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Abstract 

In this paper, we .synthesize a new approach to 
3-0 object shape recovery b y  integrating qualitative 
shape recovery techniques and quantitative physics- 
based shape estimation techniques. Specifically, we 
,first use qualitative shape recovery and recognition 
techniques to provide strong fitting constraints on 
physics-based deformable model recovery techniques. 
Secondly, we extend our previously developed tech- 
nique of fitting deformable models to occluding image 
contours to the case of image data captured under gen- 
eral orthographic, perspective, and stereo projections. 

1 Introduction 

Since the introduction of a class of qualitatively- 
defined volumetric primitives, called geons [l], interest 
has  been growing in building 3-D object recognition 
systems based on qualitative shape. One of the pri- 
mary motivations in these systems is that, as stated 
by Biederman [l], the task of recognizing (or identi- 
fying) an object should be separated from the task of 
locating it, i.e., determining its pose. Furthermore, 
the exact shape of the object need not be recovered to 
facilitate recognition; a coarse-level description of an 
object in terms of its parts is not only sufficient to dis- 
tinguish between different classes of objects, but pro- 
vides an efficient indexing mechanism for recognition 
from large object databases. The above systems, how- 
ever, address only the task of identifying the object. 
This is in contrast to classical 3-D object recognition 
systems, in which exact viewpoint is required to ver- 
ify typically weak object hypotheses, while the object 
models capture the exact geometry of the object, e.g., 

*S. Dickinson acknowledges the support of ITRC, IRIS, 
NSERC, and PRECARN Assoc., Canada. 

Sven J. Dickinson* 
Department of CS 

University of Toronto 
Toronto, Ontario, Canada M5S 1A4 

[S, 81. Determining the pose of the object is a critical 
component of these approaches. 

Physics-based modeling [12, 17, 16, 9, 101 provides 
a very powerful mechanism for quantitatively model- 
ing an ob-iect’s shape for localization and/or subclass 
recognition. As opposed to a model-driven recovery 
process, in which image features are matched to a set 
of rigid, a priori object models which dictate the et-  
act geometry of an object, deformable models offer a 
less constrained, data-driven recovery process. How- 
ever, as powerful as these and other active, deformable 
model recovery techniques are, they have some serious 
limitations. Their success relies on both the accuracy 
of initial image segmentation and initial placement of 
the model given the segmented data. For example, 
such techniques often assume that the entire bounding 
contour of a region belongs to the object, a problem 
when the object is occluded. In addition, such tech- 
niques often require a manual segmentation of an ob- 
ject into parts. Clearly, a more robust recovery would 
require more knowledge of the object’s position, ori- 
entation, and shape. 

In this paper, we propose a two-step recovery pro- 
cess that first recovers the qualitative shape of an ob- 
ject in terms of its parts [3, 21. If detailed shape or 
localization is needed to manipulate the object, for 
example, we then use knowledge of a part’s qualita- 
tive shape and its orientation (encoded by its aspect) 
to provide strong constraints in fitting a deformable 
model to the part. Furthermore, since the qualitative 
shape recovery technique supports occlusion through 
a hierarchical aspect representation, it can selectively 
pass to the model fitting stage only those contours 
belonging to the object. 
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2 Related Work 

Recently, several researchers have proposed various 
segmentation techniques to partition image or range 
data, in order to automate the process of fitting su- 
perquadric volumetric primitives to the data. Most of 
those approaches are applied to range dataonly [15,4], 
while Pentland [ll] describes a two-stage algorithm to 
fit superquadrics to image data. In the first stage, he 
segments the image using a filtering operation to pro- 
duce a large set of potential object “parts”, followed 
by a quadratic optimization procedure that searches 
among these part hypotheses to produce a maximum 
likelihood estimate of the image’s part structure. In 
the second stage, he fits superquadrics to the seg- 
mented data using a least squares algorithm. Pent- 
land’s approach is only applicable in case of occluding 
boundary data under simple orthographic projection, 
as is true of earlier work of Terzopoulos et al. [17], Ter- 
zopoulos and Metaxas [16], and Pentland and Sclaroff 
[12], which address only the problem of model fitting. 
Taking a different approach, Raja and Jain [13] seg- 
ment a range image into parts corresponding to geons, 
and then fit a superquadric to the part to determine 
geon orientation. 

The fundamental difference between our approach 
and the above approaches is that we use a qualitative 
segmentation of the image to  provide sufficient con- 
straints on our deformable model fitting procedure. In 
addition, we generalize our deformable model fitting 
technique to accommodate orthographic, perspective, 
and stereo projections. 

3 Object Modeling 

3.1 Qualitative Shape Modeling 

In this section, we briefly review the qualitative 
shape modeling technique described in [3, 21. 

3.1.1 

(iiven a database of object models representing the 
domain of a recognition task, we seek a set of three- 
dimensional volumetric primitives that, when assem- 
bled together, can be used to construct the object 
models. Many 3-D object recognition systems have 
successfully employed 3-D volumetric primitives to 
construct objects. Commonly used classes of volumet- 
ric primitives include polyhedra, generalized cylinders, 
and superquadrics. Whichever set of volumetric mod- 
eling primitives is chosen, they will be mapped to a 
set of viewer-centered aspects. 

0 b jec t - Cent ered Models 

To demonstrate our approach to object recognition, 
we have selected an object representation similar to 
that used by Biederman [l], in which the Cartesian 
product, of contrastive shape properties gives rise to a 
set of volumetric primitives called geons. For our in- 
vestigat,ion, we have chosen three properties including 
cross-section shape, axis shape, and cross-section size 
variation (Dickinson et al. [3]). The values of these 
properties give rise to a set of ten primitives (a sub- 
set of Biederman’s geons). To construct objects, the 
primitives are attached to one another with the re- 
striction that any junction of two primitives involves 
exactly one distinct surface from each primitive. 

3.1.2 Viewer-Centered  Models  

Traditional aspect graph representations of 3-D ob- 
jects model an entire object with a set of aspects, each 
defining a topologically distinct view of the object in 
terms of its visible surfaces [6] Our approach differs 
in that we use aspects to represent a (typically small) 
set of volumetric primitives from which each object in 
our database is constructed, rather than representing 
an entire object directly. Consequently, our goal is to  
use aspects to  recover the 3-D primitives that make 
up the object in order to carry out a recognition-by- 
parts procedure, rather than attempting to use as- 
pects to recognize entire objects. The advantage of 
this approach is that since the number of qualitatively 
different primitives is generally small, the number of 
possible aspects is limited and, more important, rnde- 
pendent  of the number of objects in the database. The 
disadvantage is that if a primitive is occluded from a 
given 3-D viewpoint, its projected aspect in the image 
will also be occluded. Thus we must accommodate the 
matching of occluded aspects, which we accomplish by 
use of a hierarchical representation we call the aspect 
hierarchy.  

The aspect hierarchy consists of three levels, con- 
sisting of the set of aspects  that model the chosen 
primitives, the set of component faces  of the aspects, 
and the set of boundary groups representing all sub- 
sets of contours bounding the faces. Fig. 1 illustrates 
a portion of the aspect hierarchy, along with a few of 
the primitives. The ambiguous mappings between the 
levels of the aspect hierarchy are captured in a set of 
conditional probabilities, mapping boundary groups 
to faces, faces to aspects, and aspects to primitives. 
These conditional probabilities result from a statisti- 
cal analysis of a set of images approximating the set 
of all  views of all  the primitives. 
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Primitives 

Boundary L Groups 

Figure 1: The Aspect Hierarchy 

3.2 Quantitative Shape Modeling 

In this section we first briefly review the general 
formulation of deformable models; further detail can 
be found in [16, 91. We theh extend the formulation 
to the case of orthographic, perspective, and stereo 
projections. 

3.2.1 G e o m e t r y  

Geometrically, the models used in this paper are closed 
surfaces in space whose intrinsic (material) coordi- 
nates are U = ( u , ~ ) ,  defined on a domain R. The 
positions of points on the model relative to an in- 
ertial frame of reference @ in space are given by a 
vector-valued, time-varying function of U: x(u,  t )  = 
( z l (u ,  t ) ,  z2(u, t ) ,  x,(u, t ) )T ,  where is the transpose 
operator. We set up a noninertial, model-centered ref- 
erence frame 4 [9] and express these positions as: 

x = c + R p ,  (1) 

where c(t) is the origin of 4 at the center of the model, 
and the orientation of 4 is given by the rotation matrix 
R(t) .  Thus, p(u,  t )  denotes the canonical positions of 
points on the model relative to the model frame. We 
further express p as the sum of a reference shape s(u, t )  
and a displacement function d(u,  t ) :  

p = s + d .  (2) 

Based on the shapes we want to recover, we consider 
the case of superquadric ellipsoids with linear tapering 
and bending global deformations [9] and express the 
reference shape as: 

s = T(a ,  b), (3) 

where T is a vector function depending on the su- 
perquadric parameters a and the parameters b neces- 
sary for the definition of the linear tapering and bend- 
ing defo'rmations [9]. We collect the parameters in s 
into the global deformation parameter vector: 

4s = (aT, bT)T (4) 

The above global deformation parameters are ade- 
quate for quantitatively describing the ten modeling 
primitives. We will therefore assume that d = 0. 

3.2.2 Kinematics  and Dynamics  

The velocity of points on the model is given by: 

.j, = ~ : + B ~ + R s ,  (5) 

where 8 is the vector of rotational coordinates of 
the model, and B = a(Rp)/a@. Furthermore, S = 
Jq,,  where J is the Jacobian of the deformable su- 
perquadric model with respect to the global degrees 
of freedom qs [9]. We can therefore write: 

X = [I B RJ]q = Lq, (6) 

where L is the Jacobian of the superquadric model, 
q = (qT , q i  , qT)T, with qe = c and q e  = 8.  

When fitting the model to visual data, our goal is 
to recover q, the vector of degrees of freedom of the 
model. Our approach carries out the coordinate fit- 
ting procedure in a physically-based way. We make 
our model dynamic in q by introducing mass, damp- 
ing, and a deformation strain energy. This allows us, 
through the apparatus of Lagrangian dynamics, to ar- 
rive at a set of equations of motion governing the be- 
havior of our model under the action of externally ap- 
plied forces. In the absence of local deformations, the 
Lagrange equations of motion take the form [16]: 

Mq+ Dq = g, + f,, (7) 

where M and D are the mass and damping matrices, 
respectively, g, are inertial forces arising from the dy- 
namic coupling between the local and global degrees 
of freedom, and f,(u,t) are the generalized external 
forces associated with the degrees of freedom of the 
model. The generalized external forces will be dis- 
cussed in1 detail in Section 4.2.2. 

3.2.3 Orthographic Projection 

In the case of orthographic .projection, the points on 
the model x = (z, y, z )  project to the image points cp 
and yp as follows: 

xp = z, Yp = Y. (8) 
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By taking the derivative of the above equation (8) 
with respect to time, we arrive at the following formu- 
las: 

xp = x, yp = y.  (9) 

Rewriting (9) in matrix form and using (6), we arrive 
at  the following mat.rix equations: 

(10) 
If we rewrite (10) in compact form, we get 

3.2.4 Perspective Projection 

In the case of perspective projection, points on the 
model x = (e, y, z )  project into image points, q, and 
yp, based on the formula: 

(13) 
Y 

t p  = ‘Cf, Yp = y f ,  
where f is the focal length. 

By taking the derivative of the above equation (13) 
with respect to time, we arrive at  the following formu- 
las: 

xp . = &- f .  - --fi yp = y- ” - - f i .  (14) 
2 22 ’ 2 22 

Rewriting (14) in matrix form and using (6), we arrive 
at  the following mat>rix equations 

If we rewrite (16) in compact form, 

[ ;; ] = Lp4, 

where 

3.2.5 Stereo Projection 

In the case of stereo projection, we assume two par- 
allel cameras, each under perspective projection, re- 
sulting In t w o  images, L and R. The model points 
x project on each of the images based on (13) and 
the corresponding Jacobian matrices L p ~  and L P ~  are 
calculated using ( 18). 

To recover the exact location of the model frame c ,  
we apply the follbwing procedure: 

0 We first independently fit the model to the left 
and right image data. This results in two model 
instances, mL and mR, one per image, having the 
same scale. 

0 Choosing one of the images, say R, we project the 
locations of the left and right model frames, m L c  

and mR,, into R. Let the locations of these pro- 
jected model centers be C L  and C R  respectively. 

0 We then map the difference in the e coordinates’ 
of C:L and CR into a force that modifies m L  and 
m R  in the direction of m L  and m R ,  respectively, 
according to the following formula: 

where k = L or k = R, s = 1 if c~~ < C R ~ ,  and 
s = -1 otherwise. 

0 Once C L  = C R ,  we first sum the forces that the left 
and right image data  exert on the model. From 
their sum, we then compute the generalized force 
fqo that corresponds to the scaling parameter a 
of the deformable model [16], and using (7), we 
modify a. 

4 Shape Recovery 

4.1 Qualitative Shape Recovery 

we get Qualitative shape recovery consists of the following 
three steps, resulting in a graph representation of the 
image in which nodes represent recovered qualitative 
3-D primitives, and arcs represent hypothesized con- 
nections between the primitives; details of the com- 
plete recovery process, including algorithms to handle 
various segmentation errors, can be found in Dickin- 

(’ 7, 

(18) 

forces fq from two dimensional external forces f that 
the data exert on the model. 

- ‘Since the two cameras are parallel, the projections of the 
two model frame centers differ only in the z direction. 



4.1.1 Face Recovery 

The first step to recovering a set of faces is a region 
segmentation of the input image. We begin by apply- 
ing Saint-Marc and Medioni’s edge-preserving adap- 
tive smoothing filter to the image [14], followed by 
a morphological gradient operator [7]. A hysteresis 
thresholding operation is then applied to produce a bi- 
nary edge image from which a connected components 
analysis yields a set of regions. The resulting regions 
are captured in a regron lopology graph in which nodes 
represent regions and arcs specify region adjacency. 

Next, the bounding contours of the regions are clas- 
sified according to their shape. Each region is repre- 
sented by a graph in which nodes represent bound- 
ing contours (parsed at  curvature discontinuities), and 
arcs represent nonaccidental relations between the 
contours, e.g., parallelism, cotermination, and sym- 
metry. A graph representing a given region is then 
compared to the faces in the aspect hierarchy (also 
represented as graphs). If a match occurs, a single 
face label with probability 1.0 is assigned to the im- 
age region. If, due to occlusion or segmentation er- 
rors, no match occurs, then subgraphs of the graph 
are matched to the boundary groups in the aspect hi- 
erarchy. Each matching boundary group can be used 
to infer one or more face hypotheses, each with a cor- 
responding probability. The face labeling process re- 
sults in a face topology graph, in which nodes represent 
image regions, and arcs represent region adjacencies. 
Furthermore, each node has one or more face labels 
associated with it. 

4.1.2 Aspect Recovery 

Given a graph representation of the faces in the image, 
there are two approaches to labeling, or recovering, as- 
pects. In an unexpected object recognition task, we 
search for a complete and consistent covering of the 
face topology graph in terms of aspects [3]. Using the 
aspect hierarchy, each face label a t  each node in the 
face graph gives rise to a set of possible aspect hy- 
potheses for that node. We search through the space 
of aspect labelings of the nodes in the face graph, and 
apply a heuristic based on the probabilities in the as- 
pect hierarchy. In an expected, or top-down, object 
recognition task, we can use knowledge of the target 
object to constrain the search process [2]. 

4.1.3 Primitive Recovery 

Given a recovered aspect, we can use the aspect hi- 
erarchy to generate a set of primitive hypotheses for 
that aspect, each with a corresponding probability. 

As in the case of aspect labeling, in an unexpected 
recognition framework, we search through the space of 
primitive labelings of the aspects in the image, while 
in an expected recognition framework, we use object 
knowledge to constrain the primitive interpretation of 
a given aspect [2]. 

In the case of stereo projection, we independently 
apply the qualitative shape recovery process to the left 
and right images. The correspondence problem then 
consists of matching qualitative primitive descriptions 
in the two images. To simplify this process, a pair 
of primitives represents a correspondence i f  (i) the 
primitives have the same label, (ii) their aspects have 
the same label, and (iii) for each pair of corresponding 
faces in their aspects, there exists an epipolar line such 
that both faces intersect this line. Matching of qual- 
itative primitives from multiple images is beyond the 
scope of this paper and will not be further discussed 
here. 

4.2 Quantitative Shape Recovery 

4.2.1 Simplified Numerical Simulation 

In computer vision applications [16], we can simplify 
the equations while preserving useful dynamics by set- 
ting the mass density p(u) to zero to obtain: 

(20) Dq = fq.  

These equations yield a model which has no inertia 
and comes to rest as soon as all the applied forces 
vanish or equilibrate. Equation (20) is discretized in 
material coordinates U using nodal finite element basis 
functions. We carry out the discretization by tessel- 
lating the surface of the model into linear triangular 
elements. Furthermore, for fast interactive response, 
we employ a first-order Euler method to integrate (20). 

4.2.2 Applied Forces 

In the dynamic model fitting process, the data are 
transformed into an externally applied force distribu- 
tion f(u,  I!). We convert the external forces to general- 
ized forces fq which act on the generalized coordinates 
of the model [16]. We apply forces to the model based 
on differences between the model’s projection in the 
image and the image data. Each of these forces corre- 
sponds to the appropriate generalized coordinate that 
has to be adapted so that the model fits the data. 
Given that our voc,abulary of primitives is limited, we 
devise a systematic way of computing the generalized 
forces for each primitive. The computation depends 
on the influence of particular parts of the projected 
image on the model degrees of freedom. Such parts 
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correspond to the image faces (grouped to form an as- 
pect) provided by the qualitative shape extraction. In 
the case of occluded primitives, resulting in both oc- 
cluded aspects and occluded faces, only those portions 
(boundary groups) of the faces used to define the faces 
exert external forces on the models. 

For each of the three projection models, we com- 
pute the generalized forces fq from 2D image forces f, 
using the following formula: 

f; = f T L k d U  = (f;,f;,f;), (21) J 
where k = o or k = p ,  depending on whether we as- 
sume orthographic or perspective projection, respec- 
tively. For orthographic projection, we assign forces 
from image data points to points on the model that 
lie on a particular region of the model defined by the 
qualitative shape recovery. For the case of perspective 
projection, we assign forces from image data points to 
points on the model that, in addition to satisfying the 
above property, are near occluding boundaries, thus 
satisfying the following formula: 

where n is the unit normal a t  any model point, i is 
the unit vector from the focal point to a point on the 
model, and T is a small threshold. 

4.2.3 Model Initialization 

One of the major limitations of previous deformable 
model fitting approaches is their dependence on model 
initialization and prior segmentation [17, 16, 121. IJs- 
ing the qualitative shape recovery process as a front 
end, we first segment the image into parts, and for 
each part, we identify the relevant non-occluded con- 
tour data belonging to the part. In addition, the ex- 
tracted qualitative primitives explicitly define a map- 
ping between the image faces in their projected aspects 
and the 3-D surfaces on the quantitative models. Fi- 
nally, the aspect that a primitive encodes defines a 
qualitative orientation that is exploited during model 
fitting, as will be demonstrated in Section 5.  

5 Experiments 

To illustrate the shape recovery approach, consider 
the real image of a toy table lamp, as shown in Fig. 2; 
the results of the bottom-up qualitative shape recovery 
algorithm are also shown in Fig. 2. At the top, the im- 
age window contains the contours extracted from the 
image, along with the face numbers. To the left is a 

Figure f!: Original Image and Recovered Qualitative 
Primitives 

window describing the recovered primitives (primitive 
covering). The mnemonics PN,  PL, PP, and PSI refer 
to primitive number (simply an enumeration of the 
primitives in the covering), primitive label (see [3]), 
and primitive probability, respectively. The mnemon- 
ics A N ,  AL, AP, and AS refer to the aspect number 
(an enumeration), aspect label (see [3]), aspect proba- 
bility, and aspect score (how well aspect was verified), 
respectively. The mnemonics FN,  FL, FP, and PS re- 
fer to face number (in image window), face label (see 
[3]), face probability, and corresponding primitive at- 
tachment surface (see [3]), respectively, for eac,h com- 
ponent face of the aspect. 

To illustrate the fitting stage, consider the contours 
belonging to the lamp shade (truncated cone). Hav- 
ing determined during the qualitative shape recov- 
ery stage that we are trying to fit a deformable su- 
perquadric to a truncated cone, we can immediately 
fix some of the parameters in the model. In addition, 
the qualitative shape recovery stage provides us with 
a mapping between faces in the image and physical 
surfaces on the model. For example, we know that 
the elliptical face (FN 1) maps to the top of the trun- 
cated cone, while the body face (FN 0) maps to the 
side of the truncated cone. For the case of the trun- 
cated cone, we will begin with a cylinder model (su- 
perquadric) and will compute the forces that will de- 
form the: cylinder into the truncated cone appearing in 
the image. Assuming an orthographic projection and 
that the 1: and y dimensions are equal, we compute 
the following forces: 

1. The cylinder is initially oriented with its z axis 



orthogonal to the image plane. The first step 
involves computing the centroid of the elliptical 
image face (known to correspond to the top of 
the cylinder). The distance between the centroid 
and the projected center of the cylinder top is 
converted to  a force which translates the model 
cylinder. Fig. 3(a) shows the image contours cor- 
responding to  the lamp shade and the cylinder fol- 
lowing application of this force. Fig. 3(b) shows 
a different view of the image plane, providing a 
better view of the model cylinder. 

( 4  

2. The distance between the two image points cor- 
responding to the extrema of the principal axis of 
the elliptical image face and two points that lie on 
a diameter of the top of the cylinder is converted 
to a force affecting the z and y dimensions with 
respect to the model cylinder. Figs. 3(c) and 3(d) 
show the image and the cylinder following appli- 
cation of this force. 

3.  The distance between the projected model con- 
tour corresponding to the top of the cylinder and 
the elliptical image face c,orresponds to a force af- 
fecting the orientat,ion of the cylinder. Figs. 3(e) 
and 3(f) show the image and the cylinder follow- 
ing application of this force. This concludes the 
application of forces arising from the elliptical im- 
age fa.ce, i.e., top of the truncated cone. 

4. Next, we focus on the image face corresponding 
to the body of the truncated cone to  complete the 
fitting process. The distance between the points 
along the bottom rim of the body face and the 
projected bottom rim of the cylinder corresponds 
to a force affecting the length of the cylinder in 
the z direction. Figs. 3(g) and 3(h) show the im- 
age and the cylinder following application of this 
force. 

5. Finally, the distance between points on the sides 
of the body face and the sides of the c,ylinder cor- 
responds to a force which tapers the cylinder to 
complete the fit. Figs. 3(i) and 3(j) show the im- 
age and the tapered cylinder following application 
of this force. The result of fitting all three parts 
of the lamp is shown in Figs. 4 and 5. 

For the case of perspective projection, we apply 
our shape recovery technique to the image in Fig. 6. 
A top-down search for the best three instances of a 
qualitative block primitive yields the three primitives 
shown in Fig. 7. Note that due to a large shadow edge 
that resulted in the undersegmented regions 12 on the 
triangular face of the wedge, the shape was misclassi- 
fied as a block since region 12 wits classified as having 

6) 
Figure 3: Quantitative 
Shade 

(j 1 
Shape Recovery for Lamp 
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Figure 6: Image of Blocks on a Table 

Figure 4: Front View of Final Recovery of Table Lamp 
(Note that depth information is lost in orthographic 
projection .) 

Figure 5: Side View of Final Recovery of Table Lamp 
(Note that depth information is lost in orthographic 
projection.) 

opposites sides parallel. If we apply the quantitative 
recovery process to these three blocks, we obtain the 
models depicted in Figures 8. 

Finally, we apply the shape recovery technique to 
the stereo pair shown in Fig. 9. The results of the qual- 
itative shape recovery are shown in Fig. 10. Following 
the scaling step, the projection of the final model into 
the two images is shown in Fig. 11. 

6 Conclusion 

In this paper, we presented a new approach to 3-D 
object shape estimation based on the idea that the 
processes of recognizing an object and locating it are 
decoupled, and that recognition does not require ac- 
curate localization. The qualitative shape recovery 
component of the approach captures the coarse shape 
of objects composed of volumetric primitives without 
solving for exact viewpoint and without a precise geo- 

I I 

Figure 7: The Best Three Instances of a Qualitative 
Block 

P 

Figure 8: Models Fitted to Three Blocks 
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