
The Case for Reconfigurable Components with Logic Scrubbing:
Regular Hygiene Keeps Logic FIT (low)

André DeHon
Department of Electrical and Systems Engineering

University of Pennsylvania
200 S. 33rd St., Philadelphia, PA 19104

andre@computer.org

Abstract

As we approach atomic-scale logic, we must accommo-
date an increased rate of manufacturing defects, transient
upsets, and in-field persistent failures. High defect rates
demand reconfiguration to avoid defective components, and
transient upsets demand online error detection to catch fail-
ures. Combining these techniques we can detect in-field
persistent failures when they occur and reconfigure around
them. However, since failures may be logically masked for
long periods of time, persistent failures may accumulate
silently; this integration of errors over time means the ef-
fective failure rate for persistent errors can exceed transient
upset rates. As a result, logic scrubbing is necessary to pre-
vent the silent accumulation of an undetectable number of
persistent errors. We provide simple analysis to illustrate
quantitatively how this phenomena can be a concern.

1. Introduction

Continued feature scaling means our devices and wires
are made of fewer atoms, increasing their fragility. We are
approaching an inflection point where we can no longer
overstress devices to force weak devices to fail before the
component is integrated into an end system. This means
many weak devices will turn into defects during operation
[2]. Borkar suggests that by 2016 it may not be unreason-
able to anticipate that 10% of the transistors in a component
will become unusable during its operational lifetime [1].

Continued scaling also means higher defect rates and
transient upset rates. High device defect rates (e.g. 1–20%)
mean we cannot expect the billions of non-memory devices
on a component to all yield perfectly, demanding some form
of reconfiguration (e.g. [5, 3]). High transient upset rates
demand continuous self-checking (e.g. concurrent-error de-
tection) and recovery (e.g. rollback and retry, voting).

When a device has a persistent failure during the opera-
tional lifetime, we call it a lifetime failure to distinguish it
from transient upsets. Continuous self-checking will detect
lifetime failures. If a rollback-and-retry recovery works,
then the system knows the failure was transient; when it
fails, the system can identify the failure as a lifetime failure
rather than a transient. With spare capacity, the systems can
reconfigure to avoid the newly failed device.

This strategy suggests that the mechanisms necessary to
mitigate against transient upsets and manufacturing defects
may already be sufficient to mitigate against lifetime fail-
ures. The finite number of devices on a chip imply that
viable lifetime failure rates are bounded. Using Borkar’s
example, if 10% of the 100 Billion transistors on a device
fail over a 10 year lifetime, this implies one new transistor
defect every 3 × 108s/

(
1011 × 0.10

)
≈ 30 ms. Operating

at 10GHz the probability that a logic device fails in a given
cycle is 0.1/

(
3× 108s× 1010cycles/s

)
= 3.3× 10−20.

When the transient upset rate is above the lifetime fault
manifestation rate, we might conclude that we do not need
any further mechanisms to protect against undetected errors
due to lifetime faults. However, transient upsets and life-
time faults are different in an important way. Logical mask-
ing of errors serves to reduce the effective transient upset
rate, while it allows lifetime faults to accumulate over time
(Section 3). This demands a different analysis (Section 4)
to assess the impact of lifetime faults and may demand ad-
ditional mitigation mechanisms (e.g. scrubbing (Section 6))
to avoid having silent data corruption (SDC) from lifetime
faults drive the overall device reliability (FIT rate).

The goals and contributions of this paper are to:
• Articulate how lifetime faults differ from transients with

respect to continuous online detection.
• Provide simple, first-order analytical calculations to

capture the effects of lifetime faults.
• Highlight scenarios where it is necessary to guarantee

frequent path sensitization to maintain high reliability.

IEEE International Workshop on Design and Test of Nano Devices, Circuits and Systems

978-0-7695-3379-7/08 $25.00 © 2008 IEEE

DOI 10.1109/NDCS.2008.17

67

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2008 at 10:33 from IEEE Xplore. Restrictions apply.

1

0
1

0
1

0

0

1

1

1

1

1

1

1 Upset of
unsensitized
logic node

0

0

Sensitized path
 shown bold

Figure 1. Node upsets that are not sensitized
by the current input vector are masked and
do not propagate to the observable outputs.

We show cases where the per device per cycle lifetime fail-
ure rate is below the transient upset rate, but the FIT rate
due to lifetime failures is orders of magnitude higher than
the FIT rate due to transient upsets.

2. Background

Related Work Scherrer and Steininger addressed the is-
sue of “dormant” faults at a higher level of abstraction in
[10], similarly establishing the high impact that infrequently
exercised logic can have on system reliability and the need
for online test. The analysis here is performed at the gate
level in the context of fine-grained reconfigurability, and the
models relate FIT rate to system size.

System Context While the phenomenon addressed by
this paper is very general, we consider a specific system
model to simplify discussion and concretely illustrate the
concepts. We assume a fine-grained reconfigurable sub-
strate such as the nanoPLA [4] which can easily deal with
individual crosspoint and wire defects in the 10% range us-
ing matching [5]. Logic is decomposed into small blocks,
duplicated, and compared at the bit level to detect tran-
sient upsets or lifetime failures [8]; streaming buffers sep-
arate computational blocks and facilitate rollback and retry
once an error has been detected. A watchdog circuit counts
rollbacks and invokes diagnosis and reconfiguration repair
when too many rollbacks occur. Alternate detection mech-
anisms (e.g. end-to-end integrity checks, arithmetic self
checking) can be less expensive than duplication and will
be preferable for particular design implementations, but
each requires separate detailed analysis which is beyond the
scope of this short paper.

3. Logic Masking

An upset along a circuit path which is not sensitized by
the current set of inputs (See Fig. 1) does not propagate to
the output and is not observable. We say such upsets are

logically masked by the input vector. Even if a transient
upset propagates to an output or latch, it may not impact the
outcome of a computation—e.g. errors in branch-prediction
logic do not impact the results computed by a processor.

Computing the upset rate without accounting for mask-
ing is highly conservative. E.g., if the sensitized path is
only 10% of the circuit, the observable failure rate is one
tenth the raw gate upset rate. Coupled with bit errors that
do not actually impact the computation, this has led to the
development of an Architecture Vulnerability Factor (AVF)
for processors [7]. AVFs can be below 10% (e.g. [11]).

If the failure is a lifetime fault rather than a transient, the
gate continues to compute erroneous values after the ini-
tial manifestation. In the simplest cases, the lifetime fault
may appear as a new stuck-at fault. If a path effected by
the fault is soon sensitized by a subsequent input vector,
the error is observable and can trigger correction. How-
ever, if the lifetime fault occurs on an infrequently sensi-
tized path, the fault may stay around unnoticed in the cir-
cuit for a long period of time. During this period of time, the
circuit may accumulate other non-sensitized, persistent fail-
ures. Of concern are the accumulation of a complementary
set of persistent errors that prevent detection. For exam-
ple, in the duplication scheme, two gates serving the same
role in each of the replicas may fail during a long period
of non-sensitization; when they are subsequently sensitized
the comparison fails to detect the fault since both copies
report the same erroneous value. Duplication may be ad-
equate for transients because the probability of such a si-
multaneous failure on a single cycle is very small; however,
when we integrate failures over a large number of cycles,
the probability that our observation occurs at a time when
complementary errors occur is much higher.

4. Analysis and Quantification

We start by looking at a single gate and its duplicate. If
these two gates fail simultaneously, then we have an unde-
tected error (SDC). Starting with the transient case, we as-
sume a raw, gate-level transient upset rate of Ptu and a gate
sensitization probability of Ps. This gate pair contributes an
undetected error when it is sensitized and both replicas fail:

Ptransient sdc = Ps × (Ptu)2 (1)

In the lifetime case, we assume a raw, gate-level lifetime
fault rate Plf . The gate pair fails if the path is sensitized
and both gates either fail on this cycle or have failed since
the last sensitization event:

Plt sdc = Ps × (Plf + Pf unsensitized)
2 (2)

Eq. 2 requires we compute the probability that a gate fails
since it was last sensitized. That occurs if the gate failed

68

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2008 at 10:33 from IEEE Xplore. Restrictions apply.

on any of the previous non-sensitized cycles, and can be
computed by summing up the probability that the gate was
not sensitized for at least m cycles and failed m cycles ago.

Pf unsensitized =
∞∑

m=1

(
(1− Ps)mPlf (1− Plf)(m−1)

)
Assuming Plf very small (e.g. Plf < 10−19 noted in the
introduction), (1− Plf) ≈ 1 and the equation reduces to:

Pf unsensitized = Plf ×
∞∑

m=1

((1− Ps)m) (3)

Since
∑

m=0 (a0 × rm) =
(

a0
1−r

)
:

Pf unsensitized = Plf×
(

(1− Ps)
1− (1− Ps)

)
= Plf

(
1
Ps
− 1

)
Substituting this into Eq. 2, we get:

Plt sdc = Ps × (Plf)2 ×
(

1 +
1
Ps
− 1

)2

=
(Plf)2

Ps
(4)

Comparing Eqs. 4 and 1, this supports the qualitative ar-
gument that logical masking effects these two cases in op-
posite ways. If our gate is sensitized 10% of the time
(Ps = 0.1), then the masking effect reduces the probabil-
ity of an undetected transient error by 10× while increasing
the probability of an undetected lifetime failure by 10×. If
Plf = Ptu, the FIT rate due to lifetime failures would be
(Ps)

−2 higher; that is, 100× when Ps = 0.1.
Across an entire chip, the chip has an undetected error

if any of the observable output bits has an undetected error.
Roughly, we can sum up the FIT rate for the observable bits.
There are several technicalities this raises:
1. The sensitization probability differs from gate to gate.
2. The gates are sensitized in correlated ways.
3. In addition to joint failure of the exactly corresponding

gates in the replicas, undetected failures can arise from
(i) complementary failures along the sensitized paths
which drive the observable output to the same value or
(ii) an error in one replica and the comparison logic.

The first demands that we work with a per gate sensitization
probability. All three mean that the detailed netlist logical
structure will be necessary to perform an accurate calcula-
tion. Without examining logic structure, we can compute
upper and lower bounds on the FIT rate.

We compute an optimistic lower bound assuming that the
paired gate failures in the previous section dominate failure:

FITlt chip =
∑

all gates g

(
FITltg

)
(5)

Here we compute the gate FIT, FITltg :

FITltg = 109hrs× 3600s/hr× 1s
Tcycle

× Plt sdc

To compute a conservative upper bound, we might as-
sume that any second gate failing in the sensitized cone of
the replica logic or the comparison logic would lead to a
failure. Roughly, this means that instead of Eq. 2 we have:

Plt sdc = Ps ×
(n + c)

2
(Plf + Pf unsensitized)

2

Here n is the number of gates in the sensitized cone and c is
the number of gates in the checker. The factor of 2 avoids
double counting gates. In [8], n is 10–100 and c < 10, so
the conservative upper bound will be an order of magnitude
or two higher than the optimistic lower bound above.

Finally, we quantify the implications for the 2016 com-
ponent with 10 Billion logic transistors and a 10GHz clock.
Starting with the case of homogeneous sensitization rates.

FITlt chip = 1010 × 3.6× 1012s× 1010/s× (Plf)2

Ps

Assuming that 10% of the transistors will fail over a 10 year
operational lifetime, we have Plf = 3.3× 10−20.

FITlt chip = 3.6×1032×1.1×10−39

(
1
Ps

)
=

4× 10−7

Ps

This provides us one FIT or lower as long as Ps > 4×10−7

based on our optimistic lower bound; this might be Ps >
10−5 with a more conservative or precise calculation. For
10GHz operation, Ps > 4× 10−7 means every device must
be exercised at least once every quarter of a millisecond.

However, all we need is a few devices with lower sen-
sitization rates to increase the FIT rate substantially. If we
have only 10,000 devices which where were sensitized only
once a day, we would have FITlt chip ≥ 3600.

Since path sensitization is data dependent, it is difficult to
reason about how small Ps can be or guarantee it will have
any bound. Since Ps can be arbitrarily small, the FIT rates
for lifetime failures can be arbitrarily worse than transient
upsets even for the same Ptu = Plf .

5. Infrequently Sensitized Checkers

In our replicate-and-check scenario, the failure path for
the checkers is infrequently exercised such that it can drive
up the component FIT rate. This provides a concrete exam-
ple which demonstrates small Ps’s are not implausible.

In the presence of lifetime failures, we must, at least,
duplicate the comparison logic to avoid a single point of
failure. If the checker fails such that it is always signaling a

69

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2008 at 10:33 from IEEE Xplore. Restrictions apply.

valid match between the replicas, it will not correctly detect
when a mismatch occurs. In the transient case, the only
single-fault case for the checker was a false positive—the
checker signals a mismatch when there is no mismatch.

Nonetheless, even with the dual checkers, the mismatch
path is infrequently activated. If the fanin cone for the logic
in each replica being checked contains n gates, then the
probability of a mismatch is no larger than:

Psmismatch
= Ps × 2n× Ptu (6)

That is, we get a mismatch when one of the sensitize gates in
either replica is upset. Using n = 100 and assuming Ps = 1
as the best case scenario representing the most frequent ex-
ercise of the mismatch case and considering Ptu = 10−18,
a transient error rate which can be tolerated using duplica-
tion and checking [8], we get Psmismatch

= 2× 10−16. The
checkers for this scenario are likely to make up 1–10% of
the logic. Here we assume 1% to represent a minimal case.
For a 10 Billion transistor logic design, this means 100 Mil-
lion transistors are in the checkers.

FITlt chk = 108×3.6×1022×1.1×10−39×1016

2
= 2×107

This is, of course, an unacceptably large FIT rate. From this
example we can see that even if we assumed the checkers
composed 2–3 orders of magnitude fewer components or
that blocks were 2–3 orders of magnitude larger, we would
still have an unacceptably large FIT rate.

Good system design attempts to make the error and ex-
ception cases uncommon. As a result, error cases naturally
have low sensitization (Ps). This checker example illus-
trates that if we do not make sure they are exercised fre-
quently, when lifetime faults are probable, these infrequent
error paths could drive unacceptable component FIT rates.

6. Scrubbing

Guaranteeing that all paths are sensitized at some min-
imum rate can be a challenging requirement to place on a
design and to verify, especially when path sensitization is
data dependent. The straightforward solution is to design
in a periodic hygiene routine to guarantee that all paths are
sensitized regularly—that is, some form of periodic test or
scrubbing of the logic. Logic scrubbing is needed for ex-
actly the same reason we need to scrub memory words in
DRAM [9]—since data access is data depenedent, we can-
not guarantee that simply correcting data when it is accessed
will be sufficient to prevent the accumulation of an uncor-
rectable (undetectable) number of errors. Many techniques
have already been proposed for online, periodic self test
(e.g. [6]), and this analysis underscores why such testing
is valuable. Nonetheless, efficiently sensitizing 10 Billion
logic transistor designs every 0.25 ms will likely demand
more extreme techniques than previously proposed.

7. Conclusions

Logic masking effects lifetime failures and transient up-
sets in a different way. Lifetime failure protection can share
some mechanism with transient protection, but the different
impact of masking requires separate treatment. Particularly,
a mechanism is needed to guarantee frequent sensitization
to prevent the accumulation of errors which may result in
silent data corruption. Logic scrubbing is the most general-
purpose solution to mitigate this potential problem.

8. Acknowledgements

This research was funded by National Science Founda-
tion grants CCF-0403674 and CCF-0726602. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

References

[1] S. Borkar. Microarchitecture and design challenges for gi-
gascale integration. <http://www.microarch.org/
micro37/presentations/MICRO37f>, December
2004. Keynote talk Int. Symp. on Microarchitecture.

[2] S. Borkar. Designing reliable systems from unreliable com-
ponents: the challenges of transistor variability and degrada-
tion. IEEE Micro, 25(6):10–16, November–December 2005.

[3] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and
G. Snider. Defect tolerance on the TERAMAC custom com-
puter. In FCCM, pages 116–123, April 1997.

[4] A. DeHon. Nanowire-Based Programmable Architectures.
ACM J. Emerg. Technol. Comput. Syst., 1(2):109–162, 2005.

[5] A. DeHon and H. Naeimi. Seven Strategies for Tolerating
Highly Defective Fabrication. IEEE Des. Test. Comput.,
22(4):306–315, July–August 2005.

[6] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici. Dy-
namic fault tolerance in FPGAs via partial reconfiguration.
In FCCM, pages 165–174, 2000.

[7] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt,
and T. Austin. Measuring architectural vulnerability factors.
IEEE Micro, 23(6):70–75, November–December 2003.

[8] H. Naeimi and A. DeHon. Fault-Tolerant Sub-lithographic
Design with Rollback Recovery. Nanotechnology, 19(11),
March 19 2008.

[9] A. Saleh, J. Serrano, and J. Patel. Reliability of scrubbing
recovery-techniques for memory systems. IEEE Trans. Rel.,
39(1):114–122, 1990.

[10] C. Scherrer and A. Steininger. Dealing with dormant faults
in an embedded fault-tolerant computer system. IEEE Trans.
Rel., 52(4):512–522, December 2003.

[11] N. J. Want, J. Quek, T. M. Rafacz, and S. J. Patel. Charac-
terizing the effects of transient faults on a high-performance
processor pipeline. In Proc. Intl. Conf. Dependable Sys. and
Nets, pages 61–70, 2004.

70

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 11, 2008 at 10:33 from IEEE Xplore. Restrictions apply.

