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Abstract

Several policies have recently been proposed for attaining the maximum throughput region, or a guaranteed
fraction thereof, through dynamic link scheduling. Among these policies, the ones that attain the maximum
throughput region require a computation time which is linear in the network size, and the ones that require constant
or logarithmic computation time attain only certain fractions of the maximum throughput region. In contrast, in
this paper we propose policies that can attain any desirable fraction of the maximum throughput region and require
a computation time that is independent of the network size. First, using a combination of graph partitioning
techniques and lyapunov arguments, we propose a simple policy for tree topologies under the primary interference
model that requires each link to exchange only 1 bit information with its adjacent links and approximates the
maximum throughput region using a computation time that depends only on the maximum degree of nodes and the
approximation factor. We subsequently develop a framework for attaining arbitrary close approximations for the
maximum throughput region in arbitrary networks and interference models and use this framework to obtain any
desired tradeoff between throughput guarantees and computation times for a large class of networks and interference
models. Specifically, given any ¢ > 0, the maximum throughput region can be approximated in these networks
using a computation time that depends only on the maximum node degree and e.

I. INTRODUCTION

Attaining the maximum throughput region, or a guaranteed fraction thereof, through dynamic link
scheduling, is a key design goal in multihop wireless networks. The scheduling problem involves determi-
nation of which links transmit packets at any given time. Appropriate scheduling of links is key towards
attaining throughput guarantees as the success of transmission in any given link depends on which other
links transmit packets simultaneously. The transmission schedules can not be pre-computed, and needs
to be determined at every transmission epoch, as the congestion levels in the nodes and the transmission
conditions in the wireless medium vary with time, and the statistics of these temporal variations are
oftentimes not known a priori. Thus, the time required to determine which links would transmit at any
transmission epoch is a key performance metric for any dynamic scheduling policy. The contribution of
this paper is to characterize tradeoffs between throughput guarantees and computation times for scheduling
policies for different classes of wireless networks.

Owing to the lack of a central controller, at every transmission epoch each link needs to determine
whether it would transmit based on its own state and the information it acquires about the states of other
nodes. The throughput guarantees usually improve with increase in the information each link (or rather
a node which is the source of the link) acquires about the states of other links. The time required for
each link to decide whether to transmit at any given time depends on the time required (a) to exchange
messages with other links to learn their states and (b) to perform the computations required to arrive at
an appropriate decision based on the information acquired. We refer to the total time required in both
parts as the schedule computation time, or rather the computation time. The time required in each part
increases with increase in the amount of information a link acquires about the states of other links. Thus,
an important question is how much information a link should acquire about the states of other links.

The scheduling policies that have been widely investigated can be classified in two broad classes based
on the above qualifier: the policies that require each link to know some attribute that depends on the
states of (a) all links in the network [14], [15] and (b) only the links that interfere with it [2], [9], [10],



[12], [16]. We refer to the two classes as INFORMATION(V) and INFORMATION(1) policies respectively,
where N is the number of links in the network. By this nomenclature, INFORMATION(k) is the class of
policies that require each link to learn the states of their £-hop interferers. A seminal result has established
that policies in INFORMATION(/V) class can attain the maximum possible throughput region in arbitrary
wireless networks using O(/N') computation time per scheduling decision [14]. Recently, it has been shown
that a policy in INFORMATION(1) class can attain a guaranteed fraction of the maximum throughput region
using O(AglogN) computation time per scheduling decision where A is the maximum degree, or the
maximum number of neighbors of any given node, in the network [2]. The contribution of this paper is
to show that in certain important classes of wireless networks, for appropriate selection of £ between 1
and N, policies can be designed in INFORMATION(k) class so as to obtain arbitrary close approximations
for the maximum throughput region, while requiring a computation time that depends only on A, and
the desired approximation factor and is otherwise independent of the size of the network.

We first consider the primary interference model which mandates that any set of links can be si-
multaneously scheduled provided they do not have any common node. Under this interference model,
when the network topology is a tree, given any positive constant ¢, we obtain a distributed scheduling
policy in INFORMATION(1) class that (a) approximates the throughput region within a factor of 1 — e
and (b) requires a computation time of O(Ag/e) (Section 1V). We next present a general framework
for designing INFORMATION(k) policies for approximating the throughput region arbitrarily closely for
arbitrary networks and interference models (Section V). We subsequently use this framework for obtaining
arbitrary tradeoffs between throughput guarantees and computation times for large classes of networks, e.g.,
graphs with limited cyclicity and primary interference models (Section V-B), geometric graphs (Section V-
C) and quasi-geometric graphs (Section V-D) under both primary and secondary interference models. For
example, for the special case where nodes are embedded in a plane and two links interfere if and only
if at least one end-node of one link is within a given distance D of an end-node of the other link (i.e.,
geometric graphs and secondary interference model), given any positive constant e, we obtain a distributed
scheduling policy in INFORMATION(O(AZ/€%)) class that (a) approximates the throughput region within
a factor of 1 — e and (b) requires a computation time of (Aé/EQ)O(l/EQ). The throughput and computation
time guarantees hold in all cases even when sessions traverse multiple links (Section VI).

Under the primary interference constraints in tree topologies existing policies attain (a) the maximum
throughput region using a computation time of ©(NV) [14] (b) 2/3 of the maximum throughput region
using a computation time of ©(A¢ (logN)?) [12] and (c) 1/2 of the maximum throughput region using
a computation time of ©(A¢) [9]. For geometric graphs and secondary interference model, existing
policies attain (a) the maximum throughput region using a computation time of ©(V) [14] (b) 1/8 of the
maximum throughput region using a computation time of ©(AglogN) [2] and (c) 1/A¢ of the maximum
throughput region using a computation time of ©(As) [9]. Our policies therefore attain arbitrary desired
tradeoffs between the best known guarantees for throughput and computation times. Specifically, for
networks with bounded degree, our policies approximate the throughput region within any constant factor
using a computation time which depends only on the approximation factor and does not depend on the
network size, whereas existing algorithms that require constant computation time attain an approximation
guarantee of at most 1/2 and 1/8 for the above cases respectively. For networks with degrees O(logN)
(which happens in several topologies), our policies approximate the throughput region within any constant
factor using poly-logarithmic computation time, whereas existing algorithms that use poly-logarithmic
computation time attain an approximation factor of at most 2/3 and 1/8 for the above cases respectively.

We now briefly describe the design of the proposed policies, and provide the intuition behind the
performance guarantees. The proposed policies partition the network in a collection of components - the
size of the components depend only on A and e. The links that originate in a component but interfere
with those in another component are “shut down” i.e., not scheduled. Thus, the links scheduled in each
component will not interfere with those scheduled in other components irrespective of the scheduling
policy in each component. Hence, the scheduling in different components can now be determined in
parallel. Thus, the time required to compute the overall schedule now depends only on the size of each



component and is therefore determined only by As and e. We now describe how the links in each
component are scheduled. The weight of each link is the number of packets waiting for transmission in
the link, the weight of a set of links is the sum of the weights of the links in the set, and a set of links
in which no two links interfere with each other is referred to as an independent set of links. In each
component the set of links are scheduled such that they constitute the maximum weighted independent
set of links in the component. When different partitioning schemes are used at different times and the
size of the components in each partition is large enough, each link is shut down only a small fraction of
time. Thus, the links selected as above, constitute an independent set whose weight is at least (1 — ¢) that
of the weight of the maximum weighted independent set of links in the entire network. The throughput
guarantee now follows from the existing result that a policy that schedules an independent set of links
whose weight is at least 1 — e that of the weight of the maximum weighted independent set of links attains
1 — € fraction of the throughput region [10].

Il. RELATED LITERATURE

The problem of maximizing the throughput region in wireless networks, or attaining a guaranteed
fraction thereof, has received significant attention. Tassiulas et al. have characterized the maximum
throughput region and provided a policy that attains this throughput region in an arbitrary wireless network
[15]. This policy schedules the maximum weighted independent set of links in each slot, and hence requires
Q(e™) computation time unless P = N P. Later, Tassiulas [14] provided randomized scheduling schemes
that attain the maximum achievable throughput region, which can be implemented in fully distributed
manner using gossip based algorithms [4]. In each slot, this policy randomly selects an independent set of
links, compares its weight with the weight of the set of links scheduled in the previous slot and schedules
the set that has the larger weight. This policy requires ©(/N) computation time. All these policies are in
the INFORMATION(V) class.

Recently, provable throughput guarantees have been obtained with some policies in INFORMATION(1)
class. Dai et. al. [3], Lin et al [10] and Wu et. al. [16] proved that a simple greedy scheduling scheme,
maximal matching, attains half the maximum throughput region for the primary interference model,
the computation time for maximal matching is ©(log/N). Chaporkar et. al. [2] proved that maximal
matching can be generalized to attain guaranteed fraction of the maximum throughput region for arbitrary
interference models, while retaining the logarithmic computation time. Sarkar et. al. [12] proved that
for primary interference model and tree graphs, a queue length dependent maximal matching attains 2/3
of the throughput region while using © (AGlogQ(N)) computation time. Lin et. al. [9] proved that a
random access scheme, where links access the medium with a probability that depends on their and
their interferers’ queue lengths, attains 1/2 and 1/A the throughput region for arbitrary networks under
primary interference model and secondary interference models respectively, while requiring a O(Ag)
computation time.

Our contribution is to introduce the class of INFORMATION(k) policies and prove that for appropriate
choices of k, policies can be designed in the INFORMATION(k) class so as to obtain arbitrary tradeoffs
between the best throughput guarantees and the computation times obtained so far.

The design of our policies rely on the use of graph partitioning techniques. Hunt et. al. [7], Kuhn
et. al. [8], Nieberg et. al [11] and Sharma et. al. [13] have devised graph partitioning techniques for
obtaining arbitrary close approximations of maximum weighted independent sets in polynomial growth
bounded graphs. A graph is said to be polynomial growth bounded if the maximum number of pairwise
independent nodes in any r-neighborhood of a node can be upper-bounded by a polynomial in r. Many
of the graphs we consider, e.g., trees, are not polynomial growth bounded. Even in the polynomial growth
bounded graphs we consider, i.e., geometric graphs, existing results [7], [11], [13] approximate maximum
weighted independent sets within a factor of 1 — ¢ using policies in INFORMATION (V) class which have

computation times of © <N + Aé(€)> where f(e€) is a function of e that increases with decrease in .
Thus selecting the links using these approximation techniques require central control and ©(/N) time for



computing each schedule. We propose a policy in the INFORMATION(O(AZ /€*)) class that computes each
schedule in O(AZ/¢*) time using a simpler partitioning technique, and still attains desired approximation
guarantees for the maximum throughput region. The partitioning technique used in [8] however requires
Ag(l/€2) time for computing each schedule which does not depend on N as well, but this technique
approximates a maximum weighted independent set arbitrarily closely only when the weights are all
equal. Since different links have different queue lengths in a network, this partitioning technique does not
provide throughput guarantees. Finally, Brzezinski et. al. have recently used graph partitioning techniques
for providing throughput guarantees using © (V') scheduling schemes for networks with multiple channels
[1]. Their goal is to divide the graph in subgraphs such that different subgraphs are assigned different
channels, and a greedy maximal weight scheduling, which requires ©(/N') computation time, maximizes
the throughput region in each subgraph. Driven by different goals, we use different partitioning schemes.

Il. SYSTEM MODEL

We consider scheduling at the MAC layer in a wireless network. We assume that time is slotted. The
topology in a wireless network can be modeled as a graph G = (V, E), where V' and E respectively
denote the sets of nodes and links. A link exists from a node w to another node v if and only if both «
and v can receive each others’ signals. Each session represents a triplet (i, u,v) where i is the identifier
associated with the session and « and v are source and destinations of the session. At the MAC layer,
each session traverses only one link, but multiple sessions may traverse a link. We consider a network
with N sessions.

We now introduce terminologies that we use throughout the paper. Some of these are well-known in
graph theory; we mention these for completeness.

A node ¢ is a neighbor of a node j, if there exists a link from i to j, i.e., (i,j) € E. Two links
(sessions) are adjacent to each other if they have common nodes. By definition, a link is adjacent to
itself. The degree of a node u is the number of links in E originating from or ending at «. The maximum
degree in GG, Ag, is the maximum degree of any node in G.

A link 7 interferes with link 5 if j can not successfully transmit a packet when ¢ is transmitting. A
subset of links is said to be independent if if no link in the subset interferes with another link in the
subset. Let X' be the collection of independent sets of links.

We now describe the packet arrival process. We assume that at most aumax > 1 packets arrive for any
session in any slot. Let A; ;(t) be the number of packets that session i generates in slot ¢. We assume that
a packet arriving in a slot arrives at the end of the slot, and may not be transmitted in the slot. The arrival
process {A;(t)} is independent and identically distributed for all .

A scheduling policy is an algorithm that decides in each slot the subset of sessions that would transmit
packets in the slot. Clearly, a subset of sessions can transmit packets in any slot if no two sessions in the
subset traverse the same link and the links the sessions traverse constitute an independent set X, i.e., if
X € X. Every packet has length 1 slot. Thus, if a session is scheduled in a slot, it transmits a packet in
the slot.

Let D;(t) be the number of packets that session i transmits in slot ¢, i = 1,...,..., N. Now, D;(t) €
{0,1} and depends on the scheduling policy.

_ Let QZA( ) be the queue length before the arrivals and the transmissions in slot ¢. Then Qi(t+1) =
Qi(t) + Ai(t) — Di(t).

Definition 1: The network is said to be stable if there exists a finite real number I' such that with

probability 1,

hmsupZQ )T <T,i=1,...,N. Q)

T—oo

We consider a virtual-queue @, assomated with link [ that contains all packets waiting for transmission
for all sessions that traverse /. Note that the virtual queue in a link [ may contain packets of sessions
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Fig. 1. The figures demonstrate the edge sets %), L") under the primary interference model for (a) a tree and (b) topology with limited
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Fig. 2. The figures demonstrate the edge sets L®, LY for a geometric graph under (a) primary and (b) secondary interference models.

traversing [ in both directions. Let A;(¢) and D, (t) respectively denote the number of arrivals and departures
in slot ¢ in virtual queue ;. Clearly, the arrival process {A4;(¢)} is independent and identically distributed
for all t. Let EA,(t) = .. The arrival rate of link i is \;, i = 1,...,|E|. The arrival rate vector X is
an | E|—dimensional vector whose components are the arrival rates.

Now, Q;(t + 1) = Q;(t) + Ai(t) — Dy(t). Also, (1) holds if and only if limsup,_ . /' Qi(t)/T is
finite.

The throughput region A™ of a scheduling policy = is the set of arrival rate vectors X for which the
network is stable under 7. An arrival rate vector X is said to be feasible if it is in the throughput region
of some scheduling policy. The maximum throughput region A is the set of feasible arrival rate vectors.
A scheduling policy m is said to approximate the maximum throughput region within a factor 1 — e if for
each arrival rate vector X € A, (1 — €)X € A™.

V. |NFORMATION(1) POLICY FOR APPROXIMATING THE MAXIMUM THROUGHPUT REGION
ARBITRARILY CLOSELY IN TREE TOPOLOGIES

We assume that G is a tree and consider the primary interference model. Under this interference model,
two links interfere if and only if they have a common end-point. A matching is a set of links such that no
two links in the set are adjacent to each other. Thus, a valid schedule in a slot is a matching in the basic
graph G. Thus, X is the set of all matchings in G. This interference model is encountered in networks
like Bluetooth where each node has a single transceiver and a unique frequency in its neighborhood.

We now describe the scheduling policy which we refer to as TREE-PARTITION-MATCHING (k), and
abbreviate as TPM(k). Here, k is a parameter which determines the throughput region and the computation
time of the policy.

We first introduce the following notations. The level of a node in a tree is its distance from the root of
the tree. A link [ = (u,v) is the parent of a link I’ = (v, w) if the level of v exceeds that of w, and then



I' is a child of [. Links (u,v;), (u,vs),... are siblings of each other; different priorities are associated
with different siblings such that between any two siblings one is older and the other is younger. Let
Jy={l' € E:l'is a parent or older sibling of I}. For j =0,...,k—1, let LU) be the set of links (u,v)
such that levels of « and v are j and j + 1 modulo % (Figure 1(a)).

A formal description of TPM(k) follows.

TREE-PARTITION-MATCHING (k)

In slot ¢, every link selects an integer in the range [0,...% — 1]; each integer is selected with probability
1/k and all links select the same integer. Let i(¢) be the integer selected in slot ¢. A link { contends if
and only if (a) its virtual-queue has packets to transmit, and (b) [ € E \ LC¢®),

A link schedules itself if and only if (a) it contends and (b) links in J; do not schedule themselves.

When a link is scheduled, the head of line packet in the corresponding virtual queue is served.

Note that TPM (k) belongs in the INFORMATION (1) class irrespective of the value of k, and is simple
to implement since each link only needs to inform its adjacent links about whether its virtual queue is
empty or non-empty. We now evaluate the computation time for TPM(k). Note that in any slot the links
that contend constitute a forest such that those in a tree of the forest do not interfere with those in a
different tree of the forest. Thus, the scheduling in different components can be determined in parallel.
The maximum length of a path in any tree in the forest is k. Each link that contends decides whether
to schedule itself immediately after it knows the decisions of its parents and older siblings that contend.
Thus, each link waits for the scheduling decision of at most kA¢ links. Thus, the overall computation
time is O(kAg).

Theorem 1: If X € Int(A), then (1 — 1/k)X € ATM®),

We first outline the intuition behind Theorem 1. First, intuitively a scheduling policy = that schedules
a link [ if and only if (a) it has a packet to transmit and (b) links in J; do not schedule themselves,
maximizes the throughput region in a tree. This is because whenever a link [ has a packet to transmit, 7
schedules either [ or a link in J;; the optimum policy also schedules at most one link in J, U {/} in each
slot. Clearly, the computation time for 7 is O(dA) where d is the depth of the tree, and d is O(|E|).
Now, by preventing the contention of a subset L") of links in each slot ¢, TPM (k) partitions the graph
in a forest where the depth of each tree is at most %, and uses the above scheduling policy in each tree
of the forest. This reduces the computation time of TPM (k) to O(kA¢). The choice of L ... L*=1),

and different selections of i(¢) € {0,...,k—1} in each slot ¢ ensures that a link contends with probability
1 —1/k in each slot ¢; this in turn ensures that the maximum throughput region reduces only by a factor
of 1 — 1/k.

Proof: The result clearly holds if &£ = 1. Thus, we assume that & > 1. The arrival rate vector is
(1—1/k)A where A € Int(A). Since A € A and X constitutes of all matchings of the links, >, ; 3 A1 <1
[6], [15]. Let § = min (Pmaxz”e"l“”ﬁ” , 1? . Clearly, § > 0. Consider a link [ = (u,v) where level of v

2| E| maxr Ay
exceeds u; then y; denotes the sum of the level of « and the number of older siblings of [.

Observe that the queue lengths of the virtual queues constitute a Markov chain. We consider a lyapunov

function B
V(@)= 0MQr +2) 6MQi> Q.
l l

e

We prove that E (V (@ (t + 1)) -V <@(t)> 1G(t) = @) < —1 for all sufficiently large ||Q||, where

1G]] = \/V(Q). Then, from Foster’s theorem (Theorem 2.2.3 in [5]) the Markov chain representing the

queue length process @,(t) is positive recurrent. Also, E (Q,(t)) < oo for each I under the steady state
K—-1

distribution for the above Markov chain. Thus, lim x_. W < 00. The result follows.
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The last inequality follows since 0 < 6 < 1, x; < xr if L € Jy. From (2),

(v (Ge+ 1)) -v(dm) 13w = Q)

< (2/k) ZMZE Q) [ D (Ar(t)—Du(t)+6 Y Ap(t t)=Q,i(t)=m
legu{l} Uledy
+4N’a ?nax
< (2/k)Z§XlQl E1=1/k) > A= (k=1 +k(1-1/k)5 > A | +4N%a,,
e u{l} edy
(since I € LY for only one j € {0,...,k —1}
and Dy (t) = 1 for some I € J; U {l} unless Qi(t)=0or e Li®)
< 20-1/k)> Q| D A =148 M| +4N%l,,
1 e u{l} Viledy
< —2(1— : Xi
< =21 1//{;)|E|mlaX/\l5zl:5 Qi
< —1 for sufficiently large ||@|| (since 6 > 0 and k > 1).
The result follows. u

Thus, TPM (]1/€]) attains a throughput region that is at least 1 — ¢ times that of the maximum
throughput region. The computation time for TPM ([1/€]) is O(Ag/e).

V. INFORMATION (k) POLICIES FOR APPROXIMATING THE MAXIMUM THROUGHPUT REGION

ARBITRARILY CLOSELY FOR ARBITRARY NETWORKS AND INTERFERENCE MODELS

We first provide a general framework for approximating the maximum throughput region arbitrarily
closely in arbitrary networks and interference models using policies in INFORMATION (k) class (Section V-
A). Subsequently, we elucidate the utility of the framework in several important classes of networks



and interference models (Section V-B, V-C, V-D). We consider both primary and secondary interference
models. For the primary interference model, we generalize the throughput and computation time guarantees
presented in the previous section to graphs with limited cyclicity (Section V-B) and geometric and quasi-
geometric graphs (Section V-C.1). For the secondary interference model, we obtain similar results for
geometric (Section V-C.2) and quasi-geometric graphs (Section V-D). In Section V-E, we discuss how
these policies can be implemented.

A. General Framework

We consider an arbitrary network and an interference model as described in Section I1l. We consider
a policy 7(k) that consists of k subsets of links L® ... L&~ sych that the links in a component of
GU) = (V,E\ LY) do not interfere with those in other components of G). In every slot ¢, every link
selects an integer in the range [0, ... k—1]; each integer is selected with probability 1/% and all links select
the same integer. In any slot ¢, the weight of a link is the number of packets waiting for transmission in the
virtual queue associated with the link, and the links that constitute a maximum weighted independent set
in the interference graph of any component of G®) are scheduled. Without loss of generality, links with
zero weight are not scheduled. When a link [ is scheduled, the virtual queue associated with [ transmits
a packet.

Note that 7 (k) is completely specified once L, ..., L+~ are specified. We now describe when 7 (k)
approximates the maximum throughput region within an approximation factor that depends only on .
We first introduce the following definition.

Definition 2: A collection of subsets E, ..., E, of E is said to be c-approximate if for (a) any given
| E|-dimensional vector of non-negative real numbers W = (Wh,...,W|E]) and (b) any collection of
subsets of E, X;,...X, such that X; € X and X, C E;

q
)P BT i
) i=1 leX; lex ) )
We now present the key technical lemma that allows us to obtain desired throughput guarantees.

Lemma 1: Let L . . L*=Y pe c-approximate. Then,

E (3 QD 0idn = c?) > (1= o/ max - Qul1).

i i€X

We first provide the intuition behind the result. Now, the weight of theelinks scheduled by (k) differs
from the maximum weight of any schedule in the slot by at most the weight of the maximum weight
independent set among links that do not contend in the slot. Now, if L, ... L®*~1 are c—approximate,
the expected weight of the maximum weight independent set in LU for j = 0...%k — 1 turns out to be at
most ¢/k times that of the weight of the maximum weight independent set in the slot. Thus, the expected
weight of the scheduled links is at least (1 — ¢/k) times that of the weight of the maximum weight of
any schedule in the slot.

Proof: Let i(¢) be the integer selected by links in slot ¢, and

B(t) = arg max Y Qi(t).

XCLG®) leX



Now, 32, Qi(t)Di(t) = (maxxer Siex Qilt) = Xienq) Qilt)) - Now,

k—1
E{ Y amidn=34] = Y P(i)=i00=0)E| Y @) =a.it) =
leB(t) Jj=0 leB(t)
k—1
= (/)Y E| > QWA =qQ,i(t) =
Jj=0 leB(t)
k—1
= (1/k) ) max } Qi)
j=0 xCLU) leX
. i (0) (k=1) _ i
< (C/k)r)?gfz;@(t) (since L ... L%*~V are ¢ — approximate).
[4S]
Thus, E (32, Qi) Di()IG(0) = G) = (1 = ¢/k) maxxer Siex Qilt). .
Lemma 2: Let L©®, .. L*~1 be c-approximate. Then, if X € Int(A) and & > ¢, (1 — ¢/k)X € A™.
We first provide the intuition behind the above result. When L© ... L*=1D are c-approximate, from

lemma 1 it follows that 7(k) schedules links such that the expected weight of the scheduled links in
any slot is at least (1 — ¢/k) times that of the maximum weight independent set of links in the slot.
The throughput guarantee now follows using lyapunov arguments similar to those in [10], [15]. Refer to
appendix A for the proof.

Once we prove that the collection L ..., L1 is c-approximate, Lemma 2 allows us to approximate
the maximum throughput region within a factor of 1 — e for any € > 0 using 7 (k) for k = [c/¢]. In the
next subsections we will prove that in large classes of networks the collection L© ... L*~Y can be
selected so as to render it c-approximate for different constant factors c.

Note that different components in each GU) can schedule the links in parallel as the links in different
components do not interfere. Thus, 7(k) can be implemented provided in each slot and in each component
either one, or all links, know the weights of all links in the component. In either case, w(k) is in
INFORMATlON(l%) class where & is the maximum diameter of the interference graph* of any component
of G for any j € {0,...,k — 1}. The maximum diameter is upper bounded by the number of links
in any component of GV for any j € {0,...,k — 1}. The computation time for 7 (k) will again be
determined by the maximum size (number of links or number of nodes or both) of a component in G
for j € {0,...,k —1}. We will show that for a large class of networks, the size of each component and
therefore the overall computation time depends only on A and k.

B. Graphs with Limited Cyclicity

Using the above general framework, we generalize the tradeoffs between throughput and computation
times to networks with limited cyclicity. Specifically, we assume that there exists a constant A such that
the maximum length of a cycle in G is upper bounded by H + 1. We still consider the primary interference
model.

We now describe L@ ..., L*=1D for the scheduling policy which we refer to as H-LIMITED-CYCLICITY-
PARTITION-MATCHING (k), and abbreviate as H-LCPM(k). Consider a spanning tree 7" of G. For H-
LCPM (k), for j = 0,...,k — 1, LU C E is the set of links (u,v) such that the levels of « and v
in T are (a) less than or equal to jH modulo kH and (b) greater than jH modulo kH respectively
(Figure 1(b)). Intuitively, for H-LIMITED-CYCLICITY-PARTITION-MATCHING (k), when i(t) = j, levels
jH, jH + kH, jH + 2kH, ... partition the graph, and L) consists of the links that cross these levels.

*The set of edges of a graph corresponds to the set of vertices in the interference graph. There exists an edge between two vertices « and
v in the interference graph if at least one of the corresponding edges interferes with the other.
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Clearly, the components of GU) are such that the links in a component do not interfere with those in
other components.

We now evaluate the computation time for H-LCPM (k). Let the set of edges in T’ be E. Note that
the maximum length of a path in TU) = (V, E\ LY) is kH. Thus each component in 7 has O(AET)
nodes. Each component of G'¥) consists of several components of 7). Let u and v be nodes that are
in different components of 7'0) but the same components of G7). Then the common ancestor of u and

v in T is at a distance of at most H from both v and v in T. Thus, at most HAE components of 71
can constitute the same component in G, Thus, each component in G/) has O(HA “UH) nodes. Now,
each independent set X of links in each component of GU) is a matching in the corresponding component
of GU). The time needed to compute a maximum weighted matchlng in each such component is therefore
O(H?’AS('“+1 ). Thus, the overall computatlon time is O(H3AXV™) If G is a bipartite graph, the
overall computation time is O(H2AZFDH

The diameter of any component of TU is O(kH) Since a component of G) consists of at most HAZ
components of 7, the diameter of any component of GU) is O(kH?AE). Thus, H-LCPM (k) belongs
in INFORMATION(kHQAg) class.

We now prove the following key result which will be used in obtaining throughput guarantees for
H-LCPM (k).

Lemma 3: L(© ., L=1 js 4—approximate.

Proof: Let W be an arbitrary N-dimensional vector of non-negative real numbers,
X* = argmaxxex ) ey Wi, and Xo, ..., X1 be arbitrary subsets of links such that X; € & (i.e, X
is a matching) and X; C LY, j =0,.. .,k — 1. We need to prove that Zf;é Sex Wi <43 WL
Note that for any link I, !
> WL

1€EX*NS,;

Let 77, = |X,; N S| Thus,

k—1 k—1
S wm<y (Zm@) Wi 3)

J=0 l€X; lex* \j=0

Hence, we need to show that Z o i) < 4 for each | € X*.

Consider [ = (u,v) € E. Without loss of generality, let level of « in 7" be less than or equal to that
of v in T. There exists a unique jl such that level of w in T is in ((j; — 1)H, 5;H] mod kH. Note that
[ is not adjacent to any link in L9 where ¢ < (j; — 1) mod k or ¢ > (j; + 1) mod k. Since X;s are
matchings, at most 1 link in X is adjacent to [ when j € {(j; —1) mod &, (j; + 1) mod k}, and at most

2 links in X, are adjacent to [. Thus, (Zf;é nl(j)> < 4 for each [ € X*. The result follows. n

Theorem 2: If X € Int(A), then (1 — €)X € AHLCPM(T4/eD),

Using & = [4/¢|, ¢ = 4, Theorem 2 follows from lemmas 3 and 2. Now, H-LCPM ([4/¢]) is in
INFORMATION(H2AX /¢) class and requires O(H3AX 114Dy computation time. Thus, H-LCPM will
be useful for small values of H.

Finally, Theorem 2 provides the throughput guarantees of 1-LCPM ([4/¢]) for trees as well. But,
1-LCPM ([4/€]) approximates the maximum throughput region for trees within a factor of 1 — ¢ using

. . O(1/¢) . .
a computation time of A"/, whereas TPM (]1/¢]) attains the same throughput guarantee using only

O(Ag/e).

C. Geometric Graphs

A graph is said to be geometric if nodes are embedded in the first quadrant of the 2-dimensional plane,
and a link exists between nodes « and v if and only if the distance between them is less than a certain value
say D. The distance D is referred to as the transmission range. We first consider the primary interference
model (Section V-C.1) and subsequently consider the secondary interference model (Section V-C.2).
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1) Geometric Graphs with primary interference model: We consider a geometric graph G with primary
interference model. We now describe the L), ..., L= for the policy GEOMETRIC-GRAPH-PARTITION-
MATCHING(k) which we abbreviate as GGPM(k). We will consider & different grids each of which
consists of a series of horizontal and vertical lines. Here, L\ is the set of links that cross vertical or
horizontal lines of grid j. We now describe how these grids are constructed. Each grid consists of
horizontal and vertical lines parallel to the x and y axes respectively and the distance between any two
closest horizontal (vertical) lines is kD. Each grid is specified by its first horizontal and vertical lines.
The first horizontal and vertical lines of grid j are given by y = jD and x = jD respectively for
j=0,...k— 1. Figure 2(a) elucidates the grids and the choices of L(® ... L®*) Note that the links in
a component of GU) do not interfere with those in other components.

We first evaluate the computation time for GGPM(k). The overall computation time equals the worst
case computation time in a component. Let v be the maximum number of nodes in any component of
GU) = (V, E\LYW) for any j. We next show that v is O(A¢k?). Thus, the computation time for GGPM (k)
is the time required to compute a maximum weighted matching in a component with O(A¢k?) nodes,
which is O(A%L®).

Lemma 4: Forany j =0,...,k— 1, a component in GY = (V, E\ LYW) has O(Agk?) nodes.

Proof: Consider some j € 0,...,k— 1. A component in GU) consists of nodes in a square enclosed
by the closest horizontal and vertical lines of the jth grid. The side of such a square is at most kD
units. Such a square can be filled with x = [1/2k]? small squares with sides equal to D/+/2. Clearly,
r < (V2 + 1)%k2. Let I be a maximal independent set of nodes in the component, i.e., there does not
exist an edge between any two nodes in I and every node in the component is either in I or has an edge
to some node in I. Since the distance between any two points in any small square is at most D, there
cannot be more than one node from I present in any small square. Therefore, |/| < k. Thus, the first part
of the lemma follows. Clearly, v < |I|A¢. Thus, v < kAg < (\/_+ 1)2Aqk>. |

Also, the maximum number of links in any component of G is at most vAg which is O(AZk?).
Thus, GGPM (k) is in INFORMATION(O(AZK?)) class.

We now prove the following key result which will be used in obtaining throughput guarantees for
GGPM(k).

Lemma 5: L© ... L*=D js 20—approximate.

Proof: The proof is similar to that for lemma 3. We point out the differences. We need to prove
that Zkfl > iex; Wi < 2030,y Wi Relation (3) holds in this case as well. Hence, we need to show

that (Zk ') < 20 for each I € X*.

Now, note that the £ grids do not share any common line. Let SUPERGRID consist of all lines of all
grids. Then SUPERGRID is a grid where the distance between any two closest horizontal (vertical) lines
is D.

Clearly, n”) = 1 forany [ € X; N X*. If [ € X*\ X;, n” is the number of Iinks in X; that interferes
with [. Since these links are in X, they do not interfere with each other Thus, 7,’ U) < 2 since at most 2
links can be adjacent to [ but are not adjacent to each other. Thus, Th ) < 2 for any [ € X*

Next, for each [ € X* we upper bound the number of js in {0,... k& — 1} such that n ) > 0 Now,
771( > () if either [ € L or I ¢ LY but [ interferes with a link in L J) Note that for any [, l € LY for at
most 4 js in {0,...,k—1}. The observation follows from the fact that € L) only if both end nodes of
[ are within a distance of D from a horizontal or vertical line of grid j; this can happen at most 2 times
for vertical lines and 2 more times for horizontal lines of SUPERGRID. Next, for any [, [ ¢ LU but [
interferes with (i.e., is adjacent to) a link in L) for at most 6 js in {0,...,k — 1}. This happens only if
one of the nodes of [ is within D units of a horizontal or vertical line of grid 5. This can happen at most
3 times for vertical grid lines and 3 more times for horizontal grid lines of SUPERGRID. Thus, for each

1e X*, ¥ >0for 10 jsin {0,... k—1}. Hence, (Z’f olnf”) <92%x10=20foreachl € X*. m
Theorem 3: If X € Int(A), then (1 — €)X € ACPIS20/¢],9),
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Using k& = [20/€], ¢ = 20, Theorem 3 follows from lemmas 5 and 2. GGPM ([20/¢]) is in
INFORMATION(O(AZ/€?)) class and requires O(AZ, /%) computation time. In the next subsection, we
propose a technique that computes each schedule in O(AZ%/€%) time while attaining a throughput region
of (1 — ¢) times that of the maximum throughput region.

2) Geometric Graphs with Secondary Interference Model: We consider a geometric graph GG and the
secondary interference model. In this interference model, a link 7 interferes with link ; if one end point
of j is within distance D from an end point of ;. Note that if two links interfere under the primary
interference model they also interfere under the secondary interference model but the converse is not true.
This model is an abstraction of bidirectional wireless links where all transmissions use a single channel
and overlapping packets always cause a collision. Note that an independent set of links is no longer a
matching in G.

We now describe the L(®, ..., L*~Y for policy GRAPH-PARTITION-INDEPENDENT-SET(k) which we
abbreviate as GPIS(k). Just as in Section V-C.1, we consider & different grids. Now, L) is the set of
links that either cross or are adjacent to links that cross vertical or horizontal lines of grid j (Figure 2(b)).
Note that the links in a component of G¥) do not interfere with those in other components.

We first evaluate the computation time for GPIS(%). Again, the overall computation time equals the
worst case computation time in a component of G). The maximum size of any independent set of links
in a component is O(k?) (in the proof of lemma 4 |I| is O(k?) for any I). Also, each component of
G has O(AZK?) links. Thus, in any component of G), the maximum weighted interference set can be
computed in (AZk2)°**), Thus, the computation time for GPIS(k) is (A%k2)°**). Again, like GGPM
(k), GPIS (k) is in INFORMATION(O(AZK?)) class.

We make the following observations about L, ... L1,

o Letey, ={j:1€ LY} Then, |¢y] <6 for any | € E (Observation 1). This holds because I € L\
only if at least one of the nodes of [ is within a distance of D from a horizontal or vertical line of
grid 7, which can happen at most 3 times for vertical lines and 3 more times for horizontal lines of
SUPERGRID.

« Forany(, ! ¢ LY but [ interferes with a link in L) for at most 8 js in {0,...,k— 1} (Observation
2). This happens only if one of the nodes of [ is within 2D units of a horizontal or vertical line of
grid j but none of the nodes of [ is within a distance of D from any line of grid j. This can happen
at most 4 times for vertical grid lines and 4 more times for horizontal grid lines of SUPERGRID.

We now prove the following key result which will be used in obtaining throughput guarantees for
GPIS(k).

Lemma 6: L© ... L1 js 112—approximate.

Proof: The proof is similar to that for lemma 5. Like in lemma 5, we need to prove that (Z;‘f;é Th(j)) <

112 for each [ € X*. Now, 5" < 8 for any I € X* as the number of links that interfere with / but do
not interfere with each other is at most 8 [2]. Next, from observations 1 and 2, for each [ € X*, 771(]) >0
for 14 jsin {0,...,k — 1} Hence, (Zf;é nf”) <8x 14 =112 for each | € X*. u

Theorem 4: If X € Int(A), then (1 — e)X € AGPIS(112/<).

Using £ = [112/€], ¢ = 112, Theorem 4 follows from lemmas 6 and 2. GPIS ([112/€]) is in
INFORMATION(O(AZ /€2)) class and requires (Ag/e)°(/<*) computation time.

We now combine the graph partitioning technique with a policy design technique proposed by Tassiulas
[14] so as to attain 1 — e times the maximum throughput region while computing each schedule in only
O(AZ/€*) time. We denote the policy as GRAPH-PARTITION-GRADUAL-IMPROVEMENT-INDEPENDENT-
SET(k) and abbreviate it as GPGIIS (k). Note that this policy does not belong in the general class of
policies 7(k) described in Section V-A.

In GPGIIS (k) each link [ is associated with k—6 secondary virtual queues: §f) ie{0,..., k=1}\v
where ¢, is the union of v, and max(0,6 — |¢|) arbitrary elements of {0,...,k — 1} \ «;. Whenever
a packet arrives in the virtual queue @), it is routed to one of the secondary virtual queues with equal
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probability. The policy divides the time axis in frames of k slots. In the jth slot of each frame, for different
links [ € E, the secondary virtual queues Ql(f) contend. Only the secondary virtual queues that contend
can be scheduled for transmission and those that are scheduled for transmission transmit their head of
line packets if they are non-empty.

We now describe which contending secondary virtual queues are scheduled for transmission in the jth
slot of each frame. Note that Ql(f) does not exist if { € LU as then j € ¢, C ¢y. Thus, in the jth slot
of each frame, no secondary virtual queue associated with any link I € LU) contends and at most one
secondary virtual queue associated with each link [ € £\ LY contends. A link is said to contend if one
secondary virtual queue associated with it contends. Thus, for each j the links that contend in the jth slot
of each frame constitute components such that links in different components do not interfere, and the links
in each component are a priori rank ordered in some manner. Links in the ordered list sequentially select
themselves with a probability p € (0, 1) and those that interfere with the selected links remove themselves
from the list. The weight of each contending link is the number of packets waiting for transmission in the
contending secondary virtual queue associated with it. The selected links are scheduled in each component
if their total weight exceeds the total weight of the links scheduled in the same component in the jth slot
of the previous frame; otherwise the links scheduled in the same component in the jth slot of the previous
frame are scheduled again. The contending secondary virtual queues associated with the scheduled links
are scheduled.

The computation time of GPGIIS (k) is clearly O(~) where ~ is the maximum number of links in any
component of G@); hence this computation time is O(AZk?). Also, GPGIIS (k) is in
INFORMATION(O(A%/CQ)) class.

Theorem 5: If X € Int(A), then (1 — 8/k)X € ACPGIS(K)

Proof: R

Consider a fictitious system that consists of only the secondary virtual queues @,; for all I. Let AY) be
the maximum throughput region of this fictitious system. Then [15]

Int(AD)) = {X S B, where Y By =1,6x >0 foreach X € X and 5, > 0}.
Xex Xex
XCE\{l:jg¢i} XCE\{l:jgyn}

Consider a scheduling policy = that schedules secondary virtual queues that satisfy the following
properties.
1) @Q;(t) constitutes an irreducible aperiodic markov chain.
2) In each slot ¢ there is a positive probability associated with scheduling the secondary virtual queues
associated with links [ in X*(¢) where

X*(t) =arg max ZQU

XGX
XCE\l:jgdy '€X

3) If X, and X are the sets of links associated with the secondary virtual queues scheduled in slots
t—1and¢then >, v Quit) = > ey, Qult)

Then = stabilizes the fictitious system for any arrival rate vector N € Int(A(J ) [14], [4].

Let (1 — 6/k)/\ be the arrival rate vector in the system where X € IntX). Let X&) consist of those
components [ of X for which j & 1. From (5), X0) g Int(A(J ).

We now consider the secondary virtual queues ;; for all [ at slots j, & + j,2k + 7,... in the actual
system. Note that in the actual system these secondary virtual queues are scheduled only in these slots.
We can therefore assume without loss of generality that packets arrive in these queues only in these slots
as well while the number of arrivals in slot mk + j is the number of arrivals in the actual system between
slots ((m — 1)k + j,mk + j] ([0, 5]) for a positive integer m (m = 0). Note that the expected number of
arrivals in secondary virtual queue @;; in slot mk + j is_ now k(1/(k —6))(1 — 6/k)A\, = .. Thus, the
arrival rate vector for these secondary virtual queues is A& € Int(X)). Now, observe that GPGIIS(k)
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satisfies properties (1) to (3) for these secondary virtual queues, since links that contend in different
components of GU) do not interfere. Thus, for each j, the system consisting of these virtual queues are
stabilized. The result follows. [ |

Thus, for & = [6/€], a policy GPGIIS (k) in INFORMATION(O(AZ/€?)) class, attains a throughput
region of 1 — e times that of the maximum throughput region using a computation time of O(AZ%/¢?).
Note that GGPM (k) can be similarly modified to attain a throughput region of 1 — ¢ times that of the
maximum throughput region, using k = [4/¢] and a computation time of O(AZ/é?).

Finally, GPGIIS(k) attains substantially better tradeoffs than GPIS(k) between throughput and com-
putation time guarantees. But, at the same time GPGIIS(k) is likely to have substantially higher delay as
compared to GPIS(k). This is because since, unlike GPIS(k), GPGIIS(k) segregates the incoming traffic
in each link in multiple queues and in each slot allows at most one queue in each link to contend, when
the contending queue is empty it does not schedule the link even if the link’s interferers are not scheduled
and other queues in the same link are non-empty. More importantly, unlike GPIS(k), GPGIIS(k) does
not schedule the queues whose expected weight is close to that of the maximum weight independent
set of queues, and instead attains stability by gradually improving the weight of the scheduled queues.
This behavior is known to significantly increase the delay, e.g., simulations have demonstrated that the
policy proposed by Tassiulas et al. [15] that schedules the maximum weight independent set in each
slot has substantially lower delay as compared to the randomized policy proposed again by Tassiulas [14]
that attains stability through similar improvements as above. An interesting topic for future research is to
investigate the tradeoffs between delay and computation times of scheduling policies.

D. Quasi-Geometric Graphs

A graph is said to be quasi-geometric if nodes are embedded in the first quadrant of the 2-dimensional
plane, and a link (a) exists between nodes « and v if the distance between them is less than D where
¢ < 1 (b) may exist between nodes « and v if the distance between them is between D and D and (c)
does not exist between nodes « and v if the distance between them is greater than or equal to D. Under
primary interference constraints, as before, two links interfere if and only if they are adjacent. Under
secondary interference constraints, two links [, " interfere if and only if (a) they are adjacent and (b) there
is an edge between at least one end node of [ and another end node of [’.

We first consider the secondary interference model. Now, links L ... L*=1 are selected as in the pre-
vious subsection, and GPGIIS (k) attains a throughput region which is 1—6/% of the maximum throughput
region as before. However, each component of G has O(A¢k?/12) nodes, and O(AZk?/:2) links. Thus,
the computation time for GPGIIS (k) is O(AZk?/:?). Also, GPGIIS (k) is in INFORMATION(O(AZK?/1?))
class. Thus, GPGIIS ([6/¢]) attains a throughput region which is 1 — ¢ of the maximum throughput
region, requires a computation time of O (A%/(:%¢*)) and is in INFORMATION(O (AZ%/ (1*¢%))) class.
Similarly, under the primary interference model, a throughput region of 1 — e of the maximum throughput
region can be attained using a policy in INFORMATION(O(AZ/ (:?¢?))) class which requires O(AZ /(€%?))
computation time.

E. Distributed Implementation of the Scheduling Policies

We discuss two possible distributed implementations for 7 (k). In one, in each slot one link in each
component determines which links will be scheduled in the component and broadcasts the decisions in
the entire component, and in another every link does this computation. For the first each contending link
communicates its weight to the link that computes the decisions in its component, and for the second each
contending link broadcasts its weight in its entire component. The problem with both implementations
is that the size of the packets can not be bounded by any function of the network size since the queue
lengths exceed any given number with positive probability. A better solution is to have each link broadcast
the increase in its weight since the previous epoch in which the link was in the same component (that is
the same random number was selected). Now, the expectation of the magnitude of this increase is O(k)



15

as the expected difference between the consecutive epochs at which the same random number is selected
is O(k). Furthermore, the time consumed by the broadcasts in each component is a linear function of the
number of links in the component. Thus, the overall expected computation times for the policies are as
given in subsections V-B to V-D.

Finally, a slight modification of 7(k) attains the same maximum throughput guarantees with guarantees
on worst case, rather than expected, computation times. The modified policy, denoted as 7RR(k), differs
from (k) in that it selects the integer 4(¢) in a round-robin, rather than a random, manner. Now, 7R (k)
divides the time axis in frames of & slots and i(¢) = j in the jth slot of each frame where j € {0,..., k—1}.
The rest of the policy remains the same. Thus, the increase (and not merely its expectation) in the queue
length since the previous epoch in which the link was in the same component is O(k). Clearly, the worst
case computation times for the schedules are now as given in subsections V-B to V-D. We next prove the
throughput guarantees for 7°%(k).

Let DW(.J) denote the departure vector in the jth slot of the Jth frame.

Lemma 7: Let L ... L*~1 be c-approximate. Then, under 7=R(k),

()
© DY(J
§ Qi(Jk) M > (1—c/k) max§ "Qi(Jk) — BN Qas.
eX

Proof: Let Z be the set of sessions and X7 = argmaxycx Yiex Qi(JE). Let

(4) _ ;
BY(J) = arg max Y Qu(Jk + ).

XCLW leX

> Qi(JkDI () > ZQi(Jk;Jrj)DZ@(J)—NamaX

i

> maX Q (ka"‘]) Namax

XCZ\L(J
> maXZQz Tk+§) = > Qi(Jk+j) — Nomax
i€eX i€B(Jk+j)
> max Y Qi(Jk+j)— > Qi(Jk) — 2N ax
XeXix i€ B(Jk+j)
> Y QJk+4) = > Qi(Jk) = 2Naga
ieX/ 1€B(Jk+j)
> D QiJk) = Y Qi(Jk) = BNy
eX’ i€B(Jk+j)
= IQEeL;((ZQi(Jk) — ) Qi(Jk) = 3Ny
ieX i€ B(Jk+j)
Zk—é D(J)(J k—1
J]= K3
Thus, ZQi(Jk:)T > I)r(lg))((ZQl (Jk) = (1/k)Y > Qi(Jk) = 3Namax.  (4)
i 1€X J=0 i€ B(Jk+j)
From (4) and since L, ... L*~Y are c-approximate,

k—1 ()
Z QZ(J]{;)M > (1 —c/k) I)r(lg/’}\f{z Qi(Jk) — 3N tmax-

1€X
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Lemma 8: Let L, ... L&t~ be c-approximate. Then, if X € Int(A) and k > ¢, then (1 — ¢/k)X €
RR
AR,

Proof: Clearly, the queue length process Q(Jk:) for J =0, 1... constltutes an irreducible, aperiodic
Markov chain under 7. Let the arrival rate vector be (1 — c/k)A where A € Int(A). We will consider
the lyapunov function V(@ ) >, Q2. Using lemma 7 and arguments similar to that used for proving
lemma 2, we can prove that under WRR(]{Z)

E(V (G +1k) -V (GUm) QUK =)
< —2k(1 —¢/k)B, r)r(leaggz Q; + 6 Nkamax + Nk2a?

Fmax
1€eX

< —1 for all sufficiently large ||Q]|.

Then, from Foster’s theorem (Theorem 2.2.3 in [5]) the Markov chain is positive recurrent. Also, E (Q,(Jk)) <

K 1
oo for each i under the steady state distribution for the above Markov chain. Thus, lim ., 2= @70
oo. Then, since under 7, the queue length of session 7 in any slot in a frame exceeds the queue Iength of i at

the beginning of the frame by at most o, k, lim supy_, w <limg_ oo eramaxk < 0.
The result follows. |

We now consider the throughput guarantees of 7=R for different classes of networks considered in
subsections V-B to V-D. The choice of L, ... L®*=1 for different classes of networks remain the same
as in subsections V-B to V-D. Using k£ = [4/¢|, ¢ = 3 Theorem 2 follows from lemmas 3 and 8 for
H-LCPMRR(k). Using k = [20/€], ¢ = 20, Theorem 3 follows from lemmas 5 and 8 for GGPMRR(k).
Using k& = [112/€], ¢ = 112, Theorem 4 follows from lemmas 6 and 8 for GPISRR(k).

VI. MULTI-HOP SESSIONS

We now allow sessions to traverse multiple hops. We first describe the modifications required in the
system model and performance goals for accommodating this generalization. We subsequently generalize
the framework presented in Section V for attaining arbitrary tradeoffs between throughput guarantees and
computation times.

A. Generalized System Model

We now assume that the network consists of N end-to-end sessions, indexed as 1,...,N. Each end-
to-end session can be viewed as a collection of several hop-by-hop connections, one for each link it
traverses; each of these hop-by-hop connections is called a session-link of the session considered. Each
session-link is of the form (u,v), where u and v represent the transmitter and the receiver, respectively,
of the session-link. We assume that there are M session-links in the network (over all sessions), and
these are indexed by 1,..., M. The interference relations are as in Section IlI.

Each session-link corresponds to a separate virtual queue and the number of virtual queues associated
with each link equals the number of session-links traversing it; we assume that this number is at most .
The packet arrival process is the same as before, and only the first session-link of each session receives the
exogenous arrivals. Now, the queue-length and departure vectors, Q(t), D(t), are M-dimensional vectors
respectively representing the queue lengths of the session-links and which session-links are served in slot
t.

Let R be a M x M dimensional matrix such that (a) R;; = 1 if i = j (b) R;; = —1 if < and j are
session-links of the same session and ¢ constitutes the hop after j and (c) R;; = 0 otherwise.

Q(t+1) = Q(t) — RD(t) + A(t).

The definition for stability is the same except that session-links are considered instead of sessions. The
definitions for the throughput regions are the same as before.
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B. Scheduling policies for approximating the maximum throughput region arbitrary closely

We now generalize the policy (k) presented in Section V. The modified policy, denoted as =" (k),
differs from 7 (k), in only the assignment of link weights. For #M"(k) in any slot ¢, the weight of a
session-link (or a virtual-queue) I = (u,v) of session i, G;(t), is (a) the difference between the queue
lengths of session-links [ and m where m is the session-link of ¢ originating from v, if v is not the
destination for 7 and (b) @;(t) otherwise. The weight of a link is the maximum weight of a session-link
traversing the link. Note that in the special case that all sessions traverse one link, only one virtual queue
is associated with each link and for any virtual-queue ¢ = (u,v), v is the destination of the session and
hence its weight G,(t) equals @;(¢) as in Section V. Whenever a link is scheduled, the session-link that
has the maximum weight among those that traverse the link is served. The policies 7MH (k) and = (k) are
otherwise the same. . .

I'\_A%mma 9: Let L ... L* =1 pe c-approximate. Then, if A € Int(A) and k > ¢, then (1 — ¢/k)\ €
AR,

We prove lemma 9 in appendix A.

We now consider the throughput guarantees of 7=R for different classes of networks considered in
subsections V-B to V-D. The choice of L, ..., L*=1 for different classes of networks remain the same
as in subsections V-B to V-D. Using k£ = [4/€¢], ¢ = 3 Theorem 2 follows from lemmas 3 and 8 for
H-LCPMMH (k). Using k = [20/¢], ¢ = 20, Theorem 3 follows from lemmas 5 and 8 for GGPMM" (k).
Using k = [112/€], ¢ = 112, Theorem 4 follows from lemmas 6 and 8 for GPISMH (k).

Clearly, the computation times in each case increase only by an additive term of x; this increase is
necessary to compute the weight of each link as the maximum of weights of p virtual queues associated
with it.
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APPENDI X
A. Proof for lemma 2

Proof:
Let the arrival rate vector be (1—c/k)X where X € Int(A). Clearly, under 7, ((¢) constitute an aperiodic

irreducible Markov chain, and E (Zi Q;(t)D:(1)|Q(t) = Q) > (1 — ¢/k)maxxer 3,ex Qi(t). We will
consider the lyapunov function V(Q) = >, Q7, and prove that under T,
E (V g@ (t + 1)) -V (@(t)) 1Q(t) = Q? < —1 for all sufficiently large ||@||, where ||Q|| = 1/V(Q).

Then, from Foster’s theorem (Theorem 2.2.3 in [5]) the Markov chain representing the queue length
process is positive recurrent. Also, E (Q;(t)) < oo for each i under the steady state distribution for the

above Markov chain. Thus, limg_, m < 0. The result follows.
Let /¥ denote the indicator vector for set X  X'. Note that ¢ € X. Then, Int(A) can be characterized
as follows [15]:
Int(A) = {X: X = > BxI*, where Y By =1and Bx >0 for each X € X and 3, > 0}.  (5)

Xex Xex
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B((A0) d0id0 =3) = a-mig
= (1—c/k) > Bx ((fX)TQ) where 3, > 0 (from (5))

Xex

= (1—c/k) D Bx> Qi

Xex\{o}  i€X

< (1—c/k) ( > ﬁx) rnaxz:Qz

Xex\{¢} 1€X

= (L=c/k)(1 = By)max >y Q: (6)

< 28 ( (40 - D) OIT0 = F) + Vo,
< =201 —¢/k)Bys maXZQZ + No?2,. (from Lemma 1 and (6))

i€X
< —1 for all sufficiently large HQH (since G, > 0,0 < ¢ < k).

Proof for lemma 9

We first state and prove lemma 10 for 7" (k) which will be useful in proving lemma 9.
Lemma 10: Let L( ..., L*=1 be c-approximate. Then,

E (Z Gi(t)Di(t)|Q(t) = é) > (1= c/k)max ) Gi(t)

1€X
Proof:
Let i(¢) be the number selected by links in slot ¢, and

B(t) = arg max Y Gi(t)

XCLG®) leX
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Again, >, Gi(t)Dy(t) > (maXXGX >iex Gilt) — ZieB(t) Gi@)) - Now,

(Z Gilo) /G ) = WY max Y G

leB(t) Jj=0 xCcp@) leX

(using same arguments as in the proof for lemma 1)
k—1

= (1/1{)2 max Zmax (Gi(t),0)
120 XCLO) leX

< . i © k=1 _ i .

< (c/k) I)I(lea))((EZX G5(t) (since L© ... L*=Y are ¢ — approximate)
The result follows. ]
We now prove lemma 9. This proof follows from lemma 10 using techniques similar to those used by

Tassiulas et. al. in [15]. .
Proof: Let the arrival rate vector be (1—c/k)X where X € Int(A). Clearly, under 7" (k), Q(t) consti-

tutes an aperiodic irreducible Markov chain, and E (Z Qi ()G ()|Q(t) = Q) > (1—c/k)maxxex Y ;e x Gi(t).
We will consider the lyapunov function V(@) = >, Q7, and prove that under T,
E <V gQ (t + 1)) -V (Q( )> 1Q(t) = 2) < —1 for all sufficiently large ||@||, where ||Q]| = 1/V(Q).

Then, from Foster’s theorem (Theorem 2.2.3 in [5]) the Markov chain representing the queue length
process is positive recurrent. Also, E (Q;(t)) < oo for each i under the steady state distribution for the

K
above Markov chain. Thus, lim g, M < 0. The result follows.

Let /¥ denote the indicator vector for set X € X. Let ¢(j) denote the session of session-link j. Let f
be an M -dimensional vector such that f; = Ay;). Then, Int(A) can be characterized as follows [15]:

Int(A) = {X: X= > ByRI*, where Y B¢ =1and 8y >0 for each X € X and 3, > 0}. (7)
LONT . . e
B ((40)" dn/dn =G) = 1-enirg
= (1—c/k) ) By ((Rﬁ)T@> where G, > 0 (from (7))

XeXx

< (1= e/k)(1 - By max G ®)

E(V(Qe+1)-v(dw)Idn =q)
A - rD() (2000 + A) - ~D()) G = G
(A - rB()" GOIT0 = G) + e

VAN

[\

=
/\/\

< 2B (AT(1)Q(1)|d(¢) )—2E<ZG Qt) = Q)+Mozmax
< —2(1—c/k)By glgﬁz G; + Ma?2,. (from Lemma 10 and (8))
1€X

< —1 for all sufficiently large ||Q]| (since 3, > 0,0 < ¢ < k).
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