
1

Technical Report: Control Using the Smooth Robustness of Temporal Logic
Yash Vardhan Pant∗, Houssam Abbas∗, Rahul Mangharam

Abstract— Cyber-Physical Systems must withstand a wide
range of errors, from bugs in their software to attacks on their
physical sensors. Given a formal specification of their desired
behavior in Metric Temporal Logic (MTL), the robust semantics
of the specification provides a notion of system robustness that
can be calculated directly on the output behavior of the system,
without explicit reference to the various sources or models of the
errors. The robustness of the MTL specification has been used
both to verify the system offline (via robustness minimization)
and to control the system online (to maximize its robustness
over some horizon). Unfortunately, the robustness objective
function is difficult to work with: it is recursively defined,
non-convex and non-differentiable. In this paper, we propose
smooth approximations of the robustness. Such approximations
are differentiable, thus enabling us to use powerful off-the-
shelf gradient descent algorithms for optimizing it. By using
them we can also offer guarantees on the performance of the
optimization in terms of convergence to minima. We show that
the approximation error is bounded to any desired level, and
that the approximation can be tuned to the specification. We
demonstrate the use of the smooth robustness to control two
quad-rotors in an autonomous air traffic control scenario, and
for temperature control of a building for comfort.

I. CONTROLLING FOR ROBUSTNESS

The errors in Cyber Physical Systems (CPS) can affect
both the cyber components (e.g., software bugs) and physical
components (e.g., sensor failures and attacks) of a system.
Under certain error models, like a bounded disturbance on a
sensor reading, a CPS can be designed to be robust to that
source of error. In general, however, unforeseen issues will
occur. To deal with unforeseen problems, at design time,
the system must be verified to be robust : i.e., not only
does it satisfy its design specifications under the known error
models, it must satisfy them robustly. Similarly, at runtime,
the system’s controller must make decisions that maximize
this satisfaction margin, or robustness. This can give a
margin of maneuvarability to the system during which it
addresses the unforeseen problem. Since these problems are,
by definition, unforeseen and unmodeled and only detected
by their effect on the output, the notion of robustness must
be computable using only the output behavior of the system.

Example 1: Air-Traffic Control (ATC) coordinates land-
ing arrivals at an airport. ATCs have very complex rules
to ensure that all airplanes, of different sizes and speeds,
approach the airport and land safely, with sufficient margin to

*The authors contributed equally.
Department of Electrical and Systems Engineering, University of Penn-

sylvania, Philadelphia, PA, USA.
{yashpant, habbas, rahulm}@seas.upenn.edu
This work was supported by STARnet a Semiconductor Research Cor-

poration program sponsored by MARCO and DARPA, NSF MRI-0923518
and the US Department of Transportation University Transportation Center
Program.

MDW

F
L
1
0
0

F
L
0
9
0

F
L
0
7
0

ILS
ILS
ILS

1 2

3

6

4
5

8

7

Fig. 1: A simplified depiction of Chicago O’Hare (ORD) airport
and its airspace (40 miles radius). The numbers indicate when and
where different landing rules apply. Sub-figure on the right shows
the altitude rules, see text. Figure courtesy of Max Z. Li, University
of Pennsylvania.

other airplanes to accommodate emergencies and wind gusts.
Fig. 1 depicts the airspace of Chicago O’Hare (ORD), the
third busiest airport in the U.S. The arrival airspace is divided
into 3 zones with different, hierarchical, altitude floors and
ceilings. It also shows holding zones, landing approaches,
and allowable trajectories for the landing. The following is
a subset of the rules that apply for incoming air-crafts.

1) When an aircraft enters one of the zones (indicated by
the numbers 1,2,3 in Fig. 1), it must stay between that
zone’s altitude floor and ceiling.

2) If an aircraft approaches from the West, it must follow
one of the trajectories numbered 4 or 5.

3) If the air-space is too busy, an aircraft must maintain
a holding pattern in either holding zones 6 or 7, until
some maximum amount of time expires.

4) A minimum separation must be maintained between
aircrafts.

How do we ensure that the ATC system satisfies these
complex rules robustly?

A. The need for temporal logic

The above requirements go beyond traditional control
objectives like stability, tracking, quadratic cost optimization
and reach-while-avoid for which we have well-developed
theory. While these requirements can be directly encoded
from natural language into a Mixed Integer Program (MIP),
such direct encoding can easily have thousands of variables,
as will be seen in the experiments. Thus it is error-prone and
checking that it corresponds to the designer’s intent is near
impossible. On the other hand, such control requirements
are easily and succinctly expressed in Metric Temporal

2

Logic (MTL) [14], [19]. MTL is a formal language for
expressing reactive requirements with constraints on their
time of occurence and sequencing, such as those of the ATC.
The advantage of first expressing them as MTL formulas is
that such formulas are more succinct and legible, and less
error-prone, than the corresponding MIP. In this sense, MTL
bridges the gap between the ease of use of natural language
and the rigor of mathematical formulation.

Example1, continued. The ATC rules can be formalized
in Metric Temporal Logic (MTL). Rule 1 can be formalized
as follows (� means ‘Always’, q is an aircraft and qz is its
altitude).

�(q ∈ Zone1 =⇒ qz ≤ Ceiling1 ∧ qz ≥ Floor1) (1)

Rule 3 can be formalized as follows.

�(Busy =⇒ ♦[t1,t2](q ∈ Holding-6 ∨ q ∈ Holding-7)

U[0,MaxHolding]¬Busy) (2)

This says that Always (�), if airport is Busy, then Eventu-
ally (♦), sometime between times t1 and t2, the plane goes
into a holding area. It stays there Until the airport is not
(¬) busy, or the timer expires at time MaxHolding.

By maximizing the robusness of these MTL specifications,
the ATC can automatically find landing patterns that leave
room for maneuvering in case of emergencies. Any unfore-
seen disturbance smaller than a known bounded size will not
violate the rules, and will not lead to an unsafe situation.

Once the requirements are expressed as an MTL formula,
there are broadly two ways of designing a controller that
satisfies the formula (fulfills the requirements). The first
method automatically creates a MIP from the semantics of
the MTL formula and solves the MIP to yield a satisfying
control sequence [22], [23]. See Related Work and the
Experiments. The second method, upon which we build in
this work, uses the robustness of MTL specifications [12],
[8] . Robustness is a rigorous notion that has been used
successfully for the testing and verification of automotive
systems [11], [9], medical devices [25], and general CPS.
Given a specification ϕ written in Metric Temporal Logic
(MTL) and a system execution x, the robustness ρϕ(x) of the
spec relative to x measures two things: its sign tells whether
x satisfies the spec (ρϕ(x) > 0) or falsifies it (i.e., violates
it, ρϕ(x) < 0). Its magnitude |ρϕ(x)| measures how robustly
the spec is satisfied or falsified. Namely, any perturbation to
x of size less than |ρϕ(x)| will not cause its truth value
to change relative to ϕ. Thus, the control algorithm can
maximize the robustness over all possible control actions to
determine the next control input.

Unfortunately, the robustness function ρϕ is hard to work
with. In particular, it is non-convex, so optimization can-
not be guaranteed to yield global optima. And it is non-
differentiable, so we have to resort to heuristics or costly non-
smooth optimizers. This makes its optimization a challenge
- indeed, most existing approaches treat it as a black box
and apply heuristics to its optimization (see Related Work
below). These heuristics provide little to no guarantees,
have too many user-set parameters, and don’t have rigorous

termination criteria. On the other hand, gradient descent opti-
mization algorithms typically offer convergence guarantees to
the function’s (local) minima, have known convergence rates
for certain function classes, and have been optimized so they
outperform heuristics that don’t have access to the objective’s
gradient information. The existence of a gradient also allows
us to do local search for falsifying trajectories, which is
necessary for corner case bugs or dangerous situations.
Moreover, gradient descent algorithms usually have a fewer
number of parameters to be set, and important issues like
step-size selection are rigorously addressed.

Contributions. In this paper, we present smooth (infinitely
differentiable) approximations to the robustness function of
arbitrary MTL formulae. We show that the smooth approxi-
mation is always within a user-defined error of the true ro-
bustness, and illustrate the result experimentally. This allows
us to run powerful and rigorous off-the-shelf gradient descent
optimizers. Through multiple examples, we show that our
method is faster and performs better than heuristics like Sim-
ulated Annealing optimizing the original, non-differentiable
robustness and also better than the MIP-based approaches
used in the tool BluSTL [22] and subsequent work. We
demonstrate the results on a case study for an autonomous
airport traffic controller for two quad-rotors, where the MIP-
based approach fails to yield a satisfying controller. While
we do not tackle the non-convexity issue directly, having an
inexpensive gradient optimizer makes it possible to run an
efficient multi-start optimization, increasing the chances of
approaching the global optimum.

Related work. Current approaches to optimizing the ro-
bustness fall into four categories: the use of heuristics like
Simulated Annealing and RRTs [18], [2], [24], [9], [6], non-
smooth optimization [3], Mixed Integer Linear Programming
(MILP) [22], and iterative approximations [1], [4]. Black-
box heuristics are the most commonly used approach: for
example, Simulated Annealing [18], cross-entropy [24] and
RRTs [9]. The clear advantage of these methods is that they
do not require any special form of the objective function:
they simply need to evaluate it at various points of the search
space, and use its value as feedback to decide on the next
point to try. A significant shortcoming is that, unlike gradient
descent optimization, they offer little to no guarantees of
convergence to local minima, and their convergence rates are
often not known. They also use many ‘magical’ parameters
that are heuristically set and may affect the results signif-
icantly, thus requiring more user interaction than desired.
Because the robustness is non-smooth, the work in [3]
developed an algorithm that decreases the objective function
along its sub-gradient. This involved a series of conservative
approximations, and was restricted to the case of safety
formulae. In [22], the authors encoded the MTL formula as
a set of linear and boolean constraints (when the dynamical
system is linear), and used Gurobi to solve them. MILPs
are NP-complete, non-convex, and do not scale well with
the number of variables. The sophisticated heuristics used
to mitigate this make it hard to characterize their runtimes,
which is important in control - see examples in [22] and this
paper. In general, MILP solvers can only guarantee achieving

3

local optima. Note also that [22] requires all constraints to
be linear, so all atomic propositions must involve half-spaces
(p : a′x ≤ b), which is not a restriction we need. The work
closest to ours is [1], [4]. There, the authors considered safety
formulas, for which the robustness reduces to the minimum
distance between x and the unsafe set U . By sub-optimally
focusing on one point on the trajectory x, they replaced the
objective by a differentiable indicator function for U and
solved the resulting problem with gradient descent.

By computing fast smooth approximations of robustness,
we circumvent most of the above issues and get closer to
real-time control by robustness maximization.

II. ROBUSTNESS OF MTL FORMULAE

Consider a discrete-time dynamical system H given by

xt+1 = f(xt, ut) (3)

where x ∈ X ⊂ Rn is the state of the system and u ∈ U ⊂
Rm is its control input. The system’s initial state x0 takes
value from some initial set X0 ⊂ Rn. Given an initial state
x0 and a control input sequence u = (u0, u1, . . .), ut ∈ U ,
a trajectory of the system is the unique sequence of states
x = (x0, x1, . . .) s.t. for all t, xt is in X and it obeys (3) at
every time step. We will use T to abbreviate the time domain
{0, 1, 2, . . .}. All temporal intervals that appear in this paper
are discrete-time, e.g. [a, b] means [a, b]∩T. For an interval
I , we write t + I = {t + a | a ∈ I}. The set of subsets of
a set S is denoted P(S). The signal space XT is the set of
all signals x : T → X . The max operator is written t and
min is written u.

A. Metric Temporal Logic

The controller of H is designed to make the closed
loop system (3) satisfy a specification expressed in Metric
Temporal Logic (MTL) [19]. MTL allows one to formally
express complex reactive specifications, beyond stability,
trajectory tracking and the like. See examples (1) and (2).

Formally, let AP be a set of atomic propositions, which
can be thought of as point-wise constraints on the state of
the system. An MTL formula ϕ is built recursively from the
atomic propositions using the following grammar:

ϕ := >|p|¬ϕ|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|ϕ1UIϕ2

where I ⊂ R is a time interval. Here, > is the Boolean True,
p is an atomic proposition, ¬ is Boolean negation, ∨ and ∧
are the Boolean OR and AND operators, respectively, and
U is the Until temporal operator. Informally, ϕ1UIϕ2 means
that ϕ1 must hold until ϕ2 holds, and that the hand-over
from ϕ1 to ϕ2 must happen sometime during the interval
I . The implication (=⇒), Always (�) and Eventually (♦)
operators can be derived using the above operators.

Formally, the pointwise semantics of an MTL formula
define what it means for a system trajectory x to satisfy the
formula ϕ. Let O : AP → P(X) be an observation map for
the atomic propositions. The boolean truth value of a formula
ϕ w.r.t. the trajectory x at time t is defined recursively.

Definition 2.1 (MTL semantics):

(x, t) |= > ⇔ >
∀p ∈ AP, (x, t) |=O p ⇔ xt ∈ O(p)

(x, t) |=O ¬ϕ ⇔ ¬(x, t) |=O ϕ
(x, t) |=O ϕ1 ∨ ϕ2 ⇔ (x, t) |=O ϕ1 ∨ (x, t) |=O ϕ2

(x, t) |=O ϕ1 ∧ ϕ2 ⇔ (x, t) |=O ϕ1 ∧ (x, t) |=O ϕ2

(x, t) |=O ϕ1UIϕ2 ⇔ ∃t′ ∈ t+ I.(x, t′) |=O ϕ2

∧∀t′′ ∈ (t, t′), (x, t′′) |=O ϕ1

As O is fixed in this paper, we drop it from the notation.
We say x satisfies ϕ if (x, 0) |= ϕ. All formulas that appear
in this paper have bounded temporal intervals: 0 ≤ inf I <
sup I < +∞. To evaluate whether such a formula ϕ holds on
a given trajectory, only a finite-length prefix of that trajectory
is needed. Its length can be upper-bounded by the horizon
of ϕ, hrz(ϕ), calculable as shown in [7]. For example, the
horizon of ♦[2,4]p is 6.

B. Robust semantics of MTL

Designing a controller that satisfies the MTL formula ϕ1

is not always enough. In a dynamic environment, where the
system must react to new unforeseen events, it is useful to
have a margin of maneuverability. That is, it is useful to
control the system such that we maximize our degree of
satisfaction of the formula. When unforeseen events occur,
the system can react to them without violating the formula.
This degree of satisfaction can be formally defined and
computed using the robust semantics of MTL. Given a point
x ∈ X and a set A ⊂ X , dist(x,A) := infa∈A |x − a|2 is
the distance from x to the closure A of A.

Definition 2.2 (Robustness[10]): The robustness of ϕ rel-
ative to x at time t is recursively defined as

ρ>(x, t) = +∞

∀p ∈ AP, ρp(x, t) =

{
dist(xt, X \ O(p)), if xt ∈ O(p)
−dist(xt,O(p)), if xt /∈ O(p)

ρ¬ϕ(x, t) = −ρϕ(x, t)

ρϕ1∨ϕ2
(x, t) = ρϕ1

(x, t) t ρϕ2
(x, t)

ρϕ1∧ϕ2
(x, t) = ρϕ1

(x, t) u ρϕ2
(x, t)

ρϕ1UIϕ2
(x, t) = tt′∈t+TI

(
ρϕ2

(x, t′)
l

ut′′∈[t,t′)ρϕ1
(x, t′′)

)
When t = 0, we write ρϕ(x) instead of ρϕ(x, 0).
The robustness is a real-valued function of x with the
following important property.

Theorem 2.1: [10] For any x ∈ XT and MTL formula ϕ,
if ρϕ(x, t) < 0 then x falsifies the spec ϕ at time t, and if
ρϕ(x, t) > 0 then x satisfies ϕ at t. The case ρϕ(x, t) = 0
is inconclusive.

Thus, we can compute control inputs by maximizing the
robustness over the set of finite input sequences of a certain
length. The obtained sequence u∗ is valid if ρϕ(x, t) is
positive, where x and u∗ obey (3). The larger ρϕ(x, t), the

1Strictly speaking, a controller such that the closed-loop satisfies the
formula.

4

more robust is the behavior of the system: intuitively, x can
be disturbed and ρϕ might decrease but not go negative.

III. SMOOTH APPROXIMATION

In this paper, we seek to design control inputs such that the
closed-loop system satisfies an MTL specification. Formally,
the goal is to solve the following problem. Let ϕ be an
MTL formula with horizon N . We aim to solve the following
control problem Pρ.

Pρ : max
u

ρϕ(x)− γ
N−1∑
k=0

l(xk+1, uk) (4a)

s.t. xk+1 = f(xk, uk), ∀k = 0, . . . , N − 1 (4b)
xk ∈ X, ∀k = 0, . . . , N (4c)
uk ∈ U, ∀k = 0, . . . , N − 1 (4d)
δρϕ(x) ≥ δεmin (4e)

Here, u = (u0, . . . , uN−1), l(xk+1, uk) is a control cost,
e.g. the LQR cost x′kQxk +u′kRuk, and γ ≥ 0 is a trade-off
weight. The scalar εmin ≥ 0 is a desired minimum robustness.
If δ = 0, then this constraint is effectively removed, while
δ = 1 enforces the constraint.

A. The need for smoothing

To apply gradient descent methods, we require a differen-
tiable objective function. Our objective function, ρϕ, is non-
differentiable, because it uses the distance, max, and min
functions, all of which are non-differentiable. One may note
that these functions are all differentiable almost everywhere
(a.e.) on their domain. That is, the set of points in their
domain where they are non-differentiable has measure 0 in
Rn. Therefore, by measure additivity, the composite function
ρϕ is itself differentiable almost everywhere. Thus, one
may be tempted to ‘ignore’ the singularities (points of non-
differentiability), and apply gradient descent to ρϕ anyway.
The rationale for doing so is that sets of measure 0 are
unlikely to be visited by gradient descent, and thus don’t
matter. However, as we show in the next example, the lines of
singularity (along which the objective is non-differentiable)
can be precisely the lines along which the objective increases
the fastest. See also [5]. Thus they are consistently visited
by gradient descent, after which it fails to converge because
of the lack of a gradient.

Example 2: A simple example illustrates how gradient
descent gets stuck at singularities. We use the optimization
algorithm Sequential Quadratic Programming (SQP) [21]
to maximize the robustness of ϕ = ¬(x ∈ U), where
U = [−1, 1]2 is the unsafe red square in Fig. 2. In this case,
ρϕ is simply dist(x0, U), the distance of the first trajectory
point to the set. The search space is [−2.5, 2.5]2 (big grey
square in Fig. 2). The most robust points are the corners
of the grey square, such as x∗ = [2.5, 2.5] (green ‘+’ in
figure), being furthest from the unsafe set. We initialize the
SQP at x0 = [0, 0]. SQP generates iterates (blue circles) on
the line of singularity connecting [1, 1] to x∗ and ultimately
gets stuck at x = [1, 1]. That’s because along the line, the

Fig. 2: Iterates of SQP for Example 2. Colors in online version.

gradient does not exist and attempts by SQP to approximate it
numerically fail, prompting it to generate smaller and smaller
step-sizes for the approximation. Ultimately, SQP aborts due
to the step-size being too small, and concludes it is at a local
minimum.

B. Approximating the distance function

To create a smooth approximation to ρϕ, we use smooth
approximations to each of its non-differentiable components:
the set-distance, min, and max functions.

Recall that for a set U ⊂ Rn, dist(x, U) = infa∈U |x −
a|2, where | · |2 is the Euclidian norm. This function is
globally Lipschitz with Lipschitz constant 1 and therefore
differentiable almost everywhere (Rademacher’s theorem),
and has a second derivative almost everywhere if U is convex
(Alexandrov’s theorem) [16].

It is well-known that if an a.e.-differentiable function is
convolved with a smooth kernel, the output function no
longer has those singularities. We leverage this to provide a
smooth approximation of the distance function by expanding
it over a basis of orthonormal Meyer wavelets. Specifically,
the 1-D Meyer wavelet function is given in the frequency
domain by (i =

√
−1):

ψ̂(ω) =
1√
2π

 sin(π2 ν(3|ω|
2π − 1))eiω/2 2π/3 ≤ |ω| ≤ 4π/3

cos(π2 ν(3|ω|
4π − 1))eiω/2, 4π/3 ≤ |ω| ≤ 8π/3

0, otherwise

where ν(x) = 0 if x ≤ 0, 1 if x ≥ 1, and equals x if
0 ≤ x ≤ 1. The time-domain expression for this wavelet is
given in [27]. To obtain an n-D wavelet, we use the tensor
product construction [17]. Let E be the set of vertices of the
unit hypercube [0, 1]n. For every e = (e1, e2, . . . , en) ∈ E
and x = (x1, . . . , xn) ∈ Rn, define Ψe : Rn → R

Ψe(x) = ψe1(x1) . . . ψen(xn)

Given k ∈ Z and j ∈ Zn, a dyadic cube in Rn is a set
of the form I = 2−k(j + [0, 1]n). Let D be the set of all
dyadic cubes in Rn obtained by varying k over Z and j over
Zn. Then {Ψe

I , e ∈ E, I ∈ D} is an orthonormal basis for

5

L2(Rn) (because the Meyer wavelet itself is orthonormal).
Then every function in L2(Rn) has an expansion

f(x) =
∑
I∈D

∑
e∈E

ceIΨ
e
I(x), ceI := 〈f,Ψe

I〉

with 〈h, g〉 :=
∫
Rn f(x)g(x)dx. The desired approximation

is obtained by truncating this expansion after a finite number
of terms, i.e., by using a finite set D′ (D

dist(x, U) ≈ d̃ist(x, U) :=
∑
I∈D′

∑
e∈E

ceIΨ
e
I(x) (5)

The coefficients ceI := 〈dist(·, U),Ψe
I〉 are calculated offline

and stored in a lookup table for online usage. Using more
coefficients yields a better approximation.

C. Smooth max and min

We use the following standard smooth approximations of
m-ary max and min. Let k ≥ 1.

m̃axk(a1, . . . , am) :=
1

k
ln(eka1 + . . .+ ekam) (6)

m̃ink(a1, . . . , am) := −m̃ax(−a1, . . . ,−am) (7)

Suppose k = 1 and that a1 is the largest number. Then ea1 is
even larger than the other eai ’s, and dominates the sum. Thus
m̃ax1(a) u ln ea1 = a1 = max(a). If a1 is not significantly
larger than the rest, the sum is not well-approximated by
ea1 alone. To counter this, the scaling factor k is used: it
amplifies the differences between the numbers. It holds that
for any set of m reals,

0 ≤ m̃axk(a1, . . . , am)−max(a1, . . . , am) ≤ ln(m)/k (8)

0 ≤ min(a1, . . . , am)− m̃ink(a1, . . . , am) ≤ ln(m)/k (9)

Indeed, the error of smooth max can be bounded as follows.
Assume a1 is the largest number, then

εM := m̃axk(a)− a1 =
ln(
∑
i e
kai)− ka1
k

= k−1 ln

(∑
i e
kai

eka1

)
≤ k−1 ln

(
meka1

eka1

)
=

lnm

k

It is also clear from what preceded that εM ≥ 0. The
maximum error is achieved when all the ai’s are equal.

D. Overall approximation

Putting the pieces together, we obtain the approximation
error for the robustness of any MTL formula. Given a set U ,
let d̃istε(·, U) be an ε-approximation of dist(·, U), i.e. for
all x in their common domain, |dist(x, U)− d̃istε(x, U)| ≤
ε.

Theorem 3.1: Consider an MTL formula ϕ and reals ε >
0 and k ≥ 1. Define the smooth robustness ρ̃ϕ, obtained by
substituting d̃istε for dist, m̃axk for max, and m̃ink for
min, in Def. 2.2. Then for any trajectory x, it holds that

|ρϕ − ρ̃ϕ| ≤ δϕ

where δϕ is (a) independent of the evaluation time t, and (b)
goes to 0 as ε→ 0 and k →∞.

Proof: We will prove a stronger result that implies the
theorem. When x or t are clear from the context, we will
drop them from the notation.

The proof is by structural induction on ϕ, and works by
carefully characterizing the approximation error.

Case ϕ = p ∈ AP . ρϕ(x, t) is given by either distxtO(p)
or −distxtO(p), and ρ̃ϕ(x, t) is given by either
d̃istε(xt,O(p)) or −d̃istε(xt,O(p)), respectively. Either
way, |ρ̃ϕ(x, t) − ρϕ(x, t)| ≤ ε. Indeed, ε satisfies the
conditions on δϕ.

Case ϕ = ¬ϕ1 |ρ¬ϕ1
(x, t)− ρ̃¬ϕ1

(x, t)| = |−ρϕ1
(x, t)+

ρ̃ϕ1
(x, t)| ≤ δϕ1

, and δϕ1
satisfies (a)-(b) by the induction

hypothesis.
Case ϕ = ϕ1 ∨ ϕ2. If the same sub-formula ϕi achieves

the max for both ρϕ1(x, t) t ρϕ2(x, t) and ρ̃ϕ1(x, t) t
ρ̃ϕ2

(x, t), then by induction hypothesis we immediately
obtain |ρϕ(x, t)− ρ̃(x, t)| ≤ δϕi .

Otherwise if, say, ρϕ = ρϕ1
and ρ̃ϕ = ρ̃ϕ2

then

ρϕ1 − δϕ1 ≤ ρ̃ϕ1 ≤ ρ̃ϕ2 =⇒ ρϕ1 − ρ̃ϕ2 ≤ δϕ1

Also

ρ̃ϕ2
≤ ρϕ2

+ δϕ2
≤ ρϕ1

+ δϕ2
=⇒ −δϕ2

≤ ρϕ1
− ρ̃ϕ2

Therefore

−(δϕ1tδϕ2) ≤ ρϕ1−ρ̃ϕ2 ≤ δϕ1tδϕ2 ⇔ |ρϕ1−ρ̃ϕ2 | ≤ δϕ1tδϕ2

Similarly, if ρϕ = ρϕ2
and ρ̃ϕ = ρ̃ϕ1

, we have |ρϕ2
− ρ̃ϕ1

| ≤
δϕ1
t δϕ2

. So in all cases,

|ρϕ1
t ρϕ2

− ρ̃ϕ1
t ρ̃ϕ2

| ≤ δϕ1
t δϕ2

Therefore by the triangle inequality and (8)

|ρϕ1
t ρϕ2

− m̃axk(ρ̃ϕ1
, ρ̃ϕ2

)| ≤ δϕ1
t δϕ2

+ ln(2)/k = δϕ

Clearly, δϕ satisfied (a)-(b).
The case ϕ1 ∧ ϕ2 is treated similarly.
ϕ = ϕ1UIϕ2. Before proving this case, we will need the

following lemma, which is provable by induction on n:
Lemma 3.1: If ϕ = ϕ1 ∧ . . . ∧ ϕn or ϕ = ϕ1 ∨ . . . ∨ ϕn,

n ≥ 2, then |ρϕ − ρ̃ϕ| ≤ t1≤i≤nδϕi + ln(n)/k.
We now proceed with the proof of the last case. Recall

that ρϕ1UIϕ2
(x, t) = tt′∈t+TI (ρϕ2

(x, t′)
d

ut′′∈[t,t′)ρϕ1(x, t′′)
)
. Starting with the innermost sub ex-

pression ρψ := ut′′∈[t,t′)ρϕ1(x, t′′), we have, by Lemma
3.1

|ρψ − ρ̃ψ| ≤ tt′′∈[t,t′)δt
′′

ϕ1
+ ln(t′ − t)/k (10)

where δt
′′

ϕ1
is the bound for approximating ρϕ1(x, t′′). But

δϕ does not depend on the time at which the formula is
evaluated. Therefore the bound in (10) becomes

|ρψ − ρ̃ψ| ≤ δϕ1
+ ln(t′ − t)/k (11)

To avoid introducing a dependence on time, we further upper-
bound by

|ρψ − ρ̃ψ| ≤ δϕ1
+ ln(hrz(ϕ))/k := δψ

6

10
1

10
2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Formula Horizon (N)

R
M
S
E
 a
n
d
 V
a
ri
a
n
c
e
 o
f
ro
b
u
s
tn
e
s
s
 a
p
p
ro
x
im
a
ti
o
n

Always[0,N!1] ¬P1

Always[0,N!1](¬P1 ∨ ¬P2)

Always[0,N!1](¬P1 ∧ ¬P2)

With state in R3, Always[0,N!1] ¬P1

¬P1 U[0,N!1] P2

Fig. 3: RMSE and variance of robustness approximation error
against formula horizon, evaluated on 1000 randomly generated
trajectories for the system in (13). Unless noted, the systems are
2D. Note that the approximation errors and their variances are
very small, showing the accuracy and stability of the smooth
approximation. Color in online version.

where, recall, hrz(ϕ) is the horizon of ϕ (see Section II-A).
Continuing with the sub-expression ρα = ρϕ2

(x, t′)
d
ρψ ,

by the induction hypothesis it holds that |ρα − ρ̃α| ≤
δϕ2
tδψ+ln(2)/k := δα. Finally, the top-most max operator

introduces the total error

|ρϕ − ρ̃ϕ| ≤ δα + ln(|I|)/k
= δϕ2

t δψ + ln(2)/k + ln(|I|)/k
= δϕ2

t (δϕ1
+ ln(hrz(ϕ))/k) + ln(2|I|)/k

= δϕ (12)

The first inequality obtains from the fact that δα is indepen-
dent of evaluation time and Lemma 3.1. The bound δϕ obeys
(a)-(b). This concludes the proof.

IV. APPROXIMATION AND CONTROL

We implemented the smooth approximation to the seman-
tics of MTL, and tested it on several examples.

A. Approximation error for robustness

We evaluated the robustness ρϕ and its approximation
ρ̃ϕ for five formulae, with hrz(ϕi) = N . P1 and P2

are atomic propositions for state being in two differ-
ent polyhedra. Each formula’s robustness is evaluated on
1000 randomly-generated trajectories of varying lengths N ,
so we can examine the error’s variation with the hori-
zon. The trajectories were produced by a 2-or-3 dimen-
sional system, (13) with input and state saturation. Fig. 3
shows the Root Mean Square (RMSE) of the approxima-
tion,

√
(1/1000)

∑
x(ρϕ(x)− ρ̃ϕ(x))2 , and variance bars

around it. As seen, the approximation error is small for all
cases. Note that while the RMSE increased with the system
dimension (4th formula in Fig. 3), it was observed that the

relative error remained very small i.e. the increase in error
is explained by an increase in the robustness’s magnitude.

B. Robustness maximization for control

To solve Problem Pρ given in (4), we replace the true
robustness ρϕ by its smooth approximation ρ̃ϕ. We thus
obtain Problem Pρ̃. We call this approach of optimizing
the smooth approximation of robustness for control, Smooth
Operator (SOP). We illustrate the approach on a simple
linear system, with a reach-while-avoid type of specification
which is common in literature, e.g. in [23]. More extensive
case studies are presented in Section V.

Optimization solver. We use Sequential Quadratic Pro-
gramming (SQP) to solve the optimization problem Pρ̃. SQP
solves constrained non-linear optimization problems, like
Pρ̃, by creating a sequence of quadratic approximations to
the problem and solving these approximate problems. SQP
enjoys various convergence-to-(local)-optima properties, de-
pending on the assumptions we place on the problem. See
[21, Section 2.9]. For example, for SQP to converge to a
strict local minimum (a minimum that is strictly smaller
than any objective function value in an open neighborhood
around it), it suffices that 1) all constraint functions be
twice Lipschitz continuously differentiable. In our case, this
includes function f in (4a), and the problems we solve satisfy
this requirement. And, 2) at points in the search space that
lie on the boundary of the inequality-feasible set (where
the inequality constraints are satisfied with equality), there
exists a search direction towards the interior of the feasible
set that does not violate the equality constraints (the so-
called Mangasarian-Fromowitz constraint qualification) [21,
Assumption 2.9.1]. This is also true in our case since our
equality constraints come from the dynamics and are always
enforced for any u.

Solver initialization. To initialize SQP when solving Pρ̃
(i.e., to give it a starting value for u), we can either:

a) solve an inexpensive feasibility linear program with
constraints (4b)-(4d).

b) Or, generate a random input sequence respecting uk ∈
U . Such a trajectory will be very fast to generate and feasible
w.r.t the dynamics.

Note, the resulting initial trajectory could violate the
specification (as it does in every example we study in this
paper) and we only enforce that it satisfy the dynamics and
state constraints.

Comparison to BluSTL. We compare the proposed
Smooth Operator (SOP) to (among other methods) BluSTL,
a state of the art MILP-based approach. BluSTL has two
modes of operation: mode (B) or Boolean, which aims at
satisfying the specification without maximizing its robust-
ness, and mode (R) or Robust, which attempts to maximize
robustness. The proposed SOP method optimizes robustness
and so naturally runs in mode (R). To emulate mode (B), we
terminate the optimization as soon as ρ̃ ≥ εMeyer, which in
turn implies that ρϕ ≥ 0.

Since the focus of this paper is on robustness optimization,
we set the cost of control to zero for all methods involved

7

TABLE I: Example 3. Runtimes (mean and standard deviation, in
seconds) for Smooth Operator (SOP) and BluSTL (BlS) in modes
(B) and (R), over 100 runs with random initial states and different
formula horizons N . BluSTL (R) did not finish (see text).

N BlS(B) SOP(B) BlS(R) SOP(R)
20 0.96± 0.82 0.31± 0.13 NA 3.30± 1.25
30 1.37± 1.72 0.33± 0.25 NA 5.85± 2.74
40 3.86± 5.10 0.60± 0.29 NA 12.36± 6.04
50 4.36± 12.97 0.74± 0.30 NA 30.05± 18.23
100 16.77± 27.84 1.21± 0.25 NA 69.70± 13.16
200 53.88± 14.18 4.19± 1.18 NA 126.11± 20.43

in the examples, unless stated otherwise. This corresponds
to γ = 0 in Pρ̃. The goal of Pρ̃ with γ = 0 is to find a
trajectory that maximizes ρ̃, hence there is no need for the
additional lower bound constraint (Eq. 4e) on ρ̃. This is why
we also set δ = 0 in Pρ̃ for all examples that follow.

Example 3: We control the following linear system

xk+1 = xk + uk (13)

to satisfy the specification

ϕ = �[0,20]¬(x ∈ Unsafe) ∧ ♦[0,20](x ∈ Terminal)

with the sets Unsafe = [−1, 1]2 and Terminal = [2, 2.5]2.
The state space is X = [−2.5, 2.5]2, U = [−0.5, 0.5]2.
Unless otherwise indicated, we use γ = 0 in Eq. 4 to focus
on satisfaction in this illustrative example. Experiments were
run on a quad-core Intel i5 3.2GHz processor with 24GB
RAM, running MATLAB 2016b.

Results. Fig. 4 shows the trajectories of length N = 20
obtained by SOP and BluSTL in modes (B) and (R), starting
from the same initial point x0 = [−2,−2]′. Both BluSTL (B)
and SOP (B) produce satisfying trajectories. The trajectory
from SOP (R) ends in the middle of the terminal set, resulting
in a higher robustness than mode (B), as expected. In mode
(R), BluSTL could not finish a single instance of robustness
maximization within 100 hours on both the above machine
and on a more powerful 8 core Intel Xeon machine with
60GB RAM, leading us to believe that the corresponding
MILP was not tractable.

SOP (R, γ = 0.1) takes into account a control cost
l(xk, uk) = ||xk||22 that penalizes longer trajectories. The
resulting trajectory is shorter but has a lower robustness than
SOP (R, γ = 0), (0.236 vs 0.247).

For further evaluation, we ran 100 instances of the prob-
lem, varying the trajectory’s initial state in [−2.5,−1.5] ×
[−2.5, 2.5]. We also varied the formula horizon N (and hence
the size of the problem) from 20 to 200 time steps. Table I
shows the execution times.

Analysis. As seen in table I, SOP is consistently faster
than BluSTL for the boolean mode, and displays smaller
variances in runtimes. Note also that the problem solved here
is very similar to the one used in [23], which uses another
MILP-based method. While the underlying dynamics differ
and their numbers are reported on a more power machine,
these results suggest that our runtimes compare favourably
with those in [23].

Fig. 4: The first 4 trajectories are for the linear system (13). See
Ex. 3. The last trajectory, SOP (R, unicycle), is from the non-linear
system in Sec. IV-B.1. Colors in online version.

In Robust mode, across all 100 experiments, SOP results
in an average ρϕ = 0.247 with a standard deviation less
than 0.005. This gets very close to the upper bound on
robustness, which is 0.25. This bound is achieved by a
trajectory reaching (in less than N time steps) the center of
the Terminal set while always staying more than 0.25 distant
from Unsafe.

1) A Non-linear example: Unicycle: Since SQP can han-
dle non-linear (twice differentiable) constraints, our method
can also deal with non-linear dynamics whereas the MILP-
based methods have to linearize dynamics to solve the
system. The following example shows SOP applied in a one-
shot manner to the unicycle dynamics (ẋt = vt cos(θt) , ẏt =
vt sin(θt) , θ̇t = ut) discretized at 10Hz. For the specification
of Ex. 3, the resulting trajectory of length 20 steps obtained
by SOP (R) (in Robust mode) is shown in fig.4, starting
from an initial state of [−2,−2, 0]. The resulting robustness
is 0.248, which is close to the global optimum of 0.25.
This shows that SOP can indeed handle non-linear dynamics
without the need for explicit linearization as is done in MILP-
based methods.

V. CASE STUDIES

We solve a robustness maximization problem for the
control of two systems using the following methods.
• SOP in (B)oolean and (R)obust modes.
• BluSTL in modes (B) and (R).
• R-SQP, which uses SQP to optimize the exact non-

smoothed robustness ρϕ.
• SA, which uses Simulated Annealing to optimize ρϕ.
For both case studies, we compute the wavelet approx-

imation of the distance function to the sets O(p) off-line.
Next, we solve the control problem (4) as a single shot,
finite horizon constrained optimization.

The code to reproduce these results can be
found at https://github.com/yashpant/
SmoothOperator0. Future release of the code will

8

TABLE II: HVAC. Runtimes (mean ± std deviation, in seconds)
SOP and BluSTL (BlS) over 100 runs with random initial states.

BlS (B) BlS(R) SOP (B) SOP (R)
0.041± 0.002 0.622± 0.118 0.014± 0.002 0.316± 0.015

focus on re-usability of the code and making it handle any
system.

A. HVAC Control of a building for comfort

The first example is the Heating, Ventilation and Air
Conditioning (HVAC) control of a 4-state model of a single
zone in a building. Such a model is commonly used in
literature for evaluation of predictive control algorithms [13].
The control problem we solve is similar to the example used
in [22], where the objective is to bring the zone temperature
to a comfortable range when the zone is occupied (given
predictions on the building occupancy). The specification is:

ϕ = �I(ZoneTemp ∈ [22, 28]) (14)

Here, I is the time interval where the zone is occupied and
the range of temperatures (in Celsius) deemed comfortable
is ([22, 28]). For the control horizon, we consider a 24 hour
period, in which the building is occupied from time steps 10
to 19 (i.e. I = [10, 19]), i.e. a 10-hour workday.

Note: In this particular problem, the maximum robustness
achievable is 3, which can be achieved by setting the room
temperature at 25C for the interval I . With this insight,
the problem of maximizing robustness can be solved with
a quadratic program with linear constraints and the cost∑
k∈I(x4k − 25)2 to be minimized. This indeed results in a

trajectory with the global optimal robustness of 3, but is a
method tailored to the particular problem.

SOP, which is a general purpose technique, results in a
robustness which is just 0.02% less than the global optimal
value. In the example that follows this one, we take a
specification which cannot be trivially turned into a quadratic
program.

System dynamics. The single-zone model, discretized at
a sampling rate of 1 hour (which is common in building
temperature control) is of the form:

xk+1 = Axk +Buk +Bddk (15)

Here, A, B and Bd matrices are from the hamlab ISE model
[26]. x ∈ R4 is the state of the model, the 4th element
of which is the zone temperature, the others are auxiliary
temperatures corresponding to other physical properties of
the zone (walls and facade). The input to the system, u ∈
R1, is the heating/cooling energy. bd ∈ R3 are disturbances
(due to occupancy, outside temperature, solar radiation). We
assume these are known a priori. The control problem we
solve is of the form in (4), with γ and δ both set to zero
(correspondingly, not cost for control in BluSTL), and X =
[0, 50]4, U = [−1000, 2000].

Results. For comparison across all methods, we run 100
instances of the problem, starting from random initial states
x0 ∈ [20, 21]4. SA, R-SQP and SOP are initialized with
the same initial input sequences u. The final trajectories
after optimization from all methods are shown in Fig.5 for

a particular instance with x0 = [21, 21, 21, 21]′. To reduce
clutter, we do not visualize trajectories from SA and R-SQP
in mode (B).

Analysis. In Boolean mode, SOP, BluSTL, and SA all find
satisfying trajectories across all 100 instances, while R-SQP
does not find one for any run and always exits at a local
minima. Execution times for SOP and BluSTL are shown
in Table II, while the runtimes for SA (B) are 3.7 ± 2.3s.
R-SQP has run-times in the order of minutes.

In Robust mode 2, SOP, BlS and SA result in trajectories
that satisfy ϕ, with an average robustness of 2.99, 3.0 and
2.88 respectively. On the other hand, R-SQP often returns
violating trajectories (average ρϕ = −0.1492). Runtimes for
SOP and Bls in Robust mode are shown in Table II. SA(R)
takes 8.56± 0.31s on average.

1) Receding horizon implementation: Our scheme can
also be implemented online in a receding (shrinking) horizon
method similar to [23]. Note that the control horizon in Eq.
4 is as at least long as the formula horizon N , and evaluating
ρ̃ in general requires a trajectory of length N . For each time
step k = 0, . . . , N , we solve the problem of Eq.4 while
constraining the variables (the previously applied inputs and
states, when applicable) for times steps < k to their actual
values. In this scheme, the length of the optimization remains
N , but the number of free variables keeps on shrinking
as k increases. For initializing SOP at each time step, the
sequence of inputs (or states) computed at time k − 1 is
used as an initial solution for the optimization at time k.
We implemented this scheme for the HVAC control problem
with additional unknown disturbances in the dynamics of the
form:

xk+1 = Axk +Buk +Bddk +Bdwk

Here, wk is a uniform random variable centred around the
known dk with a width of 10% of element wise magnitude
of dk. This can be thought of as prediction errors in the
disturbances like solar radiation and outside temperature.
Over 100 runs with random initial states as before, the
online application of SOP (in robust mode) resulted in an
average robustness value of 2.91. In terms of execution
time, the first iteration takes times of the order of those in
table II, and subsequent iterations take a fraction of that
time (average for one instance 0.0151s). This is because
we re-use the input sequence at time k − 1 as an initial
guess for the solver at time k. Since at the initial time
step we have achieved near global robustness maxima, the
subsequent SQP optimizations terminate much faster while
the formulation takes into account change in the state due
to disturbance values by making small changes to the input
sequence being computed at time k > 0. The high value of
average robustness and the small execution time per iteration
show the applicability of SOP as an online closed loop
control method.

2Results vary slightly from the peer-reviewed version: BluSTL(R) now
returns a solution after a bug was fixed, and SQP results improved after
using better exit conditions. The original conclusions still hold.

9

Fig. 5: Zone temperatures. The green rectangle shows the com-
fortable temperature limit of 22-28 C, applicable during time steps
10-19 (when the building is occupied). Color in online version.

B. Autonomous ATC for quad-rotors

Air Traffic Control (ATC) offers many opportunities for
automation to allow safer and more efficient landing patterns.
The constraints of ATC are complex and contain many safety
rules [15]. In this example we formalize a subset of such
rules, similar to those in example 1, for an autonomous ATC
for quad-rotors in MTL. We demonstrate how the smoothed
robustness is used to generate control strategies for safely
and robustly manoeuvring two quad-rotors in an enclosed
airspace with an obstacle.

The specification. The specification for the autonomous
ATC with two quad-rotors is:

ϕ = ♦[0,N−1](q1 ∈ Terminal) ∧ ♦[0,N−1](q2 ∈ Terminal)∧
�[0,N−1](q1 ∈ Zone1 =⇒ z1 ∈ [1, 5])∧
�[0,N−1](q2 ∈ Zone1 =⇒ z2 ∈ [1, 5])∧
�[0,N−1](q1 ∈ Zone2 =⇒ z1 ∈ [0, 3])∧
�[0,N−1](q2 ∈ Zone2 =⇒ z2 ∈ [0, 3])∧
�[0,N−1](¬(q1 ∈ Unsafe)) ∧�[0,N−1](¬(q2 ∈ Unsafe))∧
�[0,N−1](||q1 − q2||22 ≥ d2min) (16a)

Here q1 and q2 refer to the position of the two quad-rotors
in (x, y, z)-space, and z1 and z2 refer to their altitude. The
specification says that, within a horizon of N steps, both
quad-rotors should: a) Eventually visit the terminal zone (e.g.
to refuel or drop package), b) Follow altitude rules in two
zones, Zone1 and Zone2 which have different altitude floors
and ceilings, c) Avoid the Unsafe set, and d) always maintain
a safe distance between each other (dmin).

Note that turning the specification into constraints for
the control problem is no longer simple. This is due to
the ♦ operator, which would require a MILP formulation
to be accounted for. In addition, the minimum separation
and altitude rules for the two zones cannot be turned into
convex constraints for the optimization. As will be seen
below, our approach allows us to keep the non-convexity
in the cost function, and have convex (linear) constraints on
the optimization problem.

System dynamics. The airspace and associated sets for
the specification ϕ are hyper-rectangles in R3 (visualized in
Fig. 6), except the altitude floor and ceiling limit, which is
in R1. In simulation, dmin is set to 0.2 m.

The quad-rotor dynamics are obtained via linearization
around hover, and discretization at 5-Hz. Similar models have
been used for control of real quad-rotors with success ([20]).
For simulation, we set the mass of either quad-rotor to be 0.5
kg. The corresponding linearized and discretized quad-rotor
dynamics are given as:

ẋk+1
ẏk+1
żk+1
xk+1
yk+1
zk+1


=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0.2 0 0 1 0 0
0 0.2 0 0 1 0
0 0 0.2 0 0 1




ẋk
ẏk
żk
xk
yk
zk

+


1.96 0 0
0 −1.96 0
0 0 0.4

0.196 0 0
0 −0.196 0
0 0 0.04


θkφk

Tk



(17)

Here, the state consists of the velocities and positions in
the x, y, z co-ordinates. The inputs to the system are the
desired roll angle θ, pitch angle φ and thrust T.

The control problem. For the autonomous ATC problem
for two quad-rotors, we solve (4) with ρ̃ in the objective
instead of ρ. Note, we set γ = 0 here, following logically
from existing ATC rules (see sec.I), which do not have an
air-craft specific cost for fuel, or distance traveled. Because
of this, we can also set δ = 0 and simply maximize (smooth)
robustness (subject to system dynamics and constraints) to
get trajectories that satisfy ϕ. For the control problem, X
and U represent the bounds on the states (Airspace and
velocity limits) and inputs respectively, for both quad-rotors.
f represents the linearized dynamics of (17) applied to two
quad-rotors, and N = 21. The initial state for the first quad-
rotor is [2, 2, 2, 0, 0, 0]′ and for the second, [2,−2, 2, 0, 0, 0]′.

Results. For each approach (except BluSTL), we ran three
optimizations, starting from three different trajectories to
initialize the optimization. These initial trajectories can be
obtained in practice by a fast trajectory generator. Note that
the three initial trajectories all have negative robustness, i.e.
they violate ϕ. In this case study, we only aim to maximize
robustness, i.e. operate in the robust mode. BluSTL, in either
boolean or robust mode could not find a solution for this
problem (ran over 100 hours without terminating) and so is
excluded from the rest of this comparison. This suggests that
having a complex specification like the one in this problem,
non-trivial dynamics, and the given formula horizon, results
in a MILP that is simply intractable to solve. We believe that
this example highlights a fundamental limitation of MILP
based approaches.

Fig.6 shows the three trajectories obtained after applying
SOP, with the three initial trajectories as initial guesses for
the optimizations. All three trajectories obtained by SOP
satisfy the specification ϕ. To avoid visual clutter, we do not
show the trajectories obtained from the other methods on the
figure. Instead, we summarize the results in Table III which
shows the true robustness of the three initial trajectories, and
the true robustness for the trajectories obtained via the three
methods, SOP, SA, and R-SQP.In order to keep the study
easy to interpret, we use two quad-rotors, but it is straight
forward to scale the specification and the optimization to
account for more.

Analysis. It is seen that SOP and R-SQP satisfy ϕ for

10

Fig. 6: Trajectories obtained via SQP on smooth robustness, with
three different initial trajectories acting as initial solutions for the
SQP. Note, all 3 trajectories satisfy ϕ. Here, qji refers to the
positions of the ith trajectory for the jth quadrotor. A real-time
playback of trajectories can be seen in https://youtu.be/

gofB_HLwFGA.

all instances, while SA satisfies it only once. Note that in
all three cases, R-SQP results in trajectories with the same
robustness value, which is less than the robustness value
achieved in SOP. We conjecture that this is because R-SQP is
getting stuck at local minima at points of non-differentiability
of the objective, as illustrated in Example 2. On further
investigation, we also noticed that the robustness value
achieved is due to the segment of the ϕ corresponding to
♦[0,N](q2 ∈ Terminal). R-SQP does not drive the trajectory
(for quad-rotor 2) deeper inside the set Terminal, unlike
the proposed approach, SOP, even though the minimum
separation property is far from being violated. This lends
credence to our hypothesis of SQP terminating on a local
minima, which is the flag MATLAB’s optimization gives.

TABLE III: Robustness of final trajectory ρ∗ for three optimization
runs with different initial trajectories (x0),none of which satisfy the
specification).

Run ρ(x0) SOP ρ∗[ρ̃∗] SA: ρ∗ R-SQP: ρ∗

1 -0.8803 0.3689 [0.4107] -0.2424 0.1798
2 -0.7832 0.3688 [0.4106] -0.5861 0.1798
3 -0.0399 0.3689 [0.4107] 0.0854 0.1798

C. Discussion

With two case studies on dynamic systems, we show the
applicability and consistently good performance of SOP (our
method), which outperforms both SA R-SQP and BluSTL,
which does not scale well enough to solve the second case
study. For every instance we covered, SOP finds trajectories
that satisfy the specification, while the other methods do not
always do so.

While we solve the control problem in a single-shot, finite
horizon manner, in general, for a real-time implementation,

the problem can be solved in a receding horizon manner
(similar to [20], [13]). Or, it can be solved in a manner where
the state and actions of the past are stored an added as con-
straints at each time step while the look-ahead horizon of the
optimization shrinks (similar to [22]). This will be explored
further in future work. We have shown previously [20] that
control of an actual quad-rotor with the dynamics in (17) is
possible on a low computation power platform. The control
algorithm there involved solving multiple quadratic programs
at even higher sampling rates (20Hz), in a receding horizon
manner. Future work will include a C implementation of
SOP, which will allow us to experiment on real platforms,
like the aforementioned quad-rotors.

VI. CONCLUSIONS

We present a method to obtain smooth (infinity differen-
tiable) approximations to the robustness of MTL formulae,
with bounded and asymptotically decaying approximation
error. Empirically, we show that the approximation error is
indeed small for a variety of commonly used MTL formulae.
Through several examples, we show how we leverage the
smoothness property of the approximation for solving a
control problem by maximizing the smooth robustness, using
SQP, an off-the-shelf gradient descent optimization tech-
nique. A similar approach can also be used for falsification
by minimizing the smooth robustness over a set of possible
initial states for a closed loop system. We compare our
technique (SOP) to two other approaches for robustness
maximization for control of two dynamical systems, with
state and input constraints, and show how our approach
consistently outperforms the other two and can be used for
control of systems to satisfy MTL specifications.

REFERENCES

[1] H. Abbas and G. Fainekos. Linear hybrid system falsification through
local search. In Automated Technology for Verification and Analysis,
volume 6996 of LNCS, pages 503–510. Springer, 2011.

[2] H. Abbas and G. Fainekos. Convergence proofs for simulated anneal-
ing falsification of safety properties. In Proc. of 50th Annual Allerton
Conference on Communication, Control, and Computing. IEEE Press,
2012.

[3] H. Abbas and G. Fainekos. Computing descent direction of MTL
robustness for non-linear systems. In American Control Conference,
2013.

[4] H. Abbas, A. Winn, G. Fainekos, and A. A. Julius. Functional gradient
descent method for metric temporal logic specifications. In 2014
American Control Conference, pages 2312–2317, June 2014.

[5] J. Cortes. Discontinuous dynamical systems. IEEE Control Systems,
28(3):36–73, June 2008.

[6] J. Deshmukh, G. Fainekos, J. Kapinski, S. Sankaranarayanan, A. Zut-
shi, and Xiaoqing Jin. Beyond single shooting: Iterative approaches
to falsification. In 2015 American Control Conference (ACC), pages
4098–4098, July 2015.

[7] A. Dokhanchi, B. Hoxha, and G. Fainekos. Online monitoring for
temporal logic robustness. In Proceedings of Runtime Verification,
2014.

[8] A. Donzé and O. Maler. Robust Satisfaction of Temporal Logic
over Real-Valued Signals, pages 92–106. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[9] T. Dreossi, T. Dang, A. Donze, J. Kapinski, X. Jin, and J. V. Desh-
mukh. A trajectory splicing approach to concretizing counterexamples
for hybrid systems. In NASA Symposium on Formal Methods, 2015.

[10] G. Fainekos and G. Pappas. Robustness of temporal logic specifi-
cations for continuous-time signals. Theoretical Computer Science,
410(42):4262–4291, September 2009.

11

[11] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel.
Verification of automotive control applications using s-taliro. In 2012
American Control Conference (ACC), pages 3567–3572, June 2012.

[12] G.E. Fainekos, A. Girard, and G. Pappas. Temporal Logic Verification
Using Simulation, pages 171–186. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[13] A. Jain, M. Behl, and R. Mangharam. Data predictive control for
building energy management (submitted to the acc). 2017.

[14] R. Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299, 1990.

[15] M. Z. Li and M. S. Ryerson. Modeling and estimating airspace
movements using air traffic control transcription data, a data-driven
approach. In International Conference on Research in Air Transporta-
tion, 2016.

[16] M. M. Makela and P. Neittaanmaki. Nonsmooth optimization. World
Scientific, 1992.

[17] S. G. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way. Academic Press, 2008.

[18] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancic, A. Gupta,
and G. Pappas. Monte-carlo techniques for falsification of temporal
properties of non-linear hybrid systems. In Hybrid Systems: Compu-
tation and Control, 2010.

[19] Joël Ouaknine and James Worrell. Some recent results in metric
temporal logic. In Proceedings of the 6th International Conference
on Formal Modeling and Analysis of Timed Systems, FORMATS ’08,
pages 1–13, Berlin, Heidelberg, 2008. Springer-Verlag.

[20] Y. V. Pant, K. Mohta, H. Abbas, T. X. Nghiem, J. Devietti, and
R. Mangharam. Co-design of anytime computation and robust control.
In RTSS, pages 43–52, Dec 2015.

[21] E. Polak. Optimization: Algorithms and Consistent Approximations.
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[22] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia. Model predictive control with signal
temporal logic specifications. In 53rd IEEE Conference on Decision
and Control, pages 81–87, Dec 2014.

[23] S. Saha and A. Agung Julius. An milp approach for real-time optimal
controller synthesis with metric temporal logic specifications. In
Proceedings of the 2016 American Control Conference (ACC), 2016.

[24] S. Sankaranarayanan and G. Fainekos. Falsification of temporal
properties of hybrid systems using the cross-entropy method. In
ACM International Conference on Hybrid Systems: Computation and
Control, 2012.

[25] S. Sankaranarayanan and G. Fainekos. Simulating insulin infusion
pump risks by in-silico modeling of the insulin-glucose regulatory
system. In International Conference on Computational Methods in
Systems Biology, 2012.

[26] A Van Schijndel. Integrated heat, air and moisture modeling and
simulation in hamlab. In IEA Annex 41 working meeting, Montreal,
May, 2005.

[27] Victor Vermehren Valenzuela, , and H. M. de Oliveira. Close
expressions for meyer wavelet and scale function. 2015. Arxiv
1502.00161.

