
C H A P T E R 14

Demographic Variation in Epidemic Spread

This antique discipline, tenderly severe,
Renews belief in love yet masters feeling,
Asking of us a grace in what we bear.

Form is the ultimate gift that love can o�er—
The vital union of necessity

With all that we desire, all that we su�er.
—Adrienne Rich

14.1 SIGNPOST: SUPERSPREADERS

Chapter 10 introduced computer simulation of general “chemical reaction" type models,
including their inherently stochastic character. However, we then observed that the predic-
tions of such models sometimes follow those of simpler models based on the continuous,
deterministic approximation.1 Accordingly, Chapters 11–13 then explored dynamical
systems in that approximation. Interesting phenomena such as bistability and oscillation
appeared when we introduced realistic nonlinearity into our rate equations.

Some of the nonlinear models we studied were related to disease outbreaks (Sec-
tion 12.3). One of them (the SIR model) displayed a line of �xed points, any of which was
a possible endpoint of an outbreak. Which of those endpoints is chosen for given initial
conditions, and hence the severity of the outbreak, depended sensitively on a system
parameter called the basic reproduction number, �0.

However, certainly many living systems of interest to us are not really huge collec-
tions of identical “molecules.” In this last Part of the book, we will see that qualitatively
new phenomena can appear when we combine nonlinearity with discreteness (and its
associated stochasticity). As always, living organisms have evolved to cope with, or even
bene�t from, such e�ects—sometimes to the detriment of other host organisms.
This chapter’s Focus Question is:
Biological question:Why do some outbreaks of a communicable illness spread explosively,
while others, in similar communities, �zzle after the �rst few cases?
Physical idea: A tiny subpopulation of superspreader individuals can introduce giant
variations in the course of an epidemic.

14.2 STOCHASTIC SIR MODEL

14.2.1 Some outbreaks fizzle out

Figure 12.4b depicts one traditional model of disease progression as a network diagram.
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Fig. 12.4b, p. 306After rescaling time, we expressed this physical model as a pair of ordinary di�erential

1See Idea 10.8 (page 246).
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368 Chapter 14 Demographic Variation in Epidemic Spread

equations:
d�
d�� = ��0��;

d�
d�� = (�0� � 1)�; � + � � 1. [12.7, page 307]

Here � is the fraction of the population in the susceptible state; � is the infective fraction; ��
is dimensionless rescaled time; and �0 (the basic reproduction number) is a constant. We
obtained these equations by making some assumptions:

� Total population size is �xed to some value �tot (no births, deaths, arrivals, or depar-
tures).

� Susceptible individuals make random encounters with all individuals, and each has
probability �0� per unit �� to become infected (and hence infective), where �0 is a
constant.

� Each infective individual has probability 1 per unit �� to recover permanently.
� Each subpopulation is large enough to use the continuous, deterministic approxima-
tion.

Each of the assumptions just listed can be criticized as an oversimpli�cation for any
particular illness and population. But certainly the last one is never valid at the start of
an outbreak, where just one or a handful of infectives are introduced into an otherwise
fully S population. It seems reasonable that some outbreaks will �zzle out, because there
is always a chance that the initial infective(s) will simply recover before they have a
chance to create any secondary infections. And yet, that behavior is not what we found in
Chapter 12. Because we took populations to be continuous variables, not integers, we can
consider arbitrarily low initial values of the infective population �(0), that is, initial states
that approach the lower right extreme on the phase portraits (Figure 12.5a). In that limit,
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Fig. 12.5b, p. 308

our trajectory’s endpoint approaches some de�nite point on the horizontal axis of the
�gure—not necessarily �(�) � 1, which would correspond to a failed outbreak. Indeed,
because the initial growth is exponential for small �, reducing �(0) by a factor of 1�e just
postpones the peak by an e-folding time, without changing its eventual height (maximum
of �) nor its endpoint (�(�)).

Conversely, the end of an outbreak also involves small numbers; unlike in the contin-
uous, deterministic approximation, a real outbreak can end completely as the number of
infectives makes a �nal drop from one to zero cases. In short, the discrete, random char-
acter of infection leads to new phenomena collectively called demographic variation.

14.2.2 Infections attributable to a single individual follow a Geometric
distribution in the SIR model

To model demographic variation, we now translate the verbal description in the preceding
section into a stochastic simulation, via the Gillespie direct algorithm.2 Suppose that at
some moment there are � susceptibles, � infectives, and hence�tot � � � � recovered indi-
viduals. The total probability per �� for any transition to occur is then �tot = ��(�0��tot)+�,
so we draw a waiting time from the appropriate Exponential distribution. We then decide
which class of event happened at the chosen time: The probability that one of the infec-
tives recovers is ���tot; otherwise, a susceptible gets infected. We make the appropriate
Bernoulli trial, then implement whatever happened by updating � and � and repeat.

Figure 14.1a shows the resulting simulated time courses for three runs, each of which
starts with �(0) = 3 sick individuals in a population of the same size as the one shown in
Figure 12.6. Comparing the two simulated results to each other, and to the data for the10 20 30 40

[weeks]0

250 /week

Fig. 12.6, p. 308
2Section 10.3.3 (page 244) introduced this approach.
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Figure 14.1: [Numerical simulations.] Stochastic SIR model. (a) Five typical time courses for the same model
as in Figure 12.6, but this time simulated via Gillespie’s direct algorithm. Thus, �0 = 2.2 in a community of size
2816 starting with three infected individuals. One of these outbreaks went extinct almost immediately (orange).
(b) Durations of 2000 simulated outbreaks in the same model.

measles outbreak, shows that in the improved treatment:

� Many outbreaks indeed �zzle out when we account for discreteness of populations
(Figure 14.1b).

� There is some randomness in the weekly case load when we account for stochasticity,
and it is roughly of the same magnitude as was observed in the real data.

� There is also some randomness in timing.
� But if an outbreak exceeds a threshold, its time course and overall severity are then
roughly as predicted by the continuous, deterministic approximation.

To gain more insight into the nature of this model, we can ask our simulation to
report a quantity that is di�cult to measure in the clinic: For each infected individual,
we ask, how many further infections are attributable to that individual? Of course the
answer is a random variable, so as usual we instead ask for the distribution of the attributed
infection count �inf . Near the start of an outbreak, the susceptible population has not
declined signi�cantly from its initial value of nearly 100%. An infective individual thus
has a constant probability per rescaled time to encounter and infect susceptibles (�0�
is approximately constant), so for the duration of the infective period, that individual
generates new infectives in a Poisson process. If the duration of each infection were
�xed, then Idea 9.6 (page 217) would then imply that the total number of new infectives
attributable to this individual would be Poisson distributed.

However, in this model the duration of each infection is itself a random variable;
indeed, it is Exponentially distributed because we assumed constant probability per time
to recover. So really, �inf follows amixture of Poisson distributions.3 You found in Prob-
lem 5.23 that the net e�ect is that the quantity 1 + �inf is predicted to be Geometrically
distributed. Extracting this information from our simulation indeed con�rms that expec-
tation (Figure 14.2b).

3Section 5.2.5 (page 106) introduced this notion.
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Figure 14.2: [Numerical simulations.] Stochastic SIR model with �0 = 1.3. (a) Seven representative time courses,
of which three went extinct almost immediately. The total population is again 2816, and again initially three indi-
viduals are infected. (b) Stars: Semilog histogram of the number of infections attributable to a particular infective
early in the outbreak, based on 2000 simulated outbreaks. The sample mean is 1.8; the estimated variance is 4.3,
in rough agreement with a Geometric distribution. Dots: A Geometric distribution with the same expectation, for
comparison.

14.3 SUPERSPREADING VIA OVERDISPERSION

14.3.1 For some illnesses, infectivity is heterogeneous

The preceding section outlined a way to improve the realism of the SIR model. But some
pandemics, for example SARS COV-1 in the 2000s, were found to be poorly described
with models of this type. Certainly there are many idealizations implicit in our model. For
example, some illnesses have a latent “exposed” state between contact with an infective
and the onset of infectiousness. Individuals also have varying social networks, varying
geographic mobility, and a host of other confounding factors. Introducing any such e�ects
into a model also introduces new unknown parameters that must be �t to data (reducing
predictive power) or else measured somehow (not always possible). Of all the many
improvements we might entertain, which one should we try �rst?

One big clue came when contact tracing data became available for SARS COV-1.
Figure 14.3a shows that the distribution of new infections attributable to one individual
(�inf ) looks nothing like a Geometric distribution.4 Instead, P�inf has a long tail: A small
fraction of the population are superspreaders. One way to quantify this statement is to
note that5

var =
�
�inf

��
1 +

�
�inf

��
.

For an outbreak of SARS COV-1 in Singapore, the data in Figure 14.3a gave
�
�inf

�
� 0.9

with estimated variance � 16, so the distribution was far from being Geometric.6 Later,

4It looks even less like a Poisson distribution, which we would predict if each recovery took exactly the same
time.
5Page 57 expresses expectation and variance of any Geometric distribution in terms of a common parameter �.
Eliminating �, and recalling that �inf + 1 is Geometrically distributed, establishes this relationship.
6These numbers are likely underestimates due to incomplete contact tracing. A Poisson distribution would have
to have var =

�
�inf

�
(Chapter 4), which is even further from observed values.
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Figure 14.3: Evidence for variation in individual reproductive number. (a) [Public health data.] Stars: Trans-
mission data from the SARS COV-1 outbreak in Singapore in 2003. This semilog plot shows the observed fre-
quency of the number of individuals infected by each case. [Data from Leo et al., 2003; see also Dataset 22.] The line
shows an imagined Geometric distribution for comparison. (b) [Network diagram.] Model accounting for super-
spreaders. A small fraction of new infections are highly infective.

in 2020 the SARS COV-2 virus was also found to be characterized by an “overdispersed”
distribution of �inf .

What is the origin of this distribution’s long tail?

� Intrinsic variability of infectivity: Certainly some infected persons sneeze more than
others (for example, due to another co-infection). Also, infectivity may be dependent
on an individual’s age, general health, and so on.

� Variability of contacts: Some choose to go to crowded places, are required to do so for
their work, or are con�ned to nursing homes or prisons.

� Variability of behavior: Some attend events where they and others shout or sing. On
the other hand, some persons use better public health practices, knowing that they
may be infective but not yet (or not ever) symptomatic.

It would be a nightmare to try to model every one of these population heterogeneities
mathematically. But we can already reap important insights just by exploring the simplest
possible realization of the idea of superspreaders.

14.3.2 Even a tiny minority of superspreaders has a big impact

Figure 14.3b shows an extension of the SIR model with two classes of infectives. Each
infection event randomly assigns an individual, usually to the regular bin (small �0) but
occasionally to the superspreader bin (big �0). For illustration we assume that just 2% of
cases are superspreaders, but their value of �0 is 20 times greater than the other group’s.

Figure 14.4a shows that the tiny minority of superspreaders has profound e�ects on
the courses of outbreaks, which are much more severe, and more variable, than in the
original SIR model.
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Figure 14.4: [Computer simulations.] E�ect of superspreaders. Results from the model represented by Fig-
ure 14.3b. All parameters are the same as in Figure 14.2 except that two percent had �0 = 25, as suggested by
Figure 14.3a. (a) Seven representative time courses, of which 4 went extinct almost immediately. The tiny minor-
ity of superspreaders greatly increased both the mean size and the variability of successful outbreaks. (b) Stars:
Semilog histogram of the number of infections attributable to a particular infective early in the outbreak. The Ge-
ometric distribution arising in the SIR model (Figure 14.2b) has now been replaced by something with a much
longer tail. The sample mean is 2.6; the estimated variance is 100. Epidemiologists sometimes model the corre-
sponding data from a real population by using a family of distributions called Negative Binomial; the one shown
here as dots was chosen to have the same expectation and variance as the simulation data.

THE BIG PICTURE

We have found that because outbreaks always begin with just one or a few infective
individuals, the discrete, stochastic character of transmission has a large e�ect on outbreak
dynamics. Thus, a community that is lucky to get only a mild outbreak in the �rst instance
must not become complacent, imagining themselves to be somehow protected: Always
some outbreaks �zzle, but any such instance is just as likely to be followed by a severe
outbreak on a later introduction as in any other community.

There are many ways to improve the realism of the SIR model, but we focused on
just one: the well documented fact that some illnesses have superspreader individuals.
The implications are profound. Although Figure 14.4a is frightening, the fact is that such
time courses can be replaced by the milder ones in Figure 14.2 by promptly identifying
and quarantining just a few percent of the infected population. For example, backward
contact tracing seeks to identify contacts of each sick individual who may have been the
source of that person’s infection. When multiple backward trails point to the same person,
that person may be a superspreader.

KEY FORMULAS

[Not ready yet.]
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FURTHER READING

Semipopular:
Kucharski, 2020.
Tufekci, 2020=

www.theatlantic.com/health/archive/2020/09/k-overlooked-variable-driving-pandemic/616548/ .

Intermediate:
Allen, 2011; Rock et al., 2014; Andersson & Britton, 2000.

Technical:
Superspreaders: Lloyd-Smith et al., 2005; Laxminarayan et al., 2020; Adam et al., 2020.
Maximum likelihood estimation of overdispersion: Lloyd-Smith, 2007.
Epidemic modeling on a network: Miller & Ting, 2019.
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PROBLEMS

14.1 .
[Not ready yet.]

14.2 .
[Not ready yet.]

14.3 .
[Not ready yet.]

14.4 Peak rate distribution
Implement the stochastic SIR model via Gillespie’s direct algorithm, using parameter
values �0 = 1.5, � = 1�(20 ���). One key descriptor of an outbreak is the peak rate � of
new cases, that is, the highest value in any one week of �(�)� �(�� 1����). This quantity
determines whether health-care facilities will become overloaded. It is a random variable,
so its distribution P(�) is of interest.

Run your simulation many times, always starting with 2 infective individuals, zero
recovered, and 2814 susceptible. There will be many events, occurring at an ascending
sequence of randomly chosen times �� . Simulate enough such steps to always catch the
peak of each simulated outbreak.
a. Make graphs showing the number of infected individuals �� versus �� for three simulated

outbreaks.
b. Extend your code to do more after each run is �nished: For each integer �, have your

computer�nd the step number �� at which ����(7 ���) passes �. Then�nd the di�erences
�� = ����1 � ��� , which give the number of new infections in week �. The largest of
these �� values is an instance of �, so save it. Then start the next new run.
After you have enough runs, estimate P(�).

c. T2 Create an animation of a 3-bar chart, showing S, I, and R populations versus
(actual) time for a single representative run in the �rst model (SIR).

14.5 Peak rate distribution, II
First work Problem 14.4, then modify it as follows:

� Implement the model outlined in Section 14.3.2, with parameter values

�0 = 1.5 for 98% of new infections or 25 for the other 2% .

Again use � = 1�(20 ���), and always start with 2 infective individuals (neither of
whom is a superspreader), zero recovered, and 2814 susceptible. As in the preceding
question, estimate the distribution of peak caseloads P(�). Compare/contrast with
the corresponding result of the SIR model (preceding question).

� T2 Create an animation of a 4-bar chart, showing S, I1, I2, and R populations versus
(real) time for a single representative run in the second model. If you see qualitatively
new behavior in this presentation, describe it.

14.6 [Not ready yet.]... Dataset 22
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