a single sequence of models, because we allow for features to

be computed on-the-fly for different factors even within a single example. We must be

able to evaluate predictions for any combination of features computed within the various

factors. Therefore, the first tier is a information-adaptive prediction model that is trained

to produce hypotheses given any of a set of extracted feature combinations. These feature

combinations factorize over an assumed graph structure, and we allow for sparsely com-

puted features such that different vertices and edges may utilize different features of the

input.

Next, rather than learning a selector that sequentially selects models for evaluation,

we frame the meta-level control problem in terms of finding a feature extraction policy

that sequentially adds features to the models until a budget limit is reached. Whereas in

DMS features are re-computed for an entire example with each selection step, a single

action for the DMS-π policy consists of choosing a factor within a given example and

computes additional features for that factor. Once again, we take a discriminative approach

and learn a parametrized value function that utilizes a set of meta-features to predict the

value of each action; however, we redefine the value of information to non-myopically

include future changes in accuracy. In order to estimate this new value function, we adopt

a more sophisticated learning scheme based on techniques from the reinforcement learning

community.

Once again, the critical advantage here is that the meta-features can incorporate valu-

able functions of the output space that are infeasible to include at inference time: while

features for inference must be computed densely for every assignment to the clique they

are computed over, the meta-features are computed sparsely on-the-fly for only the pro-

posed outputs of the adaptive model. Thus, the meta-features can include qualitatively

different long-range dependencies that convey information about the self-consistency of a

proposed output. We learn to weigh the meta-features for the value function using linear

81

function approximation techniques from reinforcement learning.

Contributions. We propose DMS-π for adaptively controlling the costs of feature ex-

traction in structured models at test-time. We first learn a prediction model that is trained

to use subsets of features computed sparsely across the structure of the input; we then use

reinforcement learning to estimate a value function that adaptively computes an approxi-

mately optimal set of features given a budget constraint. Because of the particular structure

of our problem, we show how we can apply value function estimation in a batch setting

using standard least-squares solvers. We revisit the applications from Chapter 6 and ap-

ply our method to two sequential prediction domains: articulated human pose estimation

and handwriting recognition. In both domains, we achieve greater accuracy using a small

fraction of the available features. Finally, in the handwriting domain where inference rivals

feature extraction as a bottleneck, we provide a self-limiting message-passing inference al-

gorithm that we show empirically can dramatically reduce inference time while preserving

the benefits of our approach.

7.1 Q-Learning a feature extraction policy

Setup. We follow the structured prediction framework introduced in Chapter 3. However,

we introduce an additional explicit feature extraction state vector z:

h(x, z) = argmax
y∈Y(x)

w>f(x,y, z). (7.1)

Above, f(x,y, z) is a sparse vector of D features that takes time c>z to compute for a

non-negative cost vector c and binary indicator vector z of length |z| = F . Intuitively, z

indicates which of F sets of features are extracted when computing f ; z = 1 means every

possible feature is extracted, while z = 0 means that only a minimum set of features is

extracted.

Note that by incorporating z into the feature function, the predictor h can learn to use

different linear weights for the same underlying feature value by conditioning the feature

82

Inference

Control

Feature
Extraction

f(x, ·, z)

Meta-Feature
Extraction

x
Input

�(x, z, ·)

State
z

y?

z [a?

Outputargmaxy w>f(x,y, z)

argmaxa �
>�(x, z, a)

Inference

Feature
Extraction x

Input

f(x, ·)

argmaxy w>f(x,y)
y?

Output

Structured Prediction Proposed Architecture

Figure 7.1: Overview of framework architecture. (Left) Standard structured prediction

architecture; features are extracted from the input and passed to the inference procedure,

which produces the output y?. (Right) Proposed framework; we introduce the binary state

vector z to represent explicitly which sets of features have been extracted. The output of

the inference procedure (which performs inference given any z) produces an output y?,

and this output is then used to extract meta-features φ, which are in turn used to compute

an update a? to the state z by a control model. We use stochastic subgradient to learn the

inference model w first and reinforcement learning to learn the control model β given w.

83

on the value of z. As we discuss in Section 7.4, adapting the weights in this way is crucial

to building a predictor h that works well for any subset of features. We will discuss how to

construct such features in more detail in Section 7.2.

Suppose we have learned such a model h. At test time, our goal is to make the most

accurate predictions possible for an example under a fixed budget B. Specifically, given h

and a loss function L : Y × Y 7→ R+, we wish to find the following:

H(x, B) = argmin
z

Ey|x[L(y, h(x, z))] (7.2)

In practice, there are three primary difficulties in optimizing equation (7.2). First, the dis-

tribution P (Y |X) is unknown. Second, there are exponentially many zs to explore. Most

important, however, is the fact that we do not have free access to the objective function.

Instead, given x, we are optimizing over z using a function oracle since we cannot com-

pute f(x,y, z) without paying c>z, and the total cost of all the calls to the oracle must

not exceed B. Our approach to solving these problems is outlined in Figure 7.1; we learn

a control model (i.e. a policy) by posing the optimization problem as an MDP and using

reinforcement learning techniques.

Adaptive extraction MDP. We model the budgeted prediction optimization as the fol-

lowing Markov Decision Process. The state of the MDP s is the tuple (x, z) for an input

x and feature extraction state z (for brevity we will simply write s). The start state is

s0 = (x,0), with x ∼ P (X), and z = 0 indicating only a minimal set of features have

been extracted. The action space A(s) is {i | zi = 0} ∪ {0}, where zi is the i’the element

of z; given a state-action pair (s, a), the next state is deterministically s′ = (x, z + ea),

where ea is the indicator vector with a 1 in the a’th component or the zero vector if a = 0.

Thus, at each state we can choose to extract one additional set of features, or none at

all (at which point the process terminates.) Finally, for fixed h, we define the shorthand

η(s) = Ey|xL(y, h(x, z)) to be the expected error of the predictor h given state z and input

x.

We now define the expected reward to be the adaptive value of information of extracting

84

the a’th set of features given the system state and budget B:

R(s, a, s′) =




η(s)− η(s′) if c>z(s′) ≤ B

0 otherwise
(7.3)

Intuitively, (7.3) says that each time we add additional features to the computation, we gain

reward equal to the decrease in error achieved with the new features (or pay a penalty if

the error increases.) However, if we ever exceed the budget, then any further decrease does

not count; no more reward can be gained. Furthermore, assuming f(x,y, z) can be cached

appropriately, it is clear that we pay only the additional computational cost ca for each

action a, so the entire cumulative computational burden of reaching some state s is exactly

c>z for the corresponding z vector.

Given a trajectory of states s0, s1, . . . , sT , computed by some deterministic policy π, it

is clear that the final cumulative reward Rπ(s0) is the difference between the starting error

rate and the rate of the last state satisfying the budget:

Rπ(s0) = η(s0)− η(s1) + η(s1)− · · · = η(s0)− η(st?), (7.4)

where t? is the index of the final state within the budget constraint. Therefore, the op-

timal policy π? that maximizes expected reward will compute z? minimizing (7.2) while

satisfying the budget constraint.

Learning an approximate policy with long-range meta-features. In this work, we fo-

cus on a straightforward method for learning an approximate policy: a batch version of

least-squares policy iteration (Lagoudakis and Parr, 2003) based on Q-learning (Watkins

and Dayan, 1992). We parametrize the policy as the greedy optimization of a linear func-

tion of meta-features φ computed from the current state s = (x, z): πβ(s) = argmaxa

β>φ(x, z, a). The meta-features (which we abbreviate as simply φ(s, a) henceforth) need

to be rich enough to represent the value of choosing to expand feature a for a given partially-

computed example (x, z). Note that we already have computed f(x, h(x, z), z), which may

be useful in estimating the confidence of the model on a given example. However, we have

85

much more freedom in choosing φ(s, a) than we had in choosing f ; while f is restricted to

ensure that inference is tractable, we have no such restriction for φ. We therefore compute

functions of h(x, z) that take into account large sets of output variables, and since we need

only compute them for the particular output h(x, z), we can do so very efficiently. We

describe the specific φ we use in our experiments in Section 7.4, typically measuring the

self-consistency of the output as a surrogate for the expected accuracy.

One-step off-policy Q-learning with least-squares. To simplify the notation, we will

assume given current state s, taking action a deterministically yields state s′. Given a

policy π, the value of a policy is recursively defined as the immediate expected reward plus

the discounted value of the next state:

Qπ(s, a) = R(s, a, s′) + γQπ(s′, π(s′)). (7.5)

The goal of Q-learning is to learn the Q for the optimal policy π? with maximal Qπ?;

however, it is clear that we can increase Q by simply stopping early when Qπ(s, a) < 0

(the future reward in this case is simply zero.) Therefore, we define the off-policy optimized

value Q?
π as follows:

Q?
π(st, π(st)) = R(st, π(st), st+1) + γ [Q?

π(st+1, π(st+1))]+ . (7.6)

We propose the following one-step algorithm for learning Q from data. Suppose we have

a finite trajectory s0, . . . , sT . Because both π and the state transitions are deterministic, we

can unroll the recursion in (7.6) and compute Q?
π(st, π(st)) for each sample using simple

dynamic programming. For example, if γ = 1 (there is no discount for future reward), we

obtain Q?
π(si, π(si)) = η(si) − η(st?), where t? is the optimal stopping time that satisfies

the given budget.

We therefore learn parameters β? for an approximate Q as follows. Given an initial

policy π, we execute π for each example (xj,yj) to obtain trajectories sj0, . . . , s
j
T . We then

solve the following least-squares optimization,

β? = argmin
β

λ||β||2 +
1

nT

∑

j,t

(
β>φ(sjt , π(sjt))−Q?

π(sjt , π(sjt))
)2
, (7.7)

86

using cross validation to determine the regularization parameter λ.

We perform a simple form of policy iteration as follows. We first initialize β by es-

timating the expected reward function (this can be estimated from pairs (s, s′), which are

more efficient to compute than Q-functions on trajectories). We then compute trajectories

under πβ and use these trajectories to compute β? that approximates Q?
π. We found that

additional iterations of policy iteration did not noticeably change the results.

Learning for multiple budgets. One potential drawback of our approach just described

is that we must learn a different policy for every desired budget. A more attractive alter-

native is to learn a single policy that is tuned to a range of possible budgets. One solution

is to set γ = 1 and learn with B = ∞, so that the value Q?
π represents the best improve-

ment possible using some optimal budget B?; however, at test time, it may be that B? is

greater than the available budget B and Q?
π is an over-estimate. By choosing γ < 1, we

can trade-off between valuing reward for short-term gain with smaller budgetsB < B? and

longer-term gain with the unknown optimal budget B?.

In fact, we can further encourage our learned policy to be useful for smaller budgets

by adjusting the reward function. Note that two trajectories that start at s0 and end at st?

will have the same reward, yet one trajectory might maintain much lower error rate than

the other during the process and therefore be more useful for smaller budgets. We therefore

add a shaping component to the expected reward in order to favor the more useful trajectory

as follows:

Rα(s, a, s′) = η(s)− η(s′)− α [η(s′)− η(s)]+ . (7.8)

This modification introduces a term that does not cancel when transitioning from one state

to the next, if the next state has higher error than our current state. Thus, we can only

achieve optimal reward η(s0)− η(st?) when there is a sequence of feature extractions that

never increases the error rate1; if such a sequence does not exist, then the parameter α

controls the trade-off between the importance of reaching st? and minimizing any errors

1While adding features decreases training error on average, even on the training set additional features

may lead to increased error for any particular example.

87

Features Error (%) Time Overhead Speedup

All 44.3 5.20s — 1×
44.0 1.20s 0.10s 4×

Variable 44.5 0.56s 0.08s 8×
(Q-learning) 45.6 0.24s 0.08s 16×

46.5 0.08s 0.07s 32×
All−Flow 46.3 1.01s 0.00s 5.1×
Base only 47.7 — — —

Table 7.1: Trade-off between average elbow and wrist error rate and computation time

achieved by our method on the pose dataset, for a variety of different budgets. The meth-

ods are stopped once the desired speedup is reached. Note that due to meta-feature pre-

computation in our implementation, there is 0.07s minimal overhead. Runtime is measure

in seconds per frame. Our approach yields a more accurate model that is 4× faster, as well

as much greater efficiency than a priori avoiding the expensive features for every example.

along the way. Note that we can still use the procedure described above to learn β when

using Rα instead of R. We use a development set to tune α as well as γ to find the most

useful policy when sweeping B across a range of budgets.

7.2 Design of the information-adaptive predictor h

Learning. We now address the problem of learning h(x, z) from n labeled data points

{(xj,yj}nj=1. Since we do not necessarily know the test-time budget during training (nor

would we want to repeat the training process for every possible budget), we formulate the

problem of minimizing the expected training loss according to a uniform distribution over

budgets:

w? = argmin
w

λ||w||2 +
1

n

n∑

j=1

Ez[L(yj, h(xj, z)]. (7.9)

Note that if L is convex, then (7.9) is a weighted sum of convex functions and is also

convex. Our choice of distribution for z will determine how the predictor h is calibrated.

88

In our experiments, we used the following generative process: (1) first sample a budget

B ∈ [0, |c|1] uniformly at random, (2) then sample z uniformly from {z | c>z = B} by

greedily adding feature sets to z in random order. To learn w, we use Pegasos-style (Shalev-

Shwartz et al., 2007) stochastic sub-gradient descent; we approximate the expectation in

(7.9) by resampling z every time we pick up a new example (xj,yj). We set λ and a

stopping-time criterion through cross-validation onto a development set.

Feature design. We now turn to the question of designing f(x,y, z). In the standard

pair-wise graphical model setting (before considering z), we decompose a feature function

f(x,y) into unary and pairwise features:

f(x,y) =
∑

i∈V

fu(x, yi) +
∑

(i,j)∈E

fe(x, yi, yj) (7.10)

We consider several different schemes of incorporating z of varying complexity. The sim-

plest scheme is to use several different feature functions f1, . . . , fT . Then |z| = F , and

za = 1 indicates that fa is computed. Thus, we have the following expression, where we

use z(a) to indicate the a’th element of z:

f(x,y, z) =
T∑

a=1

z(a)


∑

i∈V

fau(x, yi) +
∑

(i,j)∈E

fae (x, yi, yj)


 (7.11)

Note that in practice we can choose each fa to be a sparse vector such that fa ·fa′ = 0 for all

a′ 6= a; that is, each feature function fa “fills out” a complementary section of the feature

vector f . Note that this feature extraction scheme is essentially equivalent to the series of

linear models of the standard DMS scheme, since adding features sequentially in this way

corresponds to using entirely different feature functions.

A much more powerful approach is to create a feature vector as the composite of dif-

ferent extracted features for each vertex and edge in the model. In this setting, we set

z = [zu ze], where |z| = (|V|+ |E|)T , and we have

f(x,y, z) =
∑

i∈V

T∑

a=1

zu(a, i)f
a
u(x, yi) +

∑

(i,j)∈E

T∑

a=1

ze(a, ij)f
a
e (x, yi, yj). (7.12)

89

We refer to this latter feature extraction method a factor-level feature extraction, and the

former as example-level. As we will show empirically, the factor-level extraction method

allows for much finer-grain control of computation and therefore much more favorable

trade-offs. However, these gains come at the cost of increased inference time; inference

is re-run many more times per equivalent budget increase for the factor-level extractions

as compared to the example-level extractions. This is because each action taken by the

controller uses up smaller chunks of the budget and computes far fewer features when

features are only added to a single factor at at time.

Finally, we further note that the restriction (7.13) also allows us to increase the com-

plexity of the feature function f as follows; when using the a’th extraction, we allow the

model to re-weight the features from extractions 1 through a. In other words, we condition

the value of the feature on the current set of features that have been computed; since there

are only T sets in the restricted setting (and not 2F), this is a feasible option. We simply

define f̂a = [0 . . . f1 . . . fa . . . 0], where we add duplicates of features f1 through fa for

each feature block a. Thus, the model can learn different weights for the same underlying

features based on the current level of feature extraction; we found that this was crucial for

optimal performance.

Reducing inference overhead. Feature computation time is only one component of the

computational cost in making predictions; computing the argmax (7.1) given f can also

be expensive. Note that for reasons of simplicity, we only consider low tree-width models

in this work for which (7.1) can be efficiently solved via a standard max-sum message-

passing algorithm. Nonetheless, since φ(s, a) requires access to h(x, z) then we must run

message-passing every time we compute a new state s in order to compute the next action.

Therefore, we run message passing once and then perform less expensive local updates

using saved messages from the previous iteration. We define a simple algorithm for such

quiescent inference; we refer to this inference scheme as q-inference. The intuition is

that we stop propagating messages once the magnitude of the update to the max-marginal

decreases below a certain threshold q; we define q in terms of the margin of the current

90

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Im
pr

ov
em

en
t (

%
)

Total additional cost (s)

Accuracy gained per Computation (Wrist)

Single Tier

Greedy (Example)

Greedy (Composite)

Q−learning

Imitation

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Im
pr

ov
em

en
t (

%
)

Total additional cost (s)

Accuracy gained per Computation (Elbow)

Single Tier

Greedy (Example)

Greedy (Composite)

Q−learning

Imitation

Figure 7.2: Trade-off performance on the pose dataset for wrists (left) and elbows

(right). The curve shows the additional computation time per frame (including all over-

head) required to achieve an increase in accuracy over the minimal-feature model. The

“Single Tier” baseline indicates computing all features in order up to a given level for all

examples. The “Greedy” baselines consist of a policy trained to maximize an estimate of

reward, with no measure of future value of an action; the “example” variant computes new

features at each position in the sequence (i.e. using the example-level action space); this

is far less effective than the factor-level (composite) computation strategies. Note that Q-

learning in particular achieves higher accuracy models at a fraction of the computational

cost of using all features, and is more effective than imitation learning.

91

Algorithm 4: Quiescent Forward-Backward Algorithm.
input : Forward/backward messages α/β, target position p, scores θ, tolerance q.

output: Updated messages α′,β′.

1 Initialize α′ ← α, β′ ← β, i← p, j ← p,∆α = 1,∆β = 1 ;

2 Let τ(i) = maxk{αik + βik} −mink{αik + βik};
3 while i ≤ L and ∆α > q do

4 ∀k : α′ik ← θ(i, k) + maxk′ α
′
i−1,k′ + θ(i, k′, k) ;

5 ∆α← maxk |α′ik − αik|/τ(i);

6 while j ≥ 1 and ∆β > q do

7 ∀k : β′jk ← maxk′ β
′
j+1,k′ + θ(j + 1, k, k′) + θ(j + 1, k′) ;

8 ∆β ← maxk |β′jk − βjk|/τ(j);

MAP decoding at the given position, since that margin must be surpassed if the MAP

decoding will change as a result of inference.

The algorithm for local updates to message passing is in Algorithm 4. This algorithm is

similar to the standard forward-backward max-sum message passing algorithm for linear-

chain models, but it assumes that messages have already been precomputed. Based on

these precomputed messages, computation stops if the new message does not change by a

specified fraction q of the amount needed to change the argmax at a given position in the

sequence. It furthermore begins computation at a position p (where scores have presumably

changed) and propagates the changes outward from that position.

7.3 Batch mode inference

We now have all the elements in place to define the final DMS-π algorithm. At test time,

we are typically given a test set of n examples, rather than a single example. In this setting

the budget applies to the entire inference process, and it may be useful to spend more of

the budget on difficult examples rather than allocate the budget evenly across all examples.

92

In this case, we extend our framework to concatenate the states of all n examples s =

(x1, . . . ,xn, z1, . . . , zn). The action consists of choosing an example and then choosing

an action within that example’s sub-state; our policy searches over the space of all actions

for all examples simultaneously. Because of this, we impose additional constraints on the

action space, specifically:

z(a, . . .) = 1 =⇒ z(a′, . . .) = 1, ∀a′ < a. (7.13)

Equation (7.13) states that there is an inherent ordering of feature extractions, such that we

cannot compute the a’th feature set without first computing feature sets 1, . . . , a− 1. This

greatly simplifies the search space in the batch setting while at the same time preserving

enough flexibility to yield significant improvements in efficiency.

A precise form of the algorithm is given in Algorithm 5. Note that we use the factor-

level feature extraction scheme given in 7.2; an action chooses an element α from a graph

structure G and a feature tier level t (assuming T tiers), and computes that specific feature

tier of features for the specific factor corresponding to the graph element α. Thus, for a

graph G = {V , E}, there are (|V|+ |E|)T possible actions per example.

Imitation learning baseline. As an alternative to the approach just described, we also

consider an imitation learning scheme in which we learn a classifier to reproduce a target

policy given by an oracle. We use the same trajectories used to Q?
π, but instead we create

a classification dataset of positive and negative examples given a budget B by assigning all

state/action pairs along a trajectory within the budget as positive examples and all budget

violations as negative examples. We tune the budgetB using a development set to optimize

the overall trade-off when the policy is evaluated with multiple budgets.

7.4 Experiments

We evaluate our approach on linear-chain models by revisiting the two distinct domains

of the previous chapter. The first is the tracking of human pose in video, in which feature

93

Algorithm 5: Factor-level DMS-π batch inference.
input : Test set {xj}n1 , adaptive model h, controller weights β, graph G, budget B.

output: Predictions y1, . . . ,yn.

1 initialize B′ ← 0, zj ← 0, yj ← h(xj, zj) ;

2 define an action a as a pair 〈α ∈ G, t ∈ {1, . . . , T}〉 ;

3 initialize priority queue Q with pairs
〈
β>φ(xj, zj, a), (j, a)

〉
, ∀a = 〈α, 1〉 ;

4 while B′ < B and Q is not empty do

5 Pop values (j, a) from Q with max priority;

6 if ca ≤ (B −B′) then

7 zj ← zj + a;

8 B′ ← B′ + ca ;

9 yj ← h(xj, zj);

10 a′ ← 〈α, t+ 1〉);

11 Insert
〈
β>φ(xj, zj, a′), (j, a′)

〉
into Q;

94

computation completely dominates the running time of the algorithm, and the second is

optical handwriting recognition, in which inference time is on par with feature computation.

In both very different settings, our method achieves much faster models that use an order

of magnitude fewer features while yielding higher accuracy than the baseline.

7.4.1 Tracking of human pose in video

Setup. For this problem, our goal is to predict the joint locations of human limbs in video

clips extracted from Hollywood movies. Our testbed is the MODEC+S model proposed in

the previous chapter; the MODEC+S model uses the MODEC model of Sapp and Taskar

(2013) to generate 32 proposed poses per frame of a video sequence, and then combines

the predictions using a linear-chain structured sequential prediction model. There are four

types of features used by MODEC+S, the final and most expensive of which is a coarse-to-

fine optical flow Liu (2009); we assume the cheapest are always computed and minimize

additional computation time. We present cross validation results averaged over 50 80/20

train/test splits of the dataset. We measure localization performance or elbow and wrists

in terms of percentage of times the predicted locations fall within 20 pixels of the ground

truth.

Meta-features. We define the meta-features φ(s, a) in terms of the targeted position in

the sequence i and the current predictions y? = h(x, z). Specifically, we concatenate

the already computed unary and edge features of y?i and its neighbors (conditioned on the

value of z at i), the margin of the current MAP decoding at position i, and a measure of self-

consistency computed on y? as follows. For all sets of m frames overlapping with frame

i, we extract color histograms for the predicted arm segments and compute the maximum

χ2-distance from the first frame to any other frame; we then also add an indicator feature

each of these maximum distances exceeds 0.5, and repeat for m = 2, . . . , 5. We also add

several bias terms for which sets of features have been extracted around position i.

95

Discussion. We present a short summary of our pose results in Table 7.1, and compare

to various baselines in Figure 7.2. We found that our Q-learning approach is consistently

more effective than the imitation learning alternative; Q-learning yields a model that has

4× faster runtime (including the overhead of our approach) and that is more accurate than

a baseline model trained with all features. Note that in terms of the proportion of features

used, our method is extremely efficient: we achieve 56% of the possible improvement using

only 4.6% of all possible features, or 96% of the improvement while using only 10.7% of

the features.

7.4.2 Handwriting recognition

Setup. For this problem, we use the OCR dataset from Taskar et al. (2003), which is

pre-divided into 10 folds that we use for cross validation. We use three sets of features:

the original pixels (free), and two sets of Histogram-of-Gradient (HoG) features computed

on the images for different bin sizes. Unlike the pose setting, the features are very fast

to compute compared to inference. Thus, we evaluate the effectiveness of q-inference

with various thresholds to minimize inference time. For meta-features, we use the same

construction as for pose, but instead of inter-frame χ2-distance we use a binary indicator

as to whether or not the specific m-gram occurred in the training set. The results are

summarized in Figure 7.3; see caption for details.

Discussion. As in the pose setting, our method is extremely efficient in terms of the

features computed for h; however, in this case, the overhead of inference is on par with the

feature computation. Thus, we obtain a more accurate model with q = 0.5 that is 1.5×
faster, even though it uses only 1/5 of the features; if the implementation of inference were

improved, we would expect a speedup much closer to 5×. Furthermore, once again the

composite (factor-wise) features are far more efficient in terms of features extracted than

the example-wise policy.

96

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7

8

9

Im
pr

ov
em

en
t (

%
)

Additional Feature Cost (s)

OCR Trade−off (Feature Only)

Single Tier
Greedy (Example)
Q−learning (q = 0)
Q−learning (q = 0.1)
Q−learning (q = 0.5)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

Im
pr

ov
em

en
t (

%
)

Additional Total Cost (s)

OCR Trade−off (Feature+Overhead)

Single Tier
Greedy (Example)
Q−learning (q = 0)
Q−learning (q = 0.1)
Q−learning (q = 0.5)

Figure 7.3: Controlling overhead on the OCR dataset. While our approach is is ex-

tremely efficient in terms of how many features are extracted (Left), the additional over-

head of inference is prohibitively expensive for the OCR task without applying q-inference

(Right) with a large threshold. Furthermore, although the example-wise strategy is less

efficient in terms of features extracted, it is more efficient in terms of overhead.

97

7.5 Summary

We have introduced a framework for learning feature extraction policies and predictive

models that adaptively select features for extraction in a factor-wise, on-line fashion. On

two tasks our approach yields models that both more accurate and far more efficient; our

work is a significant step towards eliminating the feature extraction bottleneck in structured

prediction.

98

Chapter 8

Future Work

In the preceding chapters, we have presented several new frameworks for addressing the

expressiveness-computation trade-off in structured prediction. However, although the bulk

of the thesis work is completed, there are several further questions worth investigating. In

this chapter, I propose a primary direction for future work: combining and extending the

existing frameworks into a single method, SPC-π.

8.1 Combining SPC and DMS-π

Addressing complementary limitations. The DMS-π has significant advantages over

the DMS framework originally proposed: DMS-π is capable of optimizing expressiveness

vs. computation within a single example and at a much finer-grained level than DMS,

which can only select between different models. However, as the framework currently

stands, the DMS-π approach is limited to adding more features into existing factors. In

contrast, consider the limitations of SPC: while SPC could be applied to the same setting,

the bottleneck of feature computation may not depend on the size of the state space of the

output, e.g. computing HoG on the handwriting recognition data depends only on the size

of the input image. On the other hand, SPC is capable of incorporating factors with large

scopes when the features computation bottleneck does depend on the size of the output

99

space.

In other words, we can see that the limitations of the DMS-π and SPC frameworks

are complementary: of the two channels we have for increasing expressiveness–adding

features or adding scope to factors–DMS-π is well suited for the former, while SPC is

well suited for the latter. It is natural to therefore consider combining the approaches

into a single framework that is capable of intelligently allocating computation across both

channels simultaneously.

Introducing SPC-π. We call this new hybrid approach SPC-π: Policy-based Structured

Prediction Cascades. The key idea is to expand the action space of DMS-π to incorporate

introducing additional factors into the model. A proposed high-level algorithm for infer-

ence in this new framework is given in Algorithm 6; the key inputs are now an action space

A that defines either additional features for a given factor or adding a new factor to the

model. For simplicity of presentation we assume a policy π(x, z) (as opposed to explicitly

defining a priority queue value based policy as in Algorithm 5). Once again, we require a

single model that can adapt to any feature set and make any predictions. Note that if fea-

tures are added to an existing factor, the procedure is almost identical to DMS-π. However,

as in SPC, we maintain a sparse list of valid assignments for each factor; thus, whenever a

new factor is added, it is constructed on the fly from the list of valid assignments to other

factors, scored, and then filtered again based on the max marginals.

Adaptive cascade structure. We can also interpret SPC-π as an adaptive SPC cascade

structure that is specific to each test example. For example, suppose the pool of avail-

able features always adds new factors to the model: each subsequent addition could be

considered a different model f0, . . . , fT . However, instead of using a set of pre-trained fil-

ter models that are applied in fixed order, these models are constructed incrementally by

adding a single factor at a time. Thus, the hybrid approach represents an intelligent means

of adapting the structure of the cascade in the SPC to each example. In this way, we can

“close the loop” and remove the remaining human element (construction of the cascade)

100

Algorithm 6: High-level overview of SPC-π inference.
input : Example x, adaptive model h, controller π, action space A, budget B.

output: Prediction y.

1 initialize z← 0, y← h(x, z);

2 initialize max-marginals ψ?w(x,yc) using the baseline model and initialize:

S(x) = {yc : ψ?w(x,yc) ≥ τw,α(x)};
3 while budget remains do

4 Get an action a from the policy π(x, z) with cost ca;

5 Sparsely compute fa according to S(x);

6 Update max-marginals ψ?w(x,yc) and output h(x, z);

7 If not yet filtered, filter the scope of fa according to τw,α(x);

from the SPC framework.

However, one significant difference between this hybrid approach and the standard SPC

approach is that the max-marginals can be filtered at any time. In other words, we no longer

can train a pre-set pool of filtering models; in fact, in Algorithm 6, there is only a single

adaptive model that is responsible for both filtering and making predictions. An interesting

research question is whether or not we can learn such a model that is useful for both;

alternatively, we might learn and maintain two separate models w1 and w2 for prediction

and filtering respectively. Regardless, we now need to learn a filtering model that utilizes

arbitrary subsets of features, much as the adaptive prediction model is learned in DMS-π.

Finally, another significant difference is that the SPC-π approach as defined is not suitable

for coarse-to-fine SPC problems where the state space (and not the factors) is changed from

one model to the next, as predictions are not useful in this setting until the final (fine) stage

of the cascade.

New challenges. This new model raises some additional difficulties that must be solved.

In order to implement Algorithm 6, we need to first define an action space A that includes

incorporating factors of new scope into the model, yet is still efficient to search over and that

101

lends itself to computing meta-features. We then need an inference algorithm for the max-

marginals that can be computed using an arbitrary set of factors: if the additional factors

would introduce loops, exact inference may not be possible. Thus, the original formulation

for features used in DMS-π, which depended on unary and pairwise terms only, is not

suitable, but neither is the tree-decomposition method of Ensemble-SPC, which assumes

a fixed structure. Therefore, a fruitful direction for future research will be exploring (1)

an approximate method for computing max-marginals (e.g. loopy message passing), (2)

a dynamically expanding tree-decomposition, and (3) alternative LP relaxations that allow

for message passing algorithms (e.g. Sontag (2010)).

8.1.1 SPC-π on Linear-chains

Tractable subcase. Nonetheless, for the specific case of sequential prediction, there is a

relatively straightforward action space that should admit exact inference. As we have seen,

it is possible to retain exact inference while incorporating higher order Markov terms. This

suggests a simple action space for the SPC-π framework: for each position in the sequence,

we have one action, corresponding to increasing the order of the n-gram at that position. We

might also allow for adding features to the current largest factor at that position. Whenever

a higher order factor is added, we simply concatenate the state spaces (as before, in Chapter

4) of the two lower-order factors involved to form a linear-chain model with expanded

states.

8.1.2 Extending to loopy graphs

Potential Issues. As discussed, it is less straightforward to compute max-marginals in

a loopy factor graph that is being constructed on-the-fly in a piecewise fashion. The first

problem is defining a tractable action space: this would almost certainly require domain

knowledge. E.g. in a grid model, one might add factors over increasingly large subsets of

neighboring variables in the grid, defining one action per possible subset. The next problem

is how to approximately compute max-marginals, given the factor graph. The simplest

102

method would be to simply apply loopy messaging passing, but this notoriously can lead

to instabilities Koller and Friedman (2009), and does not come with any generalization

bounds.

There are two alternatives that would be worth exploring. The first would be to adapt

the Ensemble-SPC approach and construct an ensemble of trees on the fly. The simplest

method would be to add an additional tree for each high-order factor being added to the

model: since each high order factor only participates in a single tree, we would not need to

re-run inference in the previous trees in each iteration. The disadvantage of this approach

is that if more features are added to an existing factor that is shared across multiple trees,

recomputing max-marginals could become very expensive. Furthermore, we are making

the assumption that the action space always admits efficiently constructing such a tree for

each factor.

The second approach would be to adopt the dual decomposition approach from LP

relaxation methods (e.g. Sontag (2010)); in this case, we would use ensembles of sub-

graphs consisting of single factors that communicate through message passing between

dual variables. As in the loopy message passing case, we would run multiple iterations of

message passing to compute approximate global max-marginals rather than exactly com-

puting max marginals within a small set of sub-trees, but because we are solving a relaxed

dual problem, it may possible to define a filtering loss function using these approximate

max marginals.

8.1.3 Summary

In this chapter, we have proposed a framework to tie together the themes of this thesis: SPC-

π. The basis of this framework is to use the reinforcement-learning approach of DMS-π to

dynamically create a factor graph that is specifically tailored for each test instance. It is our

goal for the future to use this framework to expand upon the ideas presented in this thesis,

and open up new applications beyond the sequential prediction settings discussed here.

103

Chapter 9

Conclusion

In this thesis, we have presented several frameworks for enabling more accurate and effi-

cient structured prediction. The SPC framework is designed for coarse-to-fine inference,

utilizing simpler models to filter the exponentially large state space of more complex mod-

els. By using decomposition of a loopy graph into trees, Ensemble-SPC allows us to apply

the gains of SPC to a much more general case. Next, we developed the DMS framework, in

which we use meta-features to model the error rate of a sequence of increasingly feature-

expensive structured prediction models. We extended this framework to DMS-π, allowing

for selective feature extraction within a single example and enabling significantly higher

gains in efficiency compared to DMS. Finally, we propose for future work unifying the

SPC and DMS-π frameworks into a single coherent method that is capable of addressing

all aspects of the bottlenecks inherent in structured prediction.

104

Appendix A

Theorem Proofs

A.1 Proofs of Theorems 1 and 2

We first summarize the Rademacher and Gaussian complexity definitions and results from

Bartlett et al. (2002) required to prove the theorems.

Definition 6 (Rademacher and Gaussian complexities). LetH : X 7→ R be a function class

and x1, . . . ,xn be n independent samples from a fixed distribution. Define the random

variables:

R̂(H) = Eσ

[
sup
h∈H

∣∣∣∣∣
2

n

n∑

i=1

σih(xi)

∣∣∣∣∣

∣∣∣∣∣x
1, . . . ,xn

]
, (A.1)

Ĝ(H) = Eg

[
sup
h∈H

∣∣∣∣∣
2

n

n∑

i=1

gih(xi)

∣∣∣∣∣

∣∣∣∣∣x
1, . . . ,xn

]
, (A.2)

where σi ∈ ±1 are independent uniform and gi ∈ R are independent standard Gaus-

sian. Then R(H) = E[R̂(H)] and G(H) = E[Ĝ(H)] are the Rademacher and Gaussian

complexities of H .

Consider a general loss function Φ(y,h(x)) where h(x) ∈ Rm represents the prediction

function. In our case, h(x) is vector of factor assignment scores w>fc(x,yc) of dimension
∑

c∈F |Yc|, indexed by yc (a factor and its assignment). This vector h(x) contains all the

105

information needed to compute the max-marginals and threshold for a given example x.

Both Le and Lf can be written in this general form, as we detail below.

Definition 7 (Lipschitz continuity with respect to Euclidean norm). Let φ : Rm 7→ R, then

φ is Lipschitz continuous with constant L(φ) with respect to Euclidean norm if for any

z1, z2 ∈ Rm:

|φ(z1)− φ(z2)| ≤ L(φ)||z1 − z2||2. (A.3)

We recall the relevant results in the following theorem:

Theorem 3 (Bartlett and Mendelson, 2002). Consider a loss function Φ : Y × Rm 7→ R

and a dominating cost function φ : Y × Rm 7→ R such that Φ(y, z) ≤ φ(y, z). Let

H : X 7→ Rm be a vector-valued class of functions. Then for any integer n and any

0 < δ < 1, with probability 1− δ over samples of length n, every h in H satisfies

E[Φ(Y,h(X))] ≤ Ê[φ(Y,h(X))] +Rn(φ̃ ◦ H) +

√
8 ln(2/δ)

n
, (A.4)

where φ̃ ◦ H is a class of functions defined by centered composition of φ with h ∈ H ,

φ̃ ◦ h = φ(y,h(x))− φ(y, 0).

Furthermore, Rademacher complexity can be bounded using Gaussian complexity:

there are absolute constants c and C such that for every class H and every integer n,

cRn(H) ≤ Gn(H) ≤ (C lnn)Rn(H). (A.5)

Let H : X → Rm be a class of functions that is the direct sum of real-valued classes

H1, . . . , Hm. Then, for every integer n and every sample (x1, . . . ,xn),

Ĝn(φ ◦H) ≤ 2L(φ)
m∑

i=1

Ĝn(Hi), (A.6)

whereL(φ) is the Lipschitz constant of φwith respect to Euclidean distance. Finally, for the

2-norm-bounded linear class of functions, H = {x 7→ w>f(x) | ||w||2 ≤ B, ||f(x)||2 ≤
1},

Ĝn(H) ≤ 2B√
n
. (A.7)

106

A.1.1 Proof of Theorem 1

We will express our loss functions Le and Lf and dominating loss functions Lγe and Lγf , in

the in terms of the framework above. We reproduce the definitions side-by-side in a slightly

modified form below, where m =
∑

c∈F |Yc| and the γ-margin step-function dominates the

step-function rγ(z) ≥ 1 [z ≤ 0] by construction:

Lf (x,y;w, α) = 1 [ψw(x,y)− τw,α(x) ≤ 0] , (A.8)

Lγf (x,y;w, α) = rγ(ψw(x,y)− τw,α(x)), (A.9)

Le(x,y;w, α) =
1

m

∑

c∈F ,yc∈Yc

1 [τw,α(x)− ψ?w(x,yc) ≤ 0] , (A.10)

Lγe (x,y;w, α) =
1

m

∑

c∈F ,yc∈Yc

rγ(τw,α(x)− ψ?w(x,yc)). (A.11)

We “vectorize” our scoring function w and assignments y by defining vector-valued

functions, where the vectors are indexed by factor assignments, yc, with total dimension

m.

Definition 8 (Vectorization).

hyc(x) , w>fc(x,yc) (A.12)

vyc(y
′) , 1 [y′c = yc] (A.13)

ψw(x,y) = h(x)>v(y) (A.14)

Clearly, them-dimensional vector h(x) contains all the information needed to compute

the max-marginals and threshold for a given example x (we assume α is fixed). Hence we

can define the losses in the form of Theorem 3:

Φf (y,h(x)) = Lf (x,y;w, α) (A.15)

φf (y,h(x)) = Lγf (x,y;w, α) (A.16)

Φe(y,h(x)) = Le(x,y;w, α) (A.17)

φe(y,h(x)) = Lγe (x,y;w, α) (A.18)

What remains is to calculate the Lipschitz constants of φf and φe.

107

Theorem 4. φf (y, ·) and φe(y, ·) are Lipschitz (with respect to Euclidean distance on Rm)

with constant
√

2|F||/γ for all y ∈ Y .

To prove Theorem 4, we bound Lipschitz constants of constituent functions of φf and

φe.

Lemma 4. Fix any y ∈ Y and let φ1 : Rm 7→ R be defined as

φ1(z) = z>v(y)−max
y′∈Y

z>v(y′).

Then φ1(z1)− φ1(z2) ≤
√

2|F|||z1 − z2||2 for any z1, z2 ∈ Rm.

Proof. For brevity of notation in the proof below, we define v = v(y), v1 = v(argmaxy′

z>1 v(y′)) and v2 = v(argmaxy′ z
>
2 v(y′)), with ties broken arbitrarily but deterministically.

Then,

φ1(z1)− φ1(z2) = z>1 v − z>1 v1 − z>2 v + z>2 v2

= (z2 − z1)
>(v2 − v) + z>1 (v2 − v1)

≤ (z2 − z1)
>(v2 − v)

≤ ||z2 − z1||2||v2 − v||2
≤
√

2|F|||z1 − z2||2.

The last three steps follow (1) from the fact that v1 maximizes z>1 v(y′) (so that z>1 (v2−v1)

is negative), (2) from the Cauchy-Schwarz inequality, and (3) from the fact that there are

|F| factors, each of which can contribute at most a single non-zero entry in v or v2.

Lemma 5. Fix any y ∈ Y and let φ2 : Rm 7→ R be defined as

φ2(z) = z>v(y)− 1

m

∑

c∈F ,y′
c∈Yc

max
y′′:y′′

c=y′
c

z>v(y′′).

Then φ2(z1)− φ2(z2) ≤
√

2|F|||z1 − z2||2 for any z1, z2 ∈ Rm.

108

Proof. Let v = v(y),v1y′
c

= v(argmaxy′′:y′′=y′
c
z>1 v(y′′)) and v2y′

c
= (argmaxy′′:y′′=y′

c

z>2 v(y′′)).

φ2(z1)− φ2(z2) =
1

m

∑

c∈F ,y′
c∈Yc

z>1 v − z>1 v1y′
c
− z>2 v + z>2 v2y′

c

=
1

m

∑

c∈F ,y′
c∈Yc

(z2 − z1)
>(v2y′

c
− v) + z>1 (v2y′

c
− v1y′

c
)

≤ 1

m

∑

c∈F ,y′
c∈Yc

(z2 − z1)
>(v2y′

c
− v)

≤ 1

m

∑

c∈F ,y′
c∈Yc

√
2|F|||z1 − z2||2 =

√
2|F|||z1 − z2||2.

The inequalities follow using a similar argument to previous lemma, but made separately

for each y′c.

Lemma 6. Fix any y ∈ Y and let

φ3(z) = αφ1(z) + (1− α)φ2(z) =

ψw(x,y)︷ ︸︸ ︷
z>v(y)−

τw,α(x)︷ ︸︸ ︷
αmax

y′
z>v(y′) +

1− α
m

∑

y′
c

max
y′′:y′′

c=y′
c

z>v(y′′)


,

where the over-braces show the relationship to the score of the correct label sequence and

the threshold, assuming z = h(x). Then φ3(z1) − φ3(z2) ≤
√

2|F|||z1 − z2||2 for any

z1, z2 ∈ Rm and the Lipschitz constant of φf = rγ ◦ φ3 is bounded by
√

2|F|/γ.

Proof. Combining two previous lemmas we have that

φ3(z1)− φ3(z2) = α(φ1(z1)− φ1(z2)) + (1− α)(φ2(z1)− φ2(z2)) ≤
√

2|F|||z1 − z2||2.

To show that φf is Lipschitz continuous with constant
√

2|F|/γ, we note that φf = rγ ◦φ3

so L(φf) = L(rγ) · L(φ3) ≤
√

2|F|/γ.

Next, we show that φe is Lipschitz continuous with the same constant.

109

Lemma 7. Fix c ∈ F and yc ∈ Y and let φ[yc] : Rm 7→ R be defined as

φ[yc](z) =

ψ?w(x,yc)︷ ︸︸ ︷(
max

y′:y′
c=yc

z>v(y′)

)
−

τw,α(x)︷ ︸︸ ︷
αmax

y′
z>v(y′) +

1− α
m

∑

y′
c′

max
y′′:y′′

c′=y′
c′
z>v(y′′)


,

where the over-braces show the relationship to max-marginal of yc and the threshold and,

assuming z = h(x). Then φ[yc](z1)− φ[yc](z2) ≤
√

2|F|||z1 − z2||2 for any z1, z2 ∈ Rm.

Proof. We once again apply the trick from the proof of Lemma 4. Let

v1 = v(argmax
y′

z>1 v(y′)), v2 = v(argmax
y′

z>2 v(y′)),

v1y′
c′

= v(argmax
y′′:y′′=y′

c′

z>1 v(y′′)), v2y′
c′

= v(argmax
y′′:y′′=y′

c′

z>2 v(y′′)).

Then, we have:

φ[yc](z1)− φ[yc](z2) = (z>1 v1yc − z>2 v2yc) + α(z>2 v2 − z>1 v1)+

1− α
m

∑

y′
c′

(z>2 v2y′
c′
− z>1 v1y′

c′
)

≤ (z1 − z2)
>v1yc + α(z2 − z1)

>v2 +
1− α
m

∑

y′
c′

(z2 − z1)
>v2y′

c′

=
1

m

∑

y′
c′

(z1 − z2)
>
(
v1yc − αv2 − (1− α)v2y′

c′

)

≤ 1

m

∑

j

√
2|F|||z1 − z2||2 =

√
2|F|||z1 − z2||2.

Here once again we have condensed the argument similar to Lemma 4.

Finally, we note that φe(z) = 1/m
∑

i rγ(φ[yc](z)). Therefore L(φe) = 1/m
∑

i√
2|F|/γ =

√
2|F|/γ, thus completing the proof of Theorem 4. Now turning back to

Theorem 1, we note that the class of functions H we are working with is the direct sum of

m linear classes each bounded by norm B. Hence we complete the proof of Theorem 1, by

using Theorem 3, with Rn(φ̃f ◦H) = Rn(φ̃e ◦H) ≤ cmB
√
|F|

γ
√
n

for some constant c.

110

A.1.2 Proof of Theorem 2

We define

Φjoint(y,h(x)) , Ljoint(x,y;w, α) = 1

[(∑

p

ψwp(x,y)− τwp,α(x)

)
≤ 0

]
,

φjoint(y,h(x)) , Lγjoint(x,y;w, α) = rγ

(∑

p

ψwp(x,y)− τwp,α(x)

)

Once again, we fix any y ∈ Y and for each p, let (similar to Lemma 6)

φ3(zp) =

ψwp (x,y)︷ ︸︸ ︷
z>p v(y)−

τwp,α(x)︷ ︸︸ ︷
αmax

y′
z>p v(y′) +

1− α
m

∑

y′
c

max
y′′:y′′

c=y′
c

z>p v(y′′)


,

where the over-braces show the relationship to the score of the correct label sequence under

model p and the threshold for model p, assuming zp = hp(x) of model p.

Then φjoint(y,h(x)) = rγ(
∑

p φ3(
∑

p zp)) has Lipschitz constant
√

2|F|P/γ, since

we can apply Lemma 6 for each p, and φjoint(y,h(x)) = rγ

(∑
p ψwp(x,y)− τwp,α(x)

)

has Lipschitz constant at most
√

2|F|P/γ because if composition with rγ and the sum of

P identical terms. In Theorem 2, our function class H is the direct sum of m ∗ P linear

classes each bounded by norm B/P , hence Rn(φ̃joint ◦H) ≤ cmPB
√
|F|

γ
√
n

for some constant

c.

111

Bibliography

A. Agarwal, J. Duchi, P. Bartlett, and C. Levrard. Oracle ineqaulities for computationally

budgeted model selection. In Proc. COLT, 2011.

H. Akaike. A new look at the statistical model identification. Automatic Control, IEEE

Transactions on, 19(6):716 – 723, dec 1974.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector machines. In

Proc. ICML, 2003.

A. Barron, L. Birgé, and P. Massart. Risk bounds for model selection via penalization.

Probability theory and related fields, 113(3):301–413, 1999.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and

structural results. JMLR, 2002.

P. L. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine

Learning, 48:85–113, 2002.

V Bayer-Zubek. Learning diagnostic policies from examples by systematic search. In UAI,

2004.

A. Bedagkar-Gala and S.K. Shah. Joint modeling of algorithm behavior and image quality

for algorithm performance prediction. In BMVC, 2010.

S Bengio, J Weston, and D Grangier. Label embedding trees for large multi-class tasks. In

NIPS, 2010.

112

D. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

M Bilgic and L Getoor. Voila: Efficient feature-value acquisition for classification. In

AAAI, 2007.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In NIPS, 2008.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.

PAMI, 2001.

P. Buehler, M. Everingham, D.P. Huttenlocher, and A. Zisserman. Upper body detection

and tracking in extended signing sequences. IJCV, 95:180–197, 2011.

R Busa-Fekete, D Benbouzid, and B Kegl. Fast classification using sparse decision dags.

In ICML, 2012.

X. Carreras, M. Collins, and T. Koo. Tag, dynamic programming, and the perceptron for

efficient, feature-rich parsing. In Proc. CoNLL, 2008.

E. Charniak. A maximum-entropy-inspired parser. In Proc. NAACL, 2000.

M. Chen, Z. Xu, K.Q. Weinberg, O. Chapelle, and D. Kedem. Classifier cascade for mini-

mizing feature evaluation cost. In AISATATS, 2012.

M. Collins. Discriminative training methods for hidden markov models: theory and exper-

iments with perceptron algorithms. In Proc. EMNLP, 2002.

K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget. In NIPS. MIT

Press, 2003.

H. Daumé, J. Langford, and D. Marcu. Search-based structured prediction. Ma-

chine Learning, 75(3):297–325, 2009. URL http://dx.doi.org/10.1007/

s10994-009-5106-x.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based Perceptron on

a budget. SIAM Journal on Computing, 37(5):1342–1372, 2008.

113

http://dx.doi.org/10.1007/s10994-009-5106-x
http://dx.doi.org/10.1007/s10994-009-5106-x

J Deng, S Satheesh, A Berg, and L Fei-Fei. Fast and balanced: Efficient label tree learning

for large scale object recognition. In NIPS, 2011.

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, vol-

ume 31. Springer Verlag, 1996.

P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object detection with deformable

part models. In Proc. CVPR, 2010.

P.F. Felzenszwalb and D.P. Huttenlocher. Efficient graph-based image segmentation. IJCV,

59(2), 2004.

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for

human pose estimation. In Proc. CVPR, 2008.

F. Fleuret and D. Geman. Coarse-to-fine face detection. IJCV, 41(1/2), 2001.

T. Gao and D. Koller. Active classification based on value of classifier. In NIPS, 2011.

A. Grubb and D. Bagnell. Speedboost: Anytime prediction with uniform near-optimality.

In AISTATS, 2012.

Z Harchaoui, M Douze, M Paulin, M Dudik, and J Malick. Large-scale image classification

with trace-norm regularization. In CVPR, 2012.

H. He, H. Daumé III, and J. Eisner. Imitation learning by coaching. In NIPS, 2012.

B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 1981.

R. A Howard. Information value theory. Systems Science and Cybernetics, IEEE Transac-

tions on, 2(1):22–26, 1966.

N. Jammalamadaka, A. Zisserman, M. Eichner, V. Ferrari, and C.V.Jawahar. Has my algo-

rithm succeeded? An evaluator for human pose estimators. In ECCV, 2012.

114

S Ji and L Carin. Cost-sensitive feature acquisition and classification. Pattern Recognition,

2007.

J. Jiang, A. Teichart, H. Daumé III, and J. Eisner. Learned prioritization for trading off

accuracy and speed. In NIPS, 2012.

T. Joachims, T. Finley, and C. N. J. Yu. Cutting-plane training of structural svms. Machine

Learning, 2009.

P Kanani and P Melville. Prediction-time active feature-value acquisition for cost-effective

customer targeting. In NIPS, 2008.

R. Kassel. A Comparison of Approaches to On-line Handwritten Character Recognition.

PhD thesis, Massachusetts Institute of Technology, 1995.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.

The MIT Press, 2009.

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual decomposition:

Message-passing revisited. In Proc. ICCV, 2007.

A Krause and C Guestrin. Near-optimal value of information in graphical models. In UAI,

2005.

Andreas Krause and Carlos Guestrin. Optimal value of information in graphical models.

Journal of Artificial Intelligence Research (JAIR), 35:557–591, 2009.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe

optimization for structural SVMs. In ICML, 2013.

L. Ladický, P.H.S. Torr, and A. Zisserman. Human pose estimation using a joint pixel-wise

and part-wise formulation. In CVPR, 2013.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. In Proc. ICML, 2001.

115

M. Lagoudakis and R. Parr. Least-squares policy iteration. JMLR, 2003.

P. Lanchantin and X. Rodet. Dynamic model selection for spectral voice conversion. In

Interspeech, 2010.

J Langford, L Li, and T Zhang. Sparse online learning via truncated gradient. JMLR, 2009.

L. Lefakis and F. Fleuret. Joint cascade optimization using a product of boosted classifiers.

NIPS, 2010.

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals

of Mathematical Statistics, pages 986–1005, 1956.

B Liu, F Sadeghi, M Tappen, O Shamir, and C Liu. Probabilistic label trees for efficient

large scale image classification. In CVPR, 2013.

C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Anal-

ysis. PhD thesis, MIT, 2009.

M. Marcus, S. Santorini, and M. Marcinkiewicz. Building a large annotated corpus of

english: the penn treebank. Computational Linguistics, 19(2):313–330, 1993.

R. McDonald, F. PerF. Pereira. Ribarov, and J. Hajic. Non-projective dependency parsing

using spanning tree algorithms. In HLT/EMNLP, 2005.

R.J. McEliece, D.J.C. MacKay, and J.F. Cheng. Turbo decoding as an instance of Pearl’s

belief propagation algorithm. J. on Selected Areas in Communications, 16(2):140–152,

1998.

K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief propagation for approximate infer-

ence: An empirical study. In Proc. UAI, pages 467–475, 1999.

S. Nowozin and C. H. Lampert. Structured prediction and learning in computer vision. In

Foundations and Trends in Computer Graphics and Vision, volume 6. 2011.

116

D. Park and D. Ramanan. N-best maximal decoders for part models. In ICCV, 2011.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, 1988.

M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine approach for fast deformable

object detection. In CVPR, 2011.

S. Petrov. Coarse-to-Fine Natural Language Processing. PhD thesis, University of Cali-

fornia at Bekeley, 2009.

C. Raphael. Coarse-to-fine dynamic programming. PAMI, 2001.

V.C. Raykar, B. Krishnapuram, and S. Yu. Designing efficient cascaded classifiers: tradeoff

between accuracy and cost. In SIGKDD, 2010.

A. Rush and S. Petrov. Vine pruning for efficient multi-pass dependency parsing. In Proc.

NAACL, 2012.

M Saberian and N Vasconcelos. Boosting classifier cascades. In NIPS, 2010.

B. Sapp and B. Taskar. MODEC: Multimodal decomposable models for human pose esti-

mation. In CVPR, 2013.

B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation. In

ECCV, 2010.

B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. In

CVPR, 2011.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set

size. In International Conference on Machine learning, pages 928–935, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver

for SVM. In ICML, 2007.

117

V Sheng and C Ling. Feature value acquisition in testing: A sequential batch test algorithm.

In ICML, 2006.

D. Sontag. Approximate Inference in Graphical Models using LP Relaxations. PhD thesis,

Massachusetts Institute of Technology, 2010.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS, 2003.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction

models: A large margin approach. In ICML, 2005.

K. Trapeznikov and V. Saligrama. Supervised sequential classification under budget con-

straints. In AISTATS, 2013.

K Trapeznikov, V Saligrama, and D Castanon. Multi-stage classifier design. Machine

Learning, 2013.

V. Vapnik and A. Chervonenkis. Theory of pattern recognition. Nauka, 1974.

P. Viola and M. Jones. Robust real-time object detection. IJCV, 57(2):137–154, 2002.

C. Watkins and P. Dayan. Q-learning. Machine learning, 1992.

D. Weiss and B. Taskar. Structured prediction cascades. In AISTATS, 2010.

D. Weiss and B. Taskar. Dynamic structured model selection. In ICCV, 2013.

D. Weiss, B. Sapp, and B. Taskar. Sidestepping intractable inference with structured en-

semble cascades. In Proc. NIPS, 2010.

Z Xu, K Weinberger, and O Chapelle. The greedy miser: Learning under test-time budgets.

In ICML, 2012.

Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. In

Proc. CVPR, 2011.

118

	Acknowledgements
	Introduction
	Thesis Overview

	Related Work
	Controlling computation of multi-class classification
	Computational trade-offs during model selection
	Predicting with fixed test-time budgets
	Resource allocation for batch testing
	Classifier cascades
	More general multi-stage decision systems
	Feature extraction policies

	Related approaches for structured prediction
	Coarse-to-fine reasoning
	Early stopping cascade
	Prioritized inference
	Meta-learners/predicting model accuracy
	Applications of preliminary works

	Summary

	Structured Prediction: An Overview
	Supervised learning
	Structured prediction
	Representing structure with factor graphs
	Complexity of inference
	Max-margin parameter learning

	Trading off computation and expressiveness
	Summary

	Structured Prediction Cascades (SPC)
	Enabling complexity via filtering Y
	Cascaded inference with max-marginals
	Learning structured prediction cascades
	Generalization analysis
	Experiments
	Speed: Part-of-speech (POS) tagging
	Accuracy: Handwriting recognition

	Summary

	Ensemble-SPC: SPC for Loopy Graphs
	Decomposition without agreement constraints
	Safe filtering
	Learning with ensembles
	Generalization analysis
	Experiments
	Synthetic loopy graphs with Ensemble-SPC
	Articulated pose tracking cascade

	Summary

	Dynamic Structured Model Selection (DMS)
	Meta-learning with a value-based selector
	Learning the models and selector
	Application to sequential prediction
	Handwriting recognition
	Human pose estimation in video
	Evaluation of MODEC+S
	Evaluation of DMS for MODEC+S

	Summary

	DMS-: Policy-based Model Selection
	Q-Learning a feature extraction policy
	Design of the information-adaptive predictor h
	Batch mode inference
	Experiments
	Tracking of human pose in video
	Handwriting recognition

	Summary

	Future Work
	Combining SPC and DMS-
	SPC- on Linear-chains
	Extending to loopy graphs
	Summary

	Conclusion
	Theorem Proofs
	Proofs of Theorems 1 and 2
	Proof of Theorem 1
	Proof of Theorem 2

