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ABSTRACT

LATENCY, EXPRESSION AND SPLICING DURING INFECTION WITH HIV

Scott Sherrill-Mix

Frederic D. Bushman, Ph.D.

Over 35 million people are living with human immunodeficiency virus (HIV-1). The

mechanisms causing integrated provirus to become latent, the diversity of spliced viral

transcripts and the cellular response to infection are not fully characterized and hinder the

eradication of HIV-1. We applied high-throughput sequencing to investigate the effects of

host chromatin on proviral latency and variation of expression and splicing in both the host

and virus during infection.

To evaluate the link between host chromatin and proviral latency, we compared genomic and

epigenetic features to HIV-1 integration site data for latent and active provirus from five cell

culture models. Latency was associated with chromosomal position within individual models.

However, no shared mechanisms of latency were observed between cell culture models. These

differences suggest that cell culture models may not completely reflect latency in patients.

We carried out two studies to explore mRNA populations during HIV infection. Single-

molecule amplification and sequencing revealed that the clinical isolate HIV89.6 produces at

least 109 different spliced mRNAs. Viral message populations differed between cell types,

between human donors and longitudinally during infection. We then sequenced mRNA

from control and HIV89.6-infected primary human T cells. Over 17 percent of cellular genes

showed altered activity associated with infection. These gene expression patterns differed

from HIV infection in cell lines but paralleled infections in primary cells. Infection with

HIV89.6 increased intron retention in cellular genes and abundance of RNA from human

endogenous retroviruses. We also quantified the frequency and location of chimeric HIV-host

RNAs. These two studies together provided a detailed accounting of both HIV89.6 and host
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expression and alternative splicing.

A more cost-effective method of detecting viral load would aid patients with poor access to

healthcare. We developed improved methods for assaying HIV-1 RNA using loop-mediated

isothermal amplification based on primers targeting regions of the HIV-1 genome conserved

across subtypes. Combined with lab-on-a-chip technology, these techniques allow quantitative

measurements of viral load in a point-of-care device targeted to resource-limited settings.

This work disclosed novel HIV-host interactions and developed techniques and knowledge

that will aid in the study and management of HIV-1 infection.
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CHAPTER 1: Introduction

1.1 The HIV epidemic

In 1981, physicians began to notice a mysterious increase, often clustered in men who

had sex with men or intravenous drug users, in the occurrences of Kaposi’s sarcoma and

pneumocystis pneumonia1–6.

Kaposi’s sarcoma was, until 1981, a rare cancer in the US found largely in elderly men with

Jewish or Mediterranean ancestry7. Kaposi’s sarcoma had also been seen in immunocom-

promised individuals8–10 and there were suggestions that it was a virus-associated cancer11

although the causative human herpesvirus would not be discovered for another decade12,13.

Pneumocystis pneumonia was known to be caused by infection of the alveoli with the yeast-

like fungus Pneumocystis jirovecii 14,15. Pneumocystis pneumonia was almost exclusively

seen in patients with suppressed immune systems or immune disorders and rarely, if ever, in

immunocompetent individuals15.

The mechanism for this spike of opportunistic infections was clarified when researchers found

severe T cells depletion and decreases in cellular immunity in these patients4–6,16,17. This

disease was eventually labeled acquired immunodeficiency syndrome (AIDS). However, the

underlying cause remained unclear.

Potential transmissions by transfusion18–20, injection drug use4,17,21, maternal transmission22

and both homosexual16,23 and heterosexual17,24 contact pointed towards an infectious agent.

In 1983, a virus later named human immunodeficiency virus type 1 (HIV-1) was isolated

from patient samples25–28 and soon detected in most immunodeficient patients28–31.

Reports of AIDS and associated opportunistic infections in sub-Saharan Africa soon revealed

widespread endemic infection32–35 and a great diversity of viruses36–41. Retrospective studies

suggested that the virus had been present, at least sporadically, in Europe and the USA

for decades42,43 and circulating for even longer in Africa33,44–48. Archived patient samples
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containing HIV-1 genome fragments from as early as 1959 were found in what is now

Kinshasa, in the Democratic Republic of Congo46. These samples showed extensive genome

diversification already present in the 1960s, suggesting that HIV-1 had been circulating in

humans for some time47,48. Phylogenetic analyses adding in contemporary HIV-1 type M

sequences estimated a most recent common ancestor in the early 1900s48–53.

A virus similar to HIV causing AIDS in monkeys was soon discovered in macaques54,55 and

many other primates56. HIV-1 appeared most similar to a virus found in chimpanzees55,57

and surveys of wild chimpanzees in Africa revealed a closely related simian immunodeficiency

virus infecting chimpanzees in central Africa58–60.

Thus, the ancestor of HIV-1 was likely transmitted from a chimpanzee to a human, likely

during harvest of chimpanzees for food61–66, in the forests of southeastern Cameroon.

The virus was probably transported down the Sangha River67 to the city of Kinshasha,

where HIV-1 began its global spread38,48,53,68. A combination of social upheaval, increased

mobility, urbanization and mass vaccination campaigns with unsterilized needles appear to

have provided fuel for the growing epidemic53,69–71. A virus appears to have been carried

from Africa to Haiti in the 1960s, perhaps by workers returning home from an exchange

program35,68, and then into the US in the 1970s72 before being detected in the US in 1981.

In the past 34 years, HIV-1 has spread to over 78 million people and caused over 35 million

deaths73.

In the early days of the epidemic, there were no tests to detect the virus, and no treatments.

The presence of the virus was often revealed by the onset of AIDS. Opportunistic infections74

and death usually followed soon after. The median survival time after diagnosis with AIDS

was about 1 year75,76.

Isolation of the virus allowed the detection of HIV infection through assays of antibody

response to viral proteins. Testing revealed that patients had a median survival time of

around a decade from initial infection77–80.
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In 1987, the successful trial of the reverse transcriptase inhibitor azidothymidine provided

the first hope for treatment81–83 but it soon became apparent that the fast mutation rate of

HIV84–90 and strong selection by drug therapy could quickly create drug-resistant forms of

virus in patients receiving single drug therapy91–100. Even with therapy, median survival

time from AIDS diagnosis rose to only about 2 years76,82,101,102.

Additional antiretrovirals, again targeting reverse transcriptase, were developed103. Sequen-

tial or alternating administration of different antiretroviral drugs did not greatly improve

prognosis104–108. Simultaneous treatment with two reverse transcriptase inhibitor offered

modest benefits but viral escape was still common109–113.

Development of drugs targeting other stages of the HIV replication cycle allowed synergistic

combinations of antiretroviral drugs114–119. The difficulty for HIV to evolve multiple drug

resistant mutations120,121 meant that therapy using simultaneous combinations of drugs

finally began to offer patients more hope of long term survival122–126. With early triple

therapy, median survival time rose to 20 years79,127 and, with further development, now

approaches the life expectancy of control populations128–131.

However although antiretrovirals effectively suppress HIV, there is currently no practicable

cure132,133. If a patient, even a patient who had the virus suppressed to undetectable

levels for years, stops treatment, then virus abundance quickly rebounds to pretreatment

levels134–136.

Upon infection, latent HIV are quickly137,138 established in resting CD4+ T cells and

macrophages. These latent provirus are long-lived and resistant to therapy and immune

response139,140. Resting CD4+ cells have half-lives of up to 40 months141,142 meaning

significant proportions of HIV will remain latent for decades yet can be stimulated at any

time by activity in their host cell to reactivate and restart viral replication134–136,140,141,143,144.

Latently infected cells are one of the most significant barriers to curing HIV145. If the latent

proviruses could be induced into activity and their host cells eliminated then the virus might
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be eradicated from its host146–149. Cell models of latency are used to study this problem in

the lab150–152. In Chapter 2, we compare latent and active provirus among these cell models

to see if latency relates to the chromosomal position of integration and whether models

share the same drivers of latency.

1.2 The HIV virus

HIV is an enveloped, single-strand positive-sense retrovirus (Figure 1.1). To replicate, the

virion gains access into a host cell through cellular receptors153–160. The viral RNA genome

is reverse transcribed to create a DNA intermediate that is integrated into a host cell

chromosome161–164. Host polymerase then transcribes viral messenger RNAs which are

translated in the cytoplasm. Full length RNA is packaged into budding particles along with

expressed viral proteins and the virion buds from the cell.

The HIV genome encodes genes for at least two polyproteins and seven proteins:

Gag (group specific antigens) is a myristoylated membrane protein which is anchored on
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the virion surface and cleaved by viral protease after virion budding to produce matrix,

capsid, nucleocapsid and p6 protein along with two small spacer peptides SP1 and

SP2.

MA p17 (matrix) is a trimeric protein that supports the inside of the viral lipid bilayer

to stabilize the virion165. It also aids in transport of the genome to the nucleus

through a nuclear localization signal166 and in nuclear import in non-dividing

cells167.

CA p24 (capsid) proteins assemble to form a protective shell around the RNA genome

of the virus. The viral capsid is composed of around 1500 copies of CA arranged

into hexameric rings interspersed with 12 pentameric rings to form a fullerene

cone168–171. CA binds cellular CPSF6172, cyclophilin A173,174 and RanBP2175,

perhaps to gain access to the nucleus175,176 and to avoid premature uncoating

and exposure of the viral genome to innate immune factors177.

NC p7 (nucleocapsid) recognizes the ψ packaging element of the viral genome178

through two zinc-finger motifs and is packaged together with the RNA into

virions179.

p6 (protein 6 kDa) is a small protein which appears to primarily recruit cellular

proteins to allow virion budding from the cell membrane180–182 and aid in the

packaging of Vpr in to particles183.

Pol (polymerase) is cleaved by viral protease to produce reverse transcriptase, integrase

and HIV protease. The Pol protein is generated when a ribosome translating gag

meets a stem-loop in the HIV mRNA184, stutters and moves back a base, causing a

-1 nucleotide frameshift when it continues translation185. Translational frameshifting

happens in about 1
20 of translations186.

RT p51 (reverse transcriptase)187 generates DNA from an RNA template161,162.
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Retrovirus package two copies of RNA in each virion188–190. If two different virus

infect the same cell then interstrand transfer during the reverse transcription step

allows recombination between strains191–193. A lack of proofreading in the RT

step leads to the high mutation rate of around 2 × 10−5 mutations per base per

replication84–90.

IN p31 (integrase) is a dimeric enzyme which integrates the retroviral DNA into host

chromatin164,194–197. Integrase removes two nucleotides from from the 3′ ends of

the viral DNA and inserts the pair of viral ends into host DNA198.

PR (protease) is a dimeric aspartyl protease199 that cleaves viral polyproteins Gag

and Pol200,201.

Env gp160 (envelope) is a trimeric transmembrane protein that mediates entry through

fusion of viral and cellular membrane by binding its receptor CD4153–157 and coreceptors

CXCR4158, CCR3 or CCR5159,160. gp160 is cleaved into its active form, consisting of

two subunits gp41 and gp120202, by cellular furin protease203. The envelope protein is

highly glycosylated to form a mutable ‘glycan shield’ against host adaptive immune

response204. There are about 14 Env proteins per virion205. Env sequence is highly

variable within and between patients206,207 due to positive selection from host immune

recognition208–210.

Tat (trans-activator of transcription) protein is a transactivator of expression from the

HIV-1 long terminal repeat211–213. The virus does not replicate efficiently without this

transactivation214. Tat may also regulate cellular expression such as downregulation

of major histocompatibility complex type I expression215. Tat may suppress miRNA

silencing pathway216–218 but this remains controversial219.

Rev (regulator of expression of virion proteins) is a transactivator protein that shuttles

between the nucleus and cytoplasm220 and causes the export of partially spliced and

unspliced viral transcripts221–225 from the nucleus through the recognition of a rev
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response element226,227.

Nef (negative factor) is a myristoylated membrane-associated protein228 that is involved

in multiple functions. Nef causes endocytosis of the viral entry receptors CD4229–233

and CCR5234 and major histocompatibility complex molecules235–238. Nef also in-

duces T cell activation through interactions with signaling kinases and the T cell

receptor239–243. In contrast, Nef in most other primate lentiviruses inhibits activation

and inflammation244 perhaps indicating that the gain of vpu in HIV-1 and its simian

relatives allowed the loss of the immune inhibitory traits of nef and thus contributes

to the increased pathogenicity of these viruses245,246.

Vpr (viral protein R) is a 15 kDa protein247,248 with diverse functions. Vpr arrests the cell

in the G2 phase of the cell cycle249–253 and aids in transport of the viral genome to the

nucleus166. Vpr protein may disrupt nuclear membrane integrity253. Vpr also appears

to transactivate viral expression254,255 and induce apoptosis256,257 but these may be

linked to conditions caused by cell cycle arrest. Vpr is incorporated into virions258,259.

Vif (virion infectivity factor) counteracts the cellular restriction factor APOBEC3G260 by

excluding APOBEC3G from incorporation into the virion261 and causing APOBEC3G

to be ubiquitinated and degraded262–264. APOBEC3G is otherwise packaged into

virions265 and deaminates the HIV genome during reverse transcription causing G-to-A

hypermutation265–268.

Vpu (viral protein U)269,270 is a small integral membrane protein which has two known

functions; degradation of CD4 and downregulation of BST-2 from the cell membrane.

Vpu causes cellular CD4 to be ubiquitinated and degraded271,272 which prevents

interactions between progeny virus and host cell CD4 receptor232,233,273,274 and super-

infection by other viruses230 while also releasing Env proteins from CD4 interactions in

the endoplasmic reticulum275,276. Vpu also counteracts the cellular restriction factor

BST-2, which would otherwise interfere with viral budding277,278. Vpu does not appear
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to be found in the virion279.

A strong selective pressure for genome compactness280–282 pushes HIV and other lentiviruses

to subvert host cell alternative splicing pathways to allow tighter packing of their genetic

information. Through weak splice sites283 and overlapping reading frames (Figure 1.2), the

virus manages to produce regulated quantities of these nine proteins and polyproteins from

its single transcription start site and less than 10 kilobase genome284.

In HIV, splicing occurs between at least four splice donors and eight splice acceptors284.

Two splice donors, D1 and D4, are relatively strong while the remaining donors and all

acceptors are fairly weak285. The weak acceptors seem balanced with Rev’s nuclear export

activity283. Several exonic splicing silencers286,287 and exon splicing enhancers288,289 and a

single intronic splicing silencer290 in the viral genome interact with many human splicing

factors, including hnRNPs A1287,290 H, F, 2H9, and A2291 and SR proteins SRp40288,292,

SRp75292, ASF/SF2288 and SC35291, to alter viral splicing284,293.

In Chapter 3, we investigate viral splicing and reveal unappreciated splice sites, novel proteins
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and dynamic changes in viral splicing between human subjects, over time and between cell

types.

Inclusion and exclusion of a particular stretch of RNA into an mRNA is determined

by a balance of RNA secondary structure291,294,295, chromatin structure296, nucleosome

positioning297, histone marks298, previous splicings299, order of intron removal300,301 and

enhancers302 and suppressors303 that bind specific motifs304. Together these factors create

a controllable splicing code305–307.

Alternative splicing may also play an unappreciated role in HIV-host interactions. Viral

proteins interact with components of the cellular splicing complex308–310. These interactions

have been reported to change splicing in viral309,311,312 and cellular transcripts313,314 and

raise the possibility that the virus has evolved to alter host splicing. Although infection

has been shown to cause genome-wide changes in the expression of cellular genes315–319,

no genome-wide study of cellular alternative splicing during HIV infection has ever been

reported.

Several viral proteins affect mRNA abundances. Rev causes export of unspliced viral mRNA

that would otherwise be trapped in the nucleus320 to be exported321,322 and may also interact

with splicing factors to alter viral splicing308. The HIV protein Tat is best known for its trans-

activation of viral transcription211,323 and triggering apoptosis in uninfected cells324,325 but

Tat also appears to independently affect alternative splicing of viral transcripts309,311,312,326.

Viral protein Vpr is known to cause cell cycle arrest252 with corresponding changes in ex-

pression. Vpr also appears to alter alternative splicing of some cellular transcripts313,314 and

interact with the SMN complex310, which assembles spliceosomal snRNP327. Although all

three of these proteins modify viral splicing, whether they also cause widespread alterations

in cellular splicing is unknown.

HIV infection also appears to induce the expression of certain human endogenous retroviruses

(HERVs)328–333 and retrotransposons334. These HERV and retrotransposon mRNA and
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their translated proteins offer potential markers of infection and vaccine targets335–340 but

no genome-wide screen of the effects of HIV infection on the transcription of these elements

has been reported.

In Chapter 4, we investigate splicing and expression during HIV infection and report

global changes in intron retention and in the expression of endogenous retrovirus and

retrotransposons.

1.3 HIV detection

Immunoassays are the current standard of care for the detection of HIV infection. These

tests are based on the enzyme-linked immunosorbent assay (ELISA), using an enzyme linked

to an antibody to produce a detectable signal only in the presence of antigen341–343.

The isolation of HIV25–28 allowed the production of large quantities of virions that could

be used as antigen. These virions were bound to a substrate, sera from patients added and

any patients antibodies sensitive to HIV allowed to bind. Any unbound antibodies were

washed away. Then a peroxidase enzyme-labeled antibody targeted to human antibody was

added, allowed to bind and the unbound antibodies again washed away. Any HIV-targeted

patient antibodies would bind the antigen and be bound in turn by the peroxidase-labeled

antibody so that the peroxidase would change the color of media30,31,344. These tests had a

large false positive rate and the standard procedure was to perform multiple ELISA tests

follow by a Western blot test before informating patients345,346 but false positives were still

prevalent347. More conservative criteria and cleaner lab procedures reduced false positives348.

Four generations of development349 have resulted in more sensitive and specific detection of

patient antibodies along with earlier detection using antibodies directly able to detect the

HIV capsid protein350,351.

Rapid immunoassays with less specificity but able to provide results in 30 minutes have

been developed to allow point-of-care testing. Immediate results reduce patient stress and

reduces the number of patients lost to follow up prior to delivery of results352–354. Rapid
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tests detecting HIV in oral fluids have been developed and obviate the need for a blood

draw355–357 and allow self testing at home358,359.

Immunoassays provide robust and affordable point-of-care detection of HIV but no viable

point-of-care assays for viral load exist360. Existing laboratory-based tests are relatively

expensive and require specialized equipment making access difficult in resource-limited

settings361,362. Without viral load measures, CD4+ T cell counts or clinical presentation

are used to infer the emergence of viral drug resistance. These criteria are not specific nor

sensitive enough without viral load measures so many patients are unnecessarily switched to

second line therapy363,364 or switched too late leading to accumulations of drug resistant

mutations365. Medecins Sans Frontieres describe point-of-care viral load tests as “desperately

needed”360. In Chapter 5, we design loop-mediated isothermal amplification methods that

can be used with microfluidics to create a point-of-care assay viral load in resource-limited

settings.

1.4 Contributions

Much of this work was performed as part of a large collaboration. It would not tell a

complete story in isolation. Therefore, I have preserved the chapters in published form and

detailed my contribution to each project at the start of the chapter.
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CHAPTER 2: HIV latency and integration site placement in five

cell-based models

This chapter was originally published as:

S Sherrill-Mix, MK Lewinski, M Famiglietti, A Bosque,
N Malani, KE Ocwieja, CC Berry, D Looney, L Shan
et al. 2013. HIV latency and integration site place-
ment in five cell-based models. Retrovirology, 10:90. doi:
10.1186/1742-4690-10-90

I led the computational analysis, with assistance from CC Berry and N

Malani. MK Lewinski, D Looney and J Guatelli analyzed integration sites

using IonTorrent sequencing. M Famiglietti, A Bosque and V Planelles

prepared DNA from latent and activated T cells using the Central Memory

CD4 + model. L Shan, RF Siliciano, MJ Pace, LM Agosto, KE Ocwieja

and U O’Doherty contributed data and suggestions. FD Bushman and

I planned the overall study. I produced the figures. FD Bushman and I

wrote the paper.

Additional files are available at http://www.retrovirology.com/content/

10/1/90/additional

2.1 Abstract

Background: HIV infection can be treated effectively with antiretroviral agents, but the

persistence of a latent reservoir of integrated proviruses prevents eradication of HIV from

infected individuals. The chromosomal environment of integrated proviruses has been

proposed to influence HIV latency, but the determinants of transcriptional repression have

not been fully clarified, and it is unclear whether the same molecular mechanisms drive

latency in different cell culture models.

Results: Here we compare data from five different in vitro models of latency based on

primary human T cells or a T cell line. Cells were infected in vitro and separated into
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fractions containing proviruses that were either expressed or silent/inducible, and integration

site populations sequenced from each. We compared the locations of 6,252 expressed

proviruses to those of 6,184 silent/inducible proviruses with respect to 140 forms of genomic

annotation, many analyzed over chromosomal intervals of multiple lengths. A regularized

logistic regression model linking proviral expression status to genomic features revealed no

predictors of latency that performed better than chance, though several genomic features

were significantly associated with proviral expression in individual models. Proviruses in the

same chromosomal region did tend to share the same expressed or silent/inducible status if

they were from the same cell culture model, but not if they were from different models.

Conclusions: The silent/inducible phenotype appears to be associated with chromosomal

position, but the molecular basis is not fully clarified and may differ among in vitro models

of latency.

2.2 Background

Highly active antiretroviral therapy (HAART) can suppress HIV-1 replication in infected pa-

tients, but the ability of HIV to persist as an inducible reservoir of latent proviruses134,140,143

obstructs eradication of the virus and functional cure145. These latent proviruses are long

lived141,142 and relatively invisible to the immune system139,140. The potential for even a

single virus to restart infection despite successful antiviral therapy means that it may be

necessary to eliminate all latent proviruses to eradicate HIV from an infected person.

After integration, a positive feedback loop of Tat transactivation appears to partition

proviral gene activity into either of two stable states367–369—abundant Tat driving high

proviral expression or little Tat leading to quiescent latency. Similar to the positional effect

variegation observed in fruit fly chromosomal rearrangements370,371, studies on cell clones

with single integrations show that differing integration sites can have large differences in

proviral expression372–374. These data suggest that integration site location, along with the

cellular environment374–377, influences the balance between latency and proviral expression.
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Associations between latency and genomic features have also been reported in collections of

integration sites from cell culture models although the consistency of these effects across

model systems and their relationships to latency in patients remains uncertain. Lewinski

et al. 150 reported that proviruses integrated in gene deserts, alphoid repeats and highly

expressed genes are more likely to have low expression. Shan et al. 151 reported an association

between latency and integration in the same transcriptional orientation as host genes. Pace

et al. 152 found that silent and expressed provirus integration sites differed in the abundance

and expression levels of nearby genes, GC content, CpG islands and alphoid repeats. In

model systems with defined integration sites, Lenasi et al. 378 reported decreased and Han

et al. 379 reported increased viral transcription when the provirus is downstream of a highly

expressed host gene.

Cell-based models of latency are important for many aspects of HIV research, including

screening small molecules that can reverse latency and potentially allow eradication380,381.

Location-driven differences in expression are preserved even after demethylation and histone

deacetylase treatment372, which suggests that integration location has the potential to

confound “shock and kill” anti-latency treatments382,383. A greater understanding of the

effects of integration site location on latency could thus affect antiretroviral development.

To search for features of integration site associated with latency, we generated a set of

inducible and expressed integration sites using a primary central memory CD4+ T cell model

of latency384,385, collected four previously reported integration site datasets and modeled

the effects of genomic features near the integration site on the expression status of these

proviruses. Although some genomic features associated with latency in individual models,

no feature was consistently associated with proviral expression across all five cell culture

models. However, closely neighboring proviruses within the same cellular model shared the

same latency status much more often than expected by chance suggesting that chromosomal

position of integration affects latency but that the mechanism remains unclear or differs

between cell culture models. Thus these data help inform the design of experiments in HIV
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eradication research.

2.3 Methods

2.3.1 Integration sites

Naive CD4+ T cells were purified by negative selection from peripheral blood mononuclear

cells. The cells were activated with anti-CD3 and anti-CD28 (+TGF-beta, anti-IL-12, and

anti-IL-4) to generate “non-polarized” cells (the in vitro equivalent of central memory T

cells). Five days after isolation, cells were infected with an NL4-3-based virus with GFP in

place of Nef and the LAI envelope (X4) provided in trans at a concentration of 500 ng of

p24 as measured by ELISA per million cells. Based on previous experience with this model,

this amount of p24 should produce an MOI of approximately 0.15. Cells were cultured

in the presence of IL-2. Two days post-infection, cells were sorted for GFP+; this active

population expresses GFP even when treated with flavopiridol, although for this study they

were not treated. The inducible population was the set of GFP negative cells from the initial

sort that, 9 days post-infection, were activated with anti-CD3 and anti-CD28 and sorted for

GFP production.

Genomic DNA from the inducible and expressed populations was digested with MseI, ligated

to an adapter, and amplified by ligation-mediated PCR essentially as in Wu et al. 386 and

Mitchell et al. 387 except that the nested PCR primers included sequence for the Ion Torrent

P1 adapter and adapter A sequence with a 5 base barcode sequence specific to the inducible

or expressed conditions. Amplicons were sequenced using an Ion Torrent Personal Genome

Machine (PGM) according to manufacturer’s instructions using an Ion 316 chip and the Ion

PGM 200 Sequencing kit (Life Technologies). The sequence reads were sorted into samples

by barcode. All reads were required to match the expected 5′ sequence with a Levenshtein

edit distance less than 3 from the expected barcode, 5′ primer and HIV long terminal repeat

(LTR). The 5′ primer and HIV sequence, along with the 3′ primer if present, were trimmed

from the read. Sequences with less than 24 bases remaining or containing any eight base
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window with an average quality less than 15 were discarded. Duplicate reads and reads

forming an exact substring of a longer read were removed.

2.3.2 Analysis

All statistical analysis was performed in R 2.15.2388. The analyses are described in a

reproducible report (Appendix A.2). The annotated integration site data necessary to

perform the analyses and the compilable code to generate this reproducible report are

provided as supplemental information366. The new Central Memory CD4+ data set was

analyzed as in Berry et al. 389 . The integration patterns appeared similar to previously

reported HIV integration site datasets390.

2.3.3 Previously published data

We collected integration sites from three previously reported studies (Table 2.1), for a total

of four expressed versus silent/inducible pairs of samples. These studies used primary CD4+

T cells or Jurkat cells infected with HIV or HIV-derived constructs as cell culture models of

latency. Flow cytometry allowed cells expressing viral encoded proteins to be sorted from

non-expressing cells. In two of the studies, these non-expressing populations were stimulated

to ensure that the provirus could be aroused from latency. Specific differences in protocol

between the study sets are summarized below.

Jurkat Lewinski et al. 150 infected Jurkat cells with a VSV-G pseudotyped, GFP-expressing

pEV731 HIV construct (LTR-Tat-IRES-GFP)372 at an MOI of 0.1. The cells were

sorted into GFP+ and GFP- two to four days after infection. GFP+ cells were sorted

again two weeks after infection and cells that were again GFP+ were collected for

integration site sequencing. GFP- cells were sorted for GFP negativity twice more

then stimulated with TNFα . Cells that were GFP+ after stimulation were collected

for integration site sequencing. DNA was digested with MseI or a combination of NheI,

SpeI and XbaI, ligated to adapters for nested PCR, amplified and sequenced by Sanger

capillary electrophoresis.
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Bcl-2 transduced CD4+ Shan et al. 151 transduced CD4+ T cells with Bcl-2, costimulated

with bound anti-CD3 and soluble anti-CD28 antibodies, interleukin-2 and T cell growth

factor and then infected with X4-pseudotyped GFP-expressing NL4-3-δ6-drEGFP

construct391 at an MOI of less than 0.1. DNA was extracted, digested with PstI and

circularized392. HIV-human junctions were amplified by reverse PCR and sequenced

using Sanger capillary electrophoresis.

Active CD4+ & Resting CD4+ Pace et al. 152 spinoculated CD4+ T cells with HIV NL4-

3 at an MOI of 0.1. After 96 hours, the cells were stained for intracellular Gag CD25,

CD69 and HLA-DR and sorted into four subpopulations based on activation state

and Gag expression; activated Gag-, activated Gag+, resting Gag- and resting Gag+.

The ability of the viruses to reactivate was not tested although previous studies have

shown that the majority are likely inducible393. Genomic DNA was extracted and

digested with restriction enzymes MseI and Tsp509 and ligated to adapters. Proviral

LTR-host genome junctions were sequenced by 454 pyrosequencing after nested PCR.

All datasets were processed using the hiReadsProcessor R package394. Adaptor trimmed

reads were aligned to UCSC freeze hg19 using BLAT395. Genomic alignments were scored

and required to start within the first three bases of a read with 98% identity. Alignments for

a given read with a BLAT score less than the maximum score for that read were discarded.

Reads giving rise to multiple best scoring genomic alignments were excluded, while reads

with a single best hit were dereplicated and converged if within 5bp of each other. The

Bcl-2 transduced CD4+ sample was sequenced from U3 in the 5′ HIV LTR while the other

samples were sequenced from U5 in the 3′ LTR. To account for the 5 base duplication of

host DNA caused by HIV integration, the chromosomal coordinates of the Bcl-2 transduced

CD4+ sample were adjusted by ±4 bases.

To allow for alignment difficulties in the analysis of genomic repeats, reads with multiple

best scoring alignments, along with the single best hit reads used above, were included in

the repeat analyses. If any best scoring alignment for a read fell within a repeat, then that
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Title Cell
type

Virus Time of
harvest
after
infection

Sequenc-
ing

Gener-
ation of
expressed
vs. silent/
inducible

Citation Silent/
induc-
ible
unique
sites

Ex-
pressed
unique
sites

Jurkat Jurkat
cells

HIV vector
pEV731
(LTR-Tat-
IRES-GFP)

2 weeks Sanger TNFα , GFP
expression

Lewinski
et al. 150

463
inducible

643

Bcl-2
trans-
duced
CD4+

Primary
CD4+

T cells
(Bcl-2
trans-
duced)

HIV NL4-3-
δ6-drEGFP
(inactivated
gag, vif, vpr,
vpu, nef and
env replaced
by GFP)

3 days +
3-4 weeks
+ 3 days

Sanger anti-CD3,
anti-CD28
antibodies,
GFP
expression

Shan
et al. 151

446
inducible

273

Active
CD4+

Primary
active
CD4+ T
cells

HIV NL4-3 3 days 454 high vs. low
Gag

Pace
et al. 152

1604
silent

1274

Resting
CD4+

Primary
resting
CD4+ T
cells

HIV NL4-3 3 days 454 high vs. low
Gag

Pace
et al. 152

1942
silent

784

Central
Mem-
ory
CD4+

Primary
central
memory
CD4+ T
cells

HIV NL4-3
∆Nef GFP

2 days/9
days

Ion-
Torrent

anti-CD3,
anti-CD28
antibodies,
GFP
expression

This
paper

1729
inducible

3278

Table 2.1: HIV-1 integration datasets from in vitro models of latency where the proviruses
were determined to be silent/inducible or expressed

read was considered to map to that repeat.

2.3.4 Genomic features

A total of 140 whole genome features for CD4+ T-cells were gathered from data sources

indicated in Table 2.2. For features encoded as peaks or hotspots, the log of the distance of

each integration site to the nearest border was used for modeling. Integration sites from

HIV 89.6 infection in primary CD4+ T cells396 were used to count nearby integrations and

determine a ±20bp position weight matrix for integration targets. Illumina RNA-Seq from

active CD4+ cells (Chapter 4) was used to estimate raw cellular expression and fragments

per kilobase of transcript per million mapped reads for genes as calculated by Cufflinks397.

For sequence-based data like RNA-Seq and ChIP-Seq, the number of reads aligned within

a ± 50, 500, 5,000 50,000 and 500,000 bp windows of each integration site were counted

and log transformed. In addition, chromatin state classifications derived from a hidden
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Markov model based on histone marks and a few binding factors398 were included as binary

variables. All data from previous genomic freezes were converted to hg19 using liftover399.

2.4 Results

The combination of integration site data newly reported here (set named “Central Memory

CD4+”) with previously published data (sets named “Jurkat”, “Bcl-2 transduced CD4+”,

“Active CD4+”, and “Resting CD4+”) provides a collection of 12,436 integration sites (Table

2.1) where the expression status of the provirus—silent/inducible or expressed—is known.

In three of the datasets, Jurkat, Central Memory CD4+ and Bcl-2 transduced CD4+, the

proviruses were sorted based on inducibility. In the Resting CD4+ and Active CD4+ datasets,

cells were sorted only based on proviral expression. Previous studies have shown that most

silent proviruses in this model system are inducible393.

2.4.1 Global model

If a genomic feature and latency are monotonically related then we should be able to detect

this relationship using Spearman rank correlation. In addition if a feature has a consistent

effect across models we should see a consistent pattern in the direction of correlation. A

simple first look for correlation between genomic features (Table 2.2) and latency status

yielded inconsistent results among the five samples with no variables having a significant

Spearman rank correlation across all, or even four out of five, of the samples (Figure 2.1).

This suggests that there is not a consistent simple monotonic relationship between the

genomic variable and latency, or that any such correlations are modest and not detectable

across all studies given the available statistical power. We return to some of the stronger

trends below.

To investigate whether a combination of variables may affect latency, we fit a lasso-regularized

logistic regression, as implemented in the R package glmnet408, to predict latency using

the genomic variables. The relationship between silent/inducible status and each genomic

variable was allowed to vary between models by including the interaction of genomic features
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Group Type Source Number Types
T cell expression RNA-Seq Chapter 4 1 RNA

Jurkat expression RNA-Seq Encode400 1 wgEncodeHudsonalphaRnaSeq
Integration sites Locations Berry

et al. 396
1 sites

DNase sensitivity DNA-Seq/peaks Encode400 1 wgEncodeOpenChromDnase
Methylation DNA-Seq

401
1 Methyl

CpG Locations UCSC402 1 cpgIslandExt
Sequence-based Continuous — 4 % GC, HIV PWM score, distance to

centrosome, chromosomal position

Repeats Locations UCSC402 16 DNA, LINE, Low complexity, LTR,
Other, RC, RNA, rRNA, Satellite,
scRNA, Simple repeat, SINE, snRNA,
srpRNA, tRNA, alphoid

Histone features ChIP-Seq/Peaks Wang
et al. 403

18 H2AK5ac, H2AK9ac, H2BK120ac,
H2BK12ac, H2BK20ac, H2BK5ac,
H3K14ac, H3K18ac, H3K23ac,
H3K27ac, H3K36ac, H3K4ac, H3K9ac,
H4K12ac, H4K16ac, H4K5ac, H4K8ac,
H4K91ac

Histone features ChIP-Seq/Peaks Barski
et al. 404

23 CTCF, H2AZ, H2BK5me1,
H3K27me1, H3K27me2, H3K27me3,
H3K36me1, H3K36me3, H3K4me1,
H3K4me2, H3K4me3, H3K79me1,
H3K79me2, H3K79me3, H3K9me1,
H3K9me2, H3K9me3, H3R2me1,
H3R2me2, H4K20me1, H4K20me3,
H4R3me2, PolII

Chromatin state Binary Ernst and
Kellis 398

51 state1,state2,...,state51

HATs and HDACs ChIP-Seq Wang
et al. 405

11 Resting-HDAC1, Resting-HDAC2,
Resting-HDAC3, Resting-HDAC6,
Resting-p300, Resting-CBP,
Resting-MOF, Resting-PCAF,
Resting-Tip60, Active-HDAC6,
Active-Tip60

Nucleosome ChIP-Seq Schones
et al. 406

2 Resting-Nucleosomes, Active
Nucleosomes

UCSC genes Locations Hsu et al. 407 4 in gene, in gene (same strand), gene
count, distance to nearest gene, in
exon, in intron

Table 2.2: Genomic data available for comparison to HIV integration sites
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Figure 2.1: Spearman rank correlation between proviral expression status and genomic
features. Only genomic features with at least one correlation with latency with a false
discovery rate q-value < 0.01 (marked by asterisks) are shown.
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Figure 2.2: Misclassification error from cross validation for lasso regressions of silent/inducible
status on genomic features as a function of λ, the regularization coefficient for the lasso
regression, for all cell culture models combined and each individual cell culture model.
The number of variables included and size of coefficients in the model increases to the left.
Whiskers show the standard error of mean misclassification error. Dashed vertical lines
indicate the minimum misclassification error and the simplest model within one standard
error. Dotted horizontal line indicates the misclassification error expected from random
guessing.

with dummy variables indicating cellular model. The λ smoothing parameter of the lasso

regression was optimized by finding the λ with lowest classification error in 480-fold cross

validation and finding the simplest model with misclassification error within one standard

error.

The proportion of silent/inducible sites varied between the samples. To avoid the model

overfitting on this source of variation, an indicator variable for each sample was included in

the base model. The base model with no genomic variables was selected as the best model by

cross validation (Figure 2.2A). This suggest that there is not a consistent linear relationship

between an additive combination of genomic variables and latency across all models.
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When each dataset was fit individually with leave-one-out cross validation, improvements in

cross-validated misclassification error were only observed in the Active CD4+ (5.8% decrease

in misclassification error, standard error: 2.1) and Jurkat (6.7% decrease in misclassification

error, standard error: 3.5) samples (Figure 2.2B-F). There was no overlap in variables

selected for the Active CD4+ and Jurkat samples.

Finding little global association between latency and genomic features, we investigated

whether predictors of latency reported previously by single studies were consistently associ-

ated with latency across studies.

2.4.2 Cellular transcription

Model systems with defined integration sites show upstream transcription can interfere with

viral transcription409 and that cellular transcription in the same orientation may interfere

with viral transcription378 or increase viral transcription379 and in opposite orientations

may decrease transcription379. In integration site studies, integration outside genes appears

to increase latency150 but high transcription of nearby host cell genes may cause increased

latency150,151. In addition, Tat or other viral proteins may affect cellular transcription319,410.

To look at transcription and latency, we ran a logistic regression of silent/inducible status

on a quartic function of RNA expression, as determined by RNA-Seq reads within 5,000

bases in Jurkat cells for the Jurkat sample or CD4+ T cells for the remaining samples,

interacted with indicator variables encoding cell culture model. There appears to be little

agreement between samples (Figure 2.3). The Resting CD4+ and Active CD4+ datasets

show an enrichment in silent proviruses in regions with low gene expression. The other three

studies show the opposite or no relationship for low expression regions. The two samples

showing increased silence in areas of low expression (Resting CD4+ and Active CD4+) are

from a study that did not check whether inactive viruses could be activated. One possible

explanation is that regions with low gene transcription may harbor proviruses that are not

easily activated, though some other discrepancy between in vitro systems could also explain
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tic regression of silent/inducible status
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are predicted. Solid lines show predic-
tions from the regression for each sam-
ple and shaded regions indicate one stan-
dard error from the modeled predictions.

the difference. Both the Jurkat and Active CD4+ samples appear to increase in latency with

increasing expression while the remaining three studies did not show a strong trend.

2.4.3 Orientation bias

Shan et al. 151 reported that inducible proviruses were oriented in the same strand as the

host cell genes into which they had integrated more often than chance. This orientation bias

was still reproduced after our reprocessing of the Bcl-2 transduced CD4+ sample from Shan

et al. 151 . However, the proportion of provirus oriented in the same strand as host genes did

not differ significantly from 50% in the other samples (Figure 2.4). Perhaps orientation bias

and transcriptional interference are especially sensitive to parameters of the model system.

2.4.4 Gene deserts

Lewinski et al. 150 reported increased latency in gene deserts. In the collected data, integration

outside known genes was associated with latency (Fisher’s exact test, p < 10−6). This

seemed to largely be driven by the Active CD4+ and Resting CD4+ samples with significant

association found individually in only those two samples (both p < 10−8) and no significant

association observed in the other three samples (Figure 2.5A). Looking only at integration

sites outside genes, silent sites in the Resting CD4+ sample had a mean distance to the
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Figure 2.4: The proportion of provirus
integrated in the opposite strand com-
pared to cellular genes in silent/inducible
(blue) and expressed (red) samples. Er-
ror bars show the 95% Clopper-Pearson
binomial confidence interval.

nearest gene 2.5 times greater than that of expressed sites (95% CI: 2.2–6.2×, p < 10−6,

Welch two sample t-test on log transformed distance) (Figure 2.5B). The Active CD4+

sample had a small difference that did not survive Bonferroni correction.

Lewinski et al. 150 also reported decreased latency near CpG islands and reasoned this was

tied to the increased latency in gene deserts. In the Resting CD4+ sample, silent sites were

on average further from CpG islands than expressed sites (Bonferroni corrected Welch’s two

sample T test, p = 0.006), but there was no significant relationship between silent/inducible

status and log distance to CpG island after Bonferroni correction if the integration site’s

location inside or outside of a gene was accounted for first (analysis of deviance).

2.4.5 Alphoid repeats

Alphoid repeats are repetitive DNA sequences found largely in the heterochromatin of

centromeres411. Integration near heterochromatic alphoid repeats has been reported to

associate with latency150,152,373. Looking only at uniquely mapping sites, there was no

statistically significant association between latency and location inside an alphoid repeat in

pooled or individual samples (Fisher’s exact test).

Since alphoid repeats are both problematic to assemble in genomes and difficult to map
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Figure 2.5: (A) The proportion of provirus integrated outside genes in silent/inducible
(blue) and expressed (red) samples. Error bars show the 95% Clopper-Pearson binomial
confidence interval. (B) The nearest distance to any gene for integration sites (points)
outside genes in the five samples. Points are spread in proportion to kernel density estimates.
Horizontal lines indicate sample means where there was a significant difference in means
between silent/inducible and expressed provirus (black) or no significant difference (grey).

onto, we reasoned that some alphoid hits might be lost or miscounted in the filtering

procedures of the standard workup. To counteract this, we treated each sequence read as an

independent observation of a proviral integration and included sequence reads with more

than one best scoring alignment. For multiply aligned reads, we considered the read to have

been inside an alphoid repeat if any of its best scoring alignments fell within a repeat. We

found 74 reads with potential alphoid mappings. Integration inside alphoid repeats was

significantly associated with the expression status of a provirus in the Resting CD4+, Jurkat

and Central Memory CD4+ datasets (Bonferroni corrected Fisher’s exact test, all p < 0.05)

and approached significance in the Active CD4+ dataset (p = 0.053) (Figure 2.6). The Bcl-2

transduced CD4+ data did not contain any integration sites in alphoid repeats, probably due

to 1) the relatively low number of integration sites in the dataset and 2) to the requirement

for cleavage at two Pst1 restriction sites, which are not found in the consensus sequence of

alphoid repeats412. Of the 1340 repeat types in the RepeatMasker database412, only alphoid

repeats achieved a significant association with proviral expression in more than two datasets.
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Figure 2.6: The proportion of integra-
tion sites with matches in alphoid re-
peats in silent/inducible (blue) and ex-
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binomial confidence interval. Asterisks
indicate significant associations between
integrations within an alphoid repeat
and proviral expression status (Bonfer-
roni corrected Fisher’s exact test p <
0.05).

2.4.6 Acetylation

Histone marks or chromatin remodeling, especially involving the key “Nuc-1” histone near

the transcription start site in the viral LTR, appear to affect viral expression374,413,414.

Based on this effect, histone deacetylase inhibitors have been developed as potential HIV

treatments and show some promise in disrupting latency383. In these genome-wide datasets,

we do not have information on the state of individual LTR nucleosomes. However, repressive

chromatin does seem to spread to nearby locations if not blocked by insulators370,371 and

the state of neighboring chromatin could affect proviral transcription independently of

provirus-associated histones.

We found that the number of ChIP-seq reads near an integration site from several histone

acetylation marks (Figure 2.1) were associated with efficient expression in the Active

CD4+, Resting CD4+ and Central Memory CD4+ samples. H4K12ac had the strongest

association (Bonferroni corrected Fisher’s method combination of Spearman’s ρ, p < 10−25)

with silence/latency (Figure 2.7A).

Although the appearance of several significantly associated acetylation marks might suggest

acetylation exerts a considerable effect on the expression of a provirus, there are strong
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correlations among these marks, so their effects may not be independent. To account for

the correlations between these variables, we performed a principal component analysis

(PCA) to convert the correlated acetylation marks into a series of uncorrelated principal

components that capture much of the variance within a few components. Here, the first

principal component explained 59% of the variance and the first ten components 84%.

Several of these principal components again displayed significant associations with latency

in the Active CD4+, Resting CD4+ and Central Memory CD4+ samples but no significant

correlations in the Bcl-2 transduced CD4+ or Jurkat samples (Figure 2.7B). A logistic

regression of expression status on the first ten principal components and sample did not

reduce misclassification error from a base model including only sample in 480-fold cross

validation (base model misclassification error: 36.4%, PCA model: 36.5%). This suggests

that acetylation of neighboring chromatin does not exert strong effects on latency in all

samples.

2.4.7 Clustering

We reasoned that if there was a strong relationship between latency and chromosomal

position, then integration sites that are near one another on the same chromosome should

share the same expression status more often than expected by chance. To test this, we

compared how often pairs of proviruses shared the same expression status in relation to

the distance between the two sites (Figure 2.8). Pairs of sites with little distance between

integration locations did share the same expression status more often than expected by

chance (e.g. neighbors closer than 100bp, Fisher exact test p = 0.0002). Breaking out the

data to separate between sample and within sample pairings showed that this matching was

limited to neighbors within the same experimental model (Figure 2.8), emphasizing that

chromosomal environment does appear to influence latency, but the factors involved differ

among experimental models of latency.
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2.5 Conclusions

Here we compared the latency status of HIV-1 proviruses in five model systems with the

genomic features surrounding their integration sites. Surprisingly, no relationships between

genomic features near the integration location and latency achieved significance in all models.

Proviruses from the same cellular model integrated in nearby positions did share the same

latency status much more often than predicted by chance, indicating the existence of local

features influencing latency, but these were not consistent among models. This suggests that

whatever features are affecting latency are highly local and model-specific, and that we may

not have access to all relevant chromosomal features e.g. 415–418.

In addition to differences in experimental conditions, methodological issues have the potential

to obscure patterns. Examples include multiply infected cells, inactivated viruses and

inaccurate assessment of HIV gene activity—each of these are discussed below.

A latent provirus integrated into the same cell as an expressed provirus will be erroneously

sorted as expressed, potentially confounding analysis. A low multiplicity of infection (MOI)

will help to avoid this problem, but there is still the potential for a significant proportion of

the cells studied to contain multiple integrations. This problem arises because although cells

with multiple integrations form a small proportion of total cells, most of the total are cells

lacking an integrated provirus and thus are excluded by experimental design. For example,

assuming integrations are Poisson distributed with an MOI of 0.1 (1 integration per 10 cells),

90.5% of cells will not contain a provirus, 9% of cells will contain one proviral integration

and 0.5% of cells will contain multiple integrations. The cells without an integration are

not amplified by HIV-targeted PCR leaving only 9.5% of the total cells. Of these cells

actually under study, 4.9% will contain multiple integrations. Thus the signal from expressed

proviruses may be muted by the presence of latent proviruses in the expressed population.

The replication cycle of HIV is error prone, and a significant proportion of virions contain

mutated genomes87. In studies that do not check for inducibility, mutant proviruses
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integrated in regions of the genome otherwise favorable to proviral expression can be sorted

into the latent pool due to mutational inactivation. This problem of inactivated provirus

is worse when latent provirus are rare and exacerbated further when looking at latency in

the cells of HIV patients due to selective enrichment of inactivated proviruses incapable

of spreading infection140. Here, the effects of mutation are minimized in the datasets that

required inducible viral expression (Jurkat, Bcl-2 transduced CD4+, Central Memory CD4+)

but may be a confounder in the two datasets that were sorted based on lack of viral expression

only (Active CD4+, Resting CD4+).

Inaccurate staining or leaky markers may also result in misclassification of proviruses. False

positives and false negatives will result in incorrectly sorted latent and expressed integrations.

For example, if 5% of cells not containing Gag are labeled as Gag+ and there are an equal

amount of latent and expressed integration sites, then 4.8% of integrations labeled expressed

will actually be latent. If a category is rare, false staining has even greater potential to cause

error. For example, if only 5% of sites are latent and a Gag stain has a false negative rate

of 5%, then we would expect 48.7% of sites classified as latent to actually be mislabeled

expressed integrations.

Attempts to induce latent proviruses in patients have so far focused on using histone

deacetylase inhibitors, raising interest in associations with histone acetylation in these data.

An important caveat in results from these genome-wide data is that histone modification

near the integrated provirus may not be representative of modification within the provirus

at the key “Nuc-1” nucleosome of the transcription start site414, though local correlations in

chromatin states are well established from studies of position effect variegation370,371. We

found that some histone acetylation marks were significantly associated with viral expression

in some but not all samples (Figures 2.1, 2.7). This lack of association may be due to a

lack of power in these studies, but the confidence intervals suggest that any correlations

between acetylations and latency are unlikely to be strong. These weak correlations raise

the possibility that there are populations of latent proviruses that are not associated with
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acetylation and may not be inducible by histone deacetylase inhibitors.

This study highlights that the choice of model system can have a large effect on measurements

of latency. Further studies are needed to determine which in vitro models best reflect latency

in vivo. Different cell models may report genuinely different mechanisms of latency. While we

did see some relationship between histone acetylation and latency, paralleling a recent clinical

trial of SAHA383, associations with histone acetylation did not explain a large fraction of

the difference between latent and expresssed proviruses in any of the five models. One

possible explanation is that there may be multiple mechanisms that maintain proviruses in a

latent state. To be successful, shock-and-kill treatments must induce and destroy all latent

proviruses to eliminate HIV from an infected individual, raising the question of whether

multiple simultaneous inducing treatments will be necessary.

2.6 Availability of supporting data

Sequence reads from the Central Memory CD4+ sample reported here, the Resting CD4+

and Active CD4+ data reported by Pace et al. 152 , the Bcl-2 transduced CD4+ data reported

by Shan et al. 151 and reprocessed data originally reported by Lewinski et al. 150 are available

at the Sequence Read Archive under accession number SRP028573.
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CHAPTER 3: Dynamic regulation of HIV-1 mRNA populations

analyzed by single-molecule enrichment and long-read

sequencing

This chapter was originally published as:
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Allen, P David, M Brown, S Wang, DR Link, J Olson
et al. 2012. Dynamic regulation of HIV-1 mRNA popu-
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Bushman and I wrote the manuscript.

Supplementary data are available at http://nar.oxfordjournals.org/

content/40/20/10345/suppl/DC1

3.1 Abstract

Alternative RNA splicing greatly expands the repertoire of proteins encoded by genomes.

Next-generation sequencing (NGS) is attractive for studying alternative splicing because

of the efficiency and low cost per base, but short reads typical of NGS only report mRNA

fragments containing one or few splice junctions. Here, we used single-molecule amplification

and long-read sequencing to study the HIV-1 provirus, which is only 9700 bp in length, but

encodes nine major proteins via alternative splicing. Our data showed that the clinical isolate

HIV89.6 produces at least 109 different spliced RNAs, including a previously unappreciated

∼1 kb class of messages, two of which encode new proteins. HIV-1 message populations
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differed between cell types, longitudinally during infection, and among T cells from different

human donors. These findings open a new window on a little studied aspect of HIV-1

replication, suggest therapeutic opportunities and provide advanced tools for the study of

alternative splicing.

3.2 Introduction

Alternative splicing greatly expands the information content of genomes by producing

multiple mRNAs from individual transcription units. Approximately 95% of human genes

with multiple exons encode RNA transcripts that are alternatively spliced, and mutations

that affect alternative splicing are associated with diseases ranging from cystic fibrosis to

chronic lymphoproliferative leukemia420–424. Work to decipher an RNA ‘splicing code’ has

revealed that multiple interactions between trans-acting factors and RNA elements determine

splicing patterns, though regulation is little understood for most genes305.

The integrated HIV-1 provirus is ∼9700 bp in length and has a single transcription start

site, but according to the published literature yields at least 47 different mRNAs encoding

9 proteins or polyproteins, making HIV an attractive model for studies of alternative

splicing425. HIV mRNAs fall into three classes: the unspliced RNA genome, which encodes

Gag/Gag-Pol; partially spliced transcripts, ∼4 kb in length, encoding Vif, Vpr, a one-exon

version of Tat, and Env/Vpu; and completely spliced mRNAs of roughly 2 kb encoding

Tat, Rev and Nef (Figure 3.1A). Additional rare ‘cryptic’ splice donors (5′ splice sites) and

acceptors (3′ splice sites) contribute even more mRNAs426–431. A complex array of positive

and negative cis-acting elements surrounding each splice site regulates the relative abundance

of the HIV-1 mRNAs, and disrupting the balance of message ratios impairs viral replication

in several models284,432–438. Studies have suggested strain-specific splicing patterns may

exist425,439,440. However, detailed studies of complete message populations have not been

reported for clinical isolates of HIV-1.

Several groups have demonstrated tissue- and differentiation-specific splicing of cellular
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Figure 3.1: Mapping the splice donors and acceptors of HIV89.6. PacBio sequence reads
of HIV89.6 cDNA from infected HOS-CD4-CCR5 (HOS) and CD4+ T cells were aligned to
the HIV89.6 genome shown in (A). Exons of the conserved HIV-1 transcripts are colored
according to the encoded gene. Conserved (black) and published cryptic (brown) splice
donors (‘D’) and acceptors (‘A’) are shown. Gaps in HIV-1 sequence alignments with at least
one end located at a published or verified splice donor or acceptor were defined as introns.
For each base of the HIV89.6 genome, the number of sequence reads in which that base
occurred at the 5′-end (B) or 3′-end (C) of an intron is plotted for each cell type. Putative
splice donors and acceptors were defined as loci that were found in at least 10 reads at the
5′- and 3′-ends of introns in sequence alignments from T-cell infections. Regions containing
splice sites are enlarged for clarity. Asterisks indicate putative splice sites that are adjacent
to dinucleotides other than the consensus GT and AG.
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genes421,441,442. Importantly for HIV, these include changes during T-cell activation443,444,

raising the question of how cell-specific splicing affects HIV replication. While most studies

of HIV-1 splicing have been conducted in cell lines using lab-adapted viral strains, limited

works in PBMCs from infected patients, monocytes and macrophages have suggested that

differences may indeed exist in relevant cell types427,439,445,446. Moreover, human splicing

patterns differ between individuals, but such polymorphisms have not been investigated in

the context of HIV infection447,448.

Here, we use deep sequencing to comprehensively characterize the transcriptome of an early

passage clinical isolate, HIV89.6
449, in primary CD4+ T cells from seven human donors and

in the human osteosarcoma (HOS) cell line. Many deep sequencing techniques provide

short reads, which rarely query more than a single exon-exon junction. To distinguish

the full structure of HIV-1 mRNAs, which can contain several splice junctions, we used

Pacific Biosciences (PacBio) sequencing technology, which yields read lengths up to 10 kb450.

We used RainDance Technologies single-molecule PCR enrichment to preserve ratios of

RNAs during preparation of sequencing templates. We identified previously published and

novel HIV-1 transcripts and determined that HIV89.6 encodes a minimum of 109 different

splice forms. These included a new size class of transcripts, some of which contain novel

open reading frames (ORFs) that encode new proteins. We also found significant variation

between cell types, over time during infection of HOS cells and among individuals. These

data reveal unanticipated complexity and dynamics in HIV-1 message populations, begin

to clarify a little studied dimension of HIV-1 replication and suggest possible targets for

therapeutic interventions.

3.3 Materials and methods

3.3.1 Cell culture and viral infections

HIV89.6 was generated by transfection and subsequent expansion in SupT1 cells. Primary

T cells were isolated by the University of Pennsylvania Center for AIDS Research Im-
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munology core and confirmed to be homozygous for the wild-type CCR5 allele as shown

in Supplementary Table S1 and described in Supplementary Methods. HOS-CD4-CCR5

cells451,452 were obtained through the AIDS Research and Reference Reagent Program,

Division of AIDS, NIAID, NIH from Dr Nathaniel Landau. Single round infections in T

cells and HOS-CD4-CCR5 cells were performed using standard methods (see Supplementary

Methods).

3.3.2 RNA and reverse transcription

Total cellular RNA was purified using the Illustra RNA kit (GE Life Sciences, Fairfield, CT,

USA) from 5 × 106 cells per infection. Viral cDNA was made using a reverse transcription

primer complementary to a sequence in U3 (RTprime, Supplementary Table S2). We used

Superscript III reverse transcriptase (Invitrogen) in the presence of RNaseOUT (Invitrogen)

to conduct first-strand cDNA synthesis from equal amounts of total cellular RNA from each

HOS-CD4-CCR5 time point (15.2 µg) and from each T-cell infection (3 µg) according to the

manufacturer’s instructions for gene-specific priming of long cDNAs, and then treated with

RNaseH (Invitrogen). We checked for full reverse transcription of the longest (unspliced)

viral cDNAs by PCR using primers that bind in the first major intron of HIV89.6 (keo003,

keo004, Supplementary Table S2, data not shown).

3.3.3 Bulk RT-PCR and cloning

Transcripts were amplified from cellular RNA using the Onestep RT-PCR kit (Qiagen)

with primer pairs keo056/keo057 and keo058/keo059 (Supplementary Table S2) with the

following amplification: 5 cycles of 30 s at 94◦C, 12 s at 56◦C, 40 s at 72◦C; then 30 cycles

of 30 s at 94◦C, 14 s at 56◦C, 40 s at 72◦C; and finally 10 min at 72◦C. For verification of

dynamic changes, primers F1.2 and R1.2 were used with 35 cycles of 30 s at 94◦C, 30 s at

56◦C and 45 s at 72◦C followed by 10 min at 72◦C. Products were resolved on agarose gels

(Nusieve 3:1, Lonza for verification of dynamic changes, Invitrogen for cloning) stained with

ethidium-bromide (Sigma) for visualization, or SYBR Safe DNA gel stain (Invitrogen) for
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cloning (keo056/keo057 amplified material). DNA was purified using Qiaquick gel extraction

kit (Qiagen) and cloned using the TOPO TA cloning kit (Invitrogen). Plasmid DNA was

prepared using Qiaprep Spin Miniprep kit (Qiagen). Inserts were identified and verified

using Sanger sequencing. The cDNAs for tatˆ8c, tat (1 and 2 exon), ref, rev and nef, and the

transcript with exon structure 1-5-8c were cloned into the expression vector pIRES2-AcGFP1

(Clonetech) as described in Supplementary Methods.

3.3.4 Assays of protein activity and HIV replication

Activity and HIV replication assays were performed as described in Supplementary Methods.

Tat activity expressed from each cDNA was measured in TZM-bl cells204 (gift of Dr Robert

W. Doms). Rev activity was assayed in HEK-293T cells co-transfected with pCMVGagPol-

RRE-R, a reporter plasmid from which Gag and Pol are expressed in a Rev-dependent

manner (gift of David Rekosh)453. Intracellular and released supernatant p24 was measured

from cells transfected with expression constructs and infected with HIV89.6.

3.3.5 Western blotting

HEK-293T cells were transfected with expression constructs and treated with MG132 (EMD

Chemicals) to inhibit the proteasome or DMSO (Supplementary Methods). Proteins were

detected by immunoblotting using a mouse antibody that recognizes the carboxy terminus

of HIV-1 Nef diluted 1:1000 in 5% milk (gift of Dr James Hoxie)454. Horseradish peroxidase

(HRP)-conjugated secondary rabbit-anti-mouse antibody (p0260, DAKO) was used for

detection with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific).

Beta-tubulin was used as a loading control, detected by the HRP-conjugated antibody

(ab21058, Abcam).

3.3.6 Single-molecule amplification

Amplification was performed by RainDance Technologies using a protocol similar to that

previously reported (detailed description in Supplementary Methods)455. Amplification

38



was carried out in droplets to suppress competition between amplicons. PCR droplets

were generated on the RDT 1000 (RainDance Technologies) using the manufacturer’s

recommended protocol. The custom primer libraries for this study contained 18 (HOS-CD4-

CCR5 cells) or 20 (primary T cells) PCR primer pairs designed to amplify different HIV

RNA isoforms (Supplementary Table S2).

3.3.7 Single-molecule sequencing

DNA amplification products from the RainDance PCR droplets were converted to SMRTbell

templates using the PacBio RS DNA Template Preparation Kit. Sequencing was performed by

Pacific Biosciences using the PacBio SMRT sequencing technology as described450. Sequence

information was acquired during real time as the immobilized DNA polymerase translocated

along the template molecule. Prior to sequence acquisition, hairpin adapters were ligated to

each DNA template end so that DNA polymerase could traverse DNA molecules multiple

times during rolling circle replication (SMRTbell template sequencing456), allowing error

control by calculating the consensus (‘circular consensus sequence’ or CCS). For raw reads,

the average length was 2860 nt, and 10% were > 5000 nt. After condensing into consensus

reads, the mean read length was 249.5 nt, due to the use of a shorter Pacific Biosciences

sequencing protocol to accommodate the small size of many amplicons. Consensus reads of

1% were > 1100 nt. Sequencing data were collected in 45-min movies.

3.3.8 Data analysis

Raw reads were processed to produce CCSs. Raw reads were also retained to help in primer

identification and to avoid biasing against long reads. Reads were aligned against the human

genome using Blat395. Misprimed reads matching the RT primer, reads with a CCS length

shorter than 40 nt or raw length shorter than 100 nt and reads matching the human genome

were discarded. Filtered reads were aligned against the HIV89.6 reference genome. Potential

novel donors and acceptors were found by filtering putative splice junctions in the Blat

hits for a perfect sequence match 20 bases up- and downstream of the junction, ignoring
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homopolymer errors, and requiring that one end of the junction be a known splice site. Local

maximums within a 5-nt span with > 9 such junctions were called as novel splice sites.

Filter-passed reads were aligned against all expected fragments based on primers and known

and novel junctions. Primers were identified in CCS reads by an edit distance ≤ 1 from

the primer in the start or end of the read, in raw reads by an edit distance ≤ 5 from a

concatenation of the primer, hairpin adapter and the reverse complement of the primer, and

in both types of reads by a Blat hit spanning an entire expected fragment.

Gaps in Blat hits were ignored if ≤ 10 bases long or in regions of likely poor read quality

≤ 20 bases long where an inferred insertion of unmatched bases in the read occurred at the

same location as skipped bases in the reference. Any Blat hits with a gap > 10 nt remaining

in the query read were discarded. If HIV sequence was repeated in a given read (likely due

to PacBio circular sequencing), the alignments were collapsed into the union of the coverage.

Gaps in the HIV sequence found in uninterrupted query sequence were called as tentative

introns. Splice junctions were assigned to conserved or previously identified (published

or in this work) splice sites and reads appearing to contain donors or acceptors further

than 5 nt away from these sites were discarded. Reads with Blat hits outside the expected

primer range were discarded from that primer grouping. The assigned primer pair, observed

junctions and exonic sequence were used to assign each read to a given spliceform (specific

transcript structure) or set of possible spliceforms. Partial sequences that did not extend

through both primers were assigned to specific transcripts if the read contained enough

information to rule out all other spliceforms or if all other possible spliceforms contained

rare (< 1% usage) donors or acceptors (Supplementary Table S3). Otherwise, the read was

called indeterminate.

To calculate the ratios of transcripts within the partially spliced class, we counted the

number of reads for each assigned spliceform amplified by primer pair 1.3 and divided by the

total number of assigned partially spliced reads amplified with these primers (Supplementary

Figure S1 and Supplementary Table S2). Assigned sequences amplified with primer pairs
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1.4 and 4.1 (full-length cDNAs, T cells only) were used to calculate ratios of transcripts

within each of the two completely splice classes (∼2 and ∼1 kb). To compare ratios of ∼2 kb

transcripts calculated within reads from primer pairs 1.4 and 4.1, we normalized ratios from

pair 4.1 to the nef 2 transcript (containing exons 1, 5 and 7). Due to size biases inherent

in the approach, we did not compare across size classes, and unspliced transcripts were

not included in ratio analysis. For all ratio analysis, transcripts including cryptic or novel

junctions were counted only if they appeared in at least five reads, otherwise they were

excluded from the analysis and from the count of total assigned reads.

To estimate the minimum total number of transcripts present, partial sequence reads were

included. Each exon-exon junction occurring in at least five reads and not previously assigned

to a particular transcript (Figure 3.2) was counted as evidence of an additional transcript

(47 additional junctions were detected, see Supplementary Table S4). If two such junctions

could conceivably occur in a single mRNA, we counted only one unless we could verify from

sequence reads that they were amplified from separate cDNAs, resulting in 31 additional

transcripts. The minimum transcript number calculated by a greedy algorithm treating

introns as events in a scheduling problem agreed with the above calculation.

Several groups have demonstrated tissue- and differentiation-specific splicing of cellular

genes421,441,442. Importantly for HIV, these include changes during T-cell activation443,444,

raising the question of how cell-specific splicing affects HIV replication. While most studies

of HIV-1 splicing have been conducted in cell lines using lab-adapted viral strains, limited

works in PBMCs from infected patients, monocytes and macrophages have suggested that

differences may indeed exist in relevant cell types427,439,445,446. Moreover, human splicing

patterns differ between individuals, but such polymorphisms have not been investigated in

the context of HIV infection447,448.

For studies of transcript dynamics, reads from primer pairs 1.2, 1.3 and 1.4 containing

junctions between D1 or any donor and each of five mutually exclusive acceptors, A3, A4c,

A4a, A4b, A5 and A5a, were collected and their ratios calculated.
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each detected in at least five independent sequence reads across samples from at least two
different human T-cell donors.
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3.3.9 Statistical analysis

Statistical modeling was performed using generalized linear modeling as described in Ap-

pendix A.1. All analyses were performed in R 2.14.0 (R Development Core)388.

3.3.10 Data access

Sequence data is available in the SRA database with the following accession numbers:

SRP014319.

3.4 Results

3.4.1 Sequencing HIV-1 transcripts produced in primary T cells and HOS cells

In order to characterize HIV-1 transcript populations, we prepared viral cDNA from primary

CD4+ T cells of seven different healthy human donors infected in vitro with HIV89.6, an early

passage dual-tropic clade-B clinical isolate (Supplementary Figure S1, human donor data

in Supplementary Table S1)449. We also studied HIV messages produced in infected HOS

cells engineered to express CD4 and CCR5 (HOS-CD4-CCR5) because these cells support

efficient HIV replication and engineered variants are widely used in HIV research. HOS

cells were harvested at 18, 24 and 48 hours post infection (hpi) to investigate longitudinal

changes during infection, and for comparison to 48 h infected T cells.

To preserve the relative proportions of template molecules while amplifying the cDNA, we

used RainDance Technologies’ single-molecule micro-droplet based PCR455. Droplet libraries

containing multiple overlapping primer pairs were designed to query all message forms and

allow later calculation of relative abundance (Supplementary Table S2 and Supplementary

Figure S1). Each primer was unique so that sequences could be assigned to a specific

primer pair, which helped reconstruct the origin of sequence reads and deduce message

structures. Amplified DNA products were sequenced using Single Molecule Real-Time

(SMRT) technology from Pacific Biosciences450,456. We obtained 847 492 filtered reads of

amplified HIV-1 transcripts in primary CD4+ T cells and 89 350 in HOS cells. The longest
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sequenced continuous stretch of HIV-1 cDNA was 2629 bp.

3.4.2 Splice donors and acceptors

We aligned PacBio reads containing HIV sequences to the HIV89.6 genome and identified

candidate introns as recurring gaps in our sequences. Using this approach, we observed

splicing at each of the widely conserved major splice donors and acceptors and several

published cryptic sites (Figure 3.1A, hereafter referred to by their identifications shown in

this figure, ‘D’ for donors, ‘A’ for acceptors).

In addition, we identified 13 putative novel splice sites: 2 donors and 11 acceptors (Figure

3.1 and Supplementary Table S3). In order to be selected as a bona fide splice site and

remove artifacts possibly created by recombination during sample preparation, we required

that the new acceptor or donor was observed spliced to previously reported splice donors or

acceptors in > 10 sequence reads in CD4+ T cells. The most frequently used novel splice site

was an acceptor that we have termed A8c because it lies near A8, A8a and A8b (discussed

in detail below). Additional novel sites are further discussed in Supplementary Report S1.

Most of the new splice sites adhered to consensus sequences for the standard spliceosome

(Supplementary Table S3). However, there appeared to be one splice donor upstream of

D1 with a cytidine in place of the usual uracil 2 nt downstream of the splice site. Similar

‘GC donors’ appear in 1% of known splice junctions in humans457. Of the novel splice

acceptors, three were preceded by dinucleotides other than the consensus AG. Alternative

dinucleotides are used infrequently as splice acceptors458–461; however, it is possible that our

deep sequencing method allowed us to observe rare events.

3.4.3 Structures of spliced HIV89.6 RNAs

To quantify the populations of HIV-1 transcripts, we aligned all reads to the collection of

47 well-established spliced HIV-1 transcripts and detected 45 of them (Figure 3.2). We

additionally aligned reads to the HIV89.6 genome allowing all possible combinations of splice
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junctions—canonical, cryptic or novel—determined from the sequencing data (Figure 3.1),

yielding an additional 32 complete transcripts, 19 of which were novel. The data also provide

evidence for more novel splice junctions but in incomplete sequences, implying the existence

of additional new transcripts (Supplementary Table S4 and Supplementary Report S1). The

full data set taken together provides evidence for least 109 different HIV89.6 transcripts in

primary T cells.

Amplification primers that isolated the two main classes of spliced messages allowed us to

determine the ratios of mRNAs in each (Figure 3.2 and Supplementary Table S5). Within

the partially spliced class of transcripts, env/vpu, tat (1-exon), vpr and vif messages existed

in an average ratio of 96:4:< 1:< 1 in CD4+ T cells. The ratio of nef :rev :tat :vpr within

the ∼2 kb transcript class was 64:33:3:< 1. Consistent with previous reports, the most

abundant transcript in each class contained the splice junction from D1 to A5 (D1ˆA5)—

an env/vpu transcript contributing 64% of the partially spliced class, and a completely

spliced nef transcript contributing 47% of ∼2 kb messages (Figure 3.2)425,462. The relatively

low abundance of transcripts encoding Tat suggests that Tat sufficiently stimulates HIV

transcription elongation at low concentrations, or that the tat transcripts must be efficiently

translated. Due to biases inherent in the reverse transcription step, we could only compare

transcripts within each size class, and we note that our methods have not been validated

for empirical quantification. However, the ratios were roughly confirmed using overlapping

sequence reads obtained with alternate primer pairs and by end point RT-PCR analysis of

HIV-1 RNAs (data not shown).

Exons 2 and 3 are non-coding exons whose inclusion in transcripts other than vif and vpr

has no known function. We found that they were included in other messages infrequently,

each in ∼7–8% of transcripts in the ∼2 kb completely spliced class of transcripts and 5%

of partially spliced transcripts accumulating in T cells. This is consistent with previous

measurements in the partially spliced class but much lower than has been estimated for

completely spliced transcripts in HeLa cells, suggesting cell-type-specific splicing patterns
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may influence inclusion of these exons425.

3.4.4 A novel ∼1 kb class of completely spliced transcripts

Primers placed near the 5′- and 3′-ends of the HIV89.6 genome amplified a second class of

completely spliced transcripts ∼1 kb in length. In place of A7, these transcripts use a set of

little studied splice acceptors located ∼800 bp downstream within the 3′-TR. Two groups

have previously observed splicing from D1 to acceptors A8, A8a and A8b in this region,

yielding messages of this size class in patient samples; however, none of these could be

translated to a protein of significant length427,431. We determined the complete structure of

29 members of the 1-kb class (Figure 3.2 and Supplementary Table S5). The most abundant

messages observed in this class use the novel acceptor A8c to define their terminal exon. For

HIV89.6, acceptor A8c was used nearly as frequently as A7, which gives us the 2-kb class

of transcripts (Supplementary Table S3), and this was supported by end point RT-PCR

analysis (data not shown).

Acceptor A8c is not well conserved in HIV-1/SIVcpz (14%), although it is conserved in clade

G viruses (> 95%) and most HIV-2/SIVsmm genomes (86%)463. This is due to the poor

conservation of an adenosine at the wobble base position of the 123rd codon (proline) of the

Nef reading frame, which creates the AG dinucleotide generally required at splice acceptors.

Since any base at this position would code for proline, there does not seem to be strong

selection for a splice acceptor here. However, A8c is displaced from nearby well-conserved

(> 90%) cryptic acceptors A8a and A8b by multiples of 3 bp (12 and 21 bp, respectively),

so splicing to any of these three acceptors would create similar ORFs. All HIVs and SIVs

maintain at least one of these three acceptors, suggesting possible function463. We confirmed

that the 1 kb transcripts using A8a, A8b and A8c were present in infected HOS and T cells

by end point RT-PCR using additional primer pairs and by Sanger sequencing of cloned

transcripts (Figure 3.3A and B; data not shown).

The 1-kb transcript containing exons 1, 4 and 8c (1-4-8c, where exon 8c begins at A8c
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Figure 3.3: HIV89.6 transcripts were amplified by RT-PCR using RNA from infected
HOS-CD4-CCR5 cells with primers keo056 and keo057. Major bands detected after gel
electrophoresis were cloned from the 48 hpi sample and message structures determined by
Sanger sequencing. Thick bars represent exons and dashed lines excised introns. Genes are
shown above (not to scale) with start codons indicated by circles. Messages 1, 2, 4 and 5 were
cloned into expression plasmids for activity assays. (B) Confirmation of presence of the ∼1
kb message RNAs in HOS-CD4-CCR5 and primary CD4+ T cells (human donor 1, harvested
24 and 48 hpi). An independent primer pair (keo058 and keo059) was used to amplify
transcripts by RT-PCR. (C) Tat activity was measured in Tzm-bl cells as Tat-dependent
luciferase production after transient transfection with expression plasmids. (D) Western blot
showing expression of protein of the predicted size for Ref (12.5 kb) in cells transfected with
the Ref expression construct and treated with proteasome inhibitor MG132, detected by an
antibody recognizing the carboxy-terminus of Nef. Expression plasmid encoding Nef was
included to control for possible expression of partial Nef peptides or breakdown products
from the Nef ORF.
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and extends to the poly-adenylation site) encodes the first exon of Tat followed by 25

novel amino acids (termed Tatˆ8c). Tatˆ8c showed activity when overexpressed in cells

containing a Tat reporter construct (Figure 3.3C, nucleotide and amino acid sequences in

Supplementary Table S6). Transcripts with exon structures 1-4a/b/c-8c encode a novel

fusion of the amino-terminal 26 amino acids of Rev and the carboxy-terminal 80 amino acids

of Nef, hereafter referred to as Ref. We did not detect Rev activity on overexpression of

the ref transcript, and Ref did not appear to interfere with the normal function of Rev or

with HIV replication (Supplementary Figure S2). Ref was detectable by western blot using

antibodies targeting the C terminus of Nef after inhibition of the proteasome, suggesting

that the fusion is expressed but not stable (Figure 3.3D). Thus, Ref has the potential to

encode a new epitope potentially relevant in immune detection of HIV. The transcripts with

exon structures 1-5-8c and 1-8c encode at most a short peptide, and so are candidates for

acting as regulatory RNAs.

3.4.5 Temporal dynamics of transcript populations

To assess longitudinal variation, we investigated HIV89.6 transcript populations during the

course of a single round of infection in HOS-CD4-CCR5 cells. A sensitive method for

comparison among conditions involves quantifying utilization of six mutually exclusive splice

acceptors A3, A4c, A4a, A4b, A5 and a novel acceptor just downstream of A5 termed

A5a. Splicing at these acceptors determines the relative levels of messages encoding Tat

and Env/Vpu in the partially spliced class and messages encoding Tat, Rev and Nef in the

completely spliced class.

We observed longitudinal changes in the levels of these messages in HOS cells over 12–48 h

that were statistically significant (p < 10−10; generalized linear model described in Appendix

A.1). This pattern was especially evident in junctions involving donor 1 spliced to each of

these acceptors (Figure 3.4A). Most dramatically, transcripts with splicing junctions between

D1 and A3 (tat messages) increased with time (p < 10−10), while D1ˆA4b junctions (used

in env/vpu or rev messages) were used reciprocally less (p < 10−10). Such kinetic changes
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affecting specific transcripts both with and without the Rev-response element cannot be

explained by the accumulation of Rev, and they may reflect differential transcript stability or

HIV-induced alterations to the host splicing machinery. Temporal changes in HOS cells were

confirmed using end point RT-PCR and analysis after electrophoresis on ethidium-stained

gels (Figure 3.4B).

3.4.6 Cell-type-specific splicing patterns

We also compared splicing between T cells and HOS cells and found significant cell type

differences (p < 10−10). For example, while transcripts with D1ˆA5 junctions were dominant

in both cell types, messages using the D1ˆA4c splice junction (encoding Env/Vpu or Rev)

made up the bulk of the remaining transcripts in T cells but were a minor species in

HOS-CD4-CCR5 cells. Likewise, Tat messages (using A3), which were quite abundant in

HOS cells at all time points, contributed relatively little to populations of transcripts in

primary T cells harvested at 48 hpi (Figure 3.4A). We also used end point PCR and analysis

on ethidium-bromide-stained gels to confirm that the relative ratios of transcripts containing

junctions to A3, A4a, A4b and A4c were different in HOS and T cells (Figure 3.4B).

3.4.7 Human variation in HIV-1 splicing

Quantitative comparisons also revealed modest differences in splicing between primary CD4+

T cells isolated from different human donors that were statistically significant (p < 10−10)

under a generalized linear model (Figure 3.4A). The magnitudes of predicted differences

were small, all < 33% and most < 10%.

3.5 Discussion

Use of single-molecule enrichment and long-read single-molecule sequencing has made possible

the most complete study to date of the composition of HIV-1 message populations, revealing

several new layers of regulation. Studies of the low-passage HIV89.6 isolate in a relevant cell

type showed numerous differences from studies of lab-adapted HIV strains in transformed
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cell lines, highlighting the importance of studying the most relevant models. These data

also illustrate the limitations of gel-based assays for studying HIV-1 message population.

Multiple different combinations of HIV-1 exons yield mRNAs of similar sizes that are easily

confused in typical assays using gel electrophoresis. Thus, in many settings the more detailed

information provided by single-molecule amplification and single-molecule DNA sequencing

is more useful.

Using these methods, we have detected significant variations between HIV message pop-

ulations generated in T cells from different human donors. The differences were modest

compared to those observed between cell types or time points, perhaps not surprisingly

since any human polymorphisms strongly affecting mRNA processing might interfere with

normal gene expression. However, because tight calibration of message levels is important to

HIV-1, the observed differences in message ratios might affect HIV-1 acquisition or disease

progression. The variation in observed transcripts could also be affected by different kinetics

of infection in T cells from the different donors. In either case, these data suggest that human

polymorphisms may exist that affect HIV-1 message populations in infected individuals,

providing a new candidate mechanism connecting human genetic variation with measures of

HIV disease.

Sequences from the 89.6 viral strain revealed a class of small (∼1 kb) completely spliced

transcripts, most contributed by splicing to a new poorly conserved acceptor A8c. These

encoded two new proteins, one of which had Tat activity, and we showed that another, a Rev-

Nef fusion termed Ref, could be detected in cells. HIV89.6 is a particularly cytotoxic virus

isolated from the CSF of a patient, and it forms unusually large syncitia in macrophages449.

The abundance of 1-kb transcripts produced by this virus provides a possible explanation

for its unique properties. In addition to the novel acceptor A8c, we have also identified 3

putative novel splice donors and 11 putative novel acceptors, which require further studied

to clarify possible functions.

The wealth of new messages found here in HIV89.6 and in other HIV-1 isolates suggests
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there may be ongoing evolution of novel splice sites and new ORFs. Because splice acceptors

in HIV-1 are weak284, mutations creating sequences that even slightly resemble the 3′ splice

site consensus may be occasionally recruited as novel acceptors, creating new mRNAs. In

fact, new splice signals may evolve with relative ease—it has been estimated that reasonable

matches to the consensus for splice donors, acceptors and branch-point sites occur within

random sequence every 290, 490 and 24 bp, respectively464, though sequence substitutions

in HIV are usually also constrained by overlapping viral coding regions. We and others have

observed appearance of novel exons within the major HIV-1 introns426,428,429. Such long

stretches of RNA relatively devoid of competing splice sites may be particularly poised to

evolve new signals. On the other hand, most of the putative novel splice acceptors we observed

clustered near previously identified acceptors in HIV-1, suggesting that conserved cis-acting

splicing signals may recruit factors that act promiscuously on new nearby sequences. Clusters

of splice sites might also provide redundancies that protect vital messages, as suggested

previously465,466. Frequent evolution of new splice sites may allow viruses to test out new

combinations of exons, potentially yielding new RNAs and proteins, like those reported here.

However, such novelty must compete with immune constraints—unstable novel polypeptides

like Ref can be targeted to the proteasome and presented on MHC molecules as new epitopes

for immune recognition.

HIV has likely evolved to produce calibrated message populations in T cells which seem

to be altered with relative ease, as in infection in HOS cells, suggesting that therapeutic

disruption of correct splicing may be feasible. A few studies have begun to explore small

molecule therapy to disrupt HIV-1 splicing432,436. Several factors could be responsible for

the differences we observed between HOS and T cells, including hnRNP A/B and H, SC35,

SF2/ASF and SRp40288,467. Inhibition of SF2/ASF has already been shown to abrogate

HIV-1 replication in vitro432. Thus the lability seen here for function of these factors suggests

they may be attractive antiretroviral targets.
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CHAPTER 4: Gene activity in primary T cells infected with HIV89.6:

intron retention and induction of distinctive genomic

repeats

This chapter is under review as:
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tron retention and induction of distinctive genomic repeats.
Retrovirology
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the figures. FD Bushman and I wrote the paper.

4.1 Abstract

Background: HIV infection has been reported to alter cellular gene activity, but published

studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding

inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells

infected with the low passage HIV isolate HIV89.6.

Results: Seventeen percent of cellular genes showed altered activity 48 hours after infection.

In a meta-analysis including four other studies, our data differed from studies of HIV infection

in cell lines but showed more parallels with infections of primary cells. We found a global

trend toward retention of introns after infection, suggestive of a novel cellular response to

infection. HIV89.6 infection was also associated with activation of several human endogenous

retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could

serve as vaccine targets. The most highly activated group of HERVs was a subset of the

ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9

long terminal repeats that contains an indel near the U3-R border. These data also allowed

quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of

chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from
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the same infected cell populations allowed quantification of authentic versus artifactual

chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′

read-through were the most common HIV89.6-host cell chimeric RNA forms.

Conclusions: Analysis of RNA abundance after infection of primary T cells with the

low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions,

notably intron retention and induction of transcription of retrotransposons and endogenous

retroviruses.

4.2 Background

HIV replication requires integration of a cDNA copy of the viral RNA genome into cellular

chromosomes, followed by transcription and splicing to yield viral mRNA. Alternative

splicing allows the small 9.1 kb HIV genome to generate at least 108 mRNA transcripts

encoding at least 9 proteins and polyproteins284,419,425,430,469,470. During replication, HIV

also reprograms cellular transcription and splicing. For example, the virus-encoded Vpr

protein arrests the cell cycle249,251,252,254 and the viral Tat protein binds to P-TEFb and

alters transcription at the HIV promoter and some cellular promoters as well471–476.

Changes in host cell gene expression have been reported during HIV infection317–319,477–485

and differences in expression have been observed associated with the stage486 and progres-

sion487 of disease. Multiple studies suggest that cells detect HIV infection, in part through

the recognition of cytoplasmic DNA in abortive infections177,488,489, and respond by inducing

interferon-regulated, apoptotic and stress response pathways319,477–481,483–485. Several stud-

ies have also suggested that HIV infection disrupts normal cellular splicing pathways446,485.

However, results have varied with many experimental parameters, including target cell type,

HIV isolate and the duration of infection. Many previously published studies have focused

on infections with lab-adapted HIV strains in transformed cell lines317,319,477,482,485,490, and

so results may not be fully reflective of infections in patients.

HIV infection also appears to induce the expression of human endogenous retroviruses
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(HERVs)333, particularly HERV-K328–332, and retrotransposons334. Immune responses to

HERV proteins appear stronger in HIV-infected individuals suggesting candidate markers of

infection and possible vaccine targets337–340. In contrast, two recent RNA-Seq studies of

expression during HIV infection did not report increases in HERV RNA319,482. The origin

of this discrepancy is unclear.

The suggestion that HIV integration may disrupt cellular cancer-associated genes and

thereby promote cell proliferation491–494 has focused attention on the range of novel message

types formed when HIV integrates within transcription units366,423,495–497. Chimeric reads

containing HIV and cellular sequence are also of interest due to the potential of lentiviral

vectors to trigger oncogenesis in gene therapy patients through insertional mutagenesis498–501.

A better understanding of chimera formation would help clarify this phenomenon in both

infected patients and gene therapy using lentiviral vectors.

In this study, we sought to generate data more representative of HIV replication in patients

by using Illumina sequencing to analyze transcriptional responses after infection of primary

T cells with HIV89.6, a low passage patient isolate449. This represents a continuation of a

long term effort to understand HIV-host cell interactions at the transcriptional level that

began with analysis of transcription by HIV89.6 in primary T cells using Pacific Biosciences

long read single molecule sequencing419. Our strategy here was to analyze a single time after

infection in depth with over 1 billion sequence reads from HIV89.6-infected and uninfected

host cells. These data were then combined with 147,281 unique integration site sequences

from the same infections and the Pacific Biosciences data on HIV89.6 transcription to 1)

elucidate effects of HIV infection on host cell mRNA abundances and splicing, 2) characterize

viral message structure in detail and 3) probe the nature of the chimeras formed between

host cell and viral RNAs.
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4.3 Methods

4.3.1 Cell culture and viral infections

HIV89.6 stocks were generated by the University of Pennsylvania Center for AIDS Research.

293T cells were transfected with a plasmid encoding an HIV89.6 provirus, and harvested virus

was passaged in SupT1 cells once. Viral stocks were quantified by measuring p24 antigen

content. Primary CD4+ T cells were isolated by the University of Pennsylvania Center

for AIDS Research Immunology Core from apheresis product from a single healthy male

donor (ND365) using the RosetteSep Human CD4+ T Cell Enrichment Cocktail (StemCell

Technologies). The Immunology Core maintains the IRB-approved protocol (IRB #705906)

and receipt of these cells is considered secondary use of de-indentified human specimens.

T cells were stimulated for 3 days at 0.5 × 106 cells per milliliter in R10 media (RPMI 1640

with GlutaMAX (Invitrogen) supplemented with 10% FBS (Sigma-Aldrich) with 100 units

U/mL recombinant IL2 (Novartis) + 5 µg/mL PHA-L (Sigma-Aldrich)). Cells were infected

in triplicate and mock infections were performed in duplicate. For each infection, 6.6 × 106

cells were mixed with 1.32 µg HIV89.6 in a total volume of 2.25 mL. Infection mixtures was

split into three wells of a 6 well plate for spinoculation at 1200 g for 2 hr at 37◦C. Cells were

incubated an additional 2 hr at 37◦C. Cells were then pooled into flasks and volume was

increased to a total of 12 mL. Spreading infection was allowed to proceed 48 hr at 37◦C,

after which cells were harvested. 1 × 106 cells were harvested for flow cytometry, and 6 × 106

cells were pelleted following two washes in PBS for nucleic acid extraction. Genomic DNA

and total RNA were isolated from 6× 106 T cells per infection using the AllPrep DNA/RNA

Mini Kit (Qiagen) with Qiashredder columns (Qiagen) for homogenization according to the

manufacturer’s instructions. DNA was eluted in 140 µL elution buffer. RNA samples were

treated with DNase prior to elution in 40 µL water.
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4.3.2 Analysis of HIV89.6 integration sites in primary T cells

Integration site sequences were determined for DNA fractions from the above infections

after ligation mediated PCR396. A total of 147,281 unique integration site sequences were

determined. An analysis of integration site distributions for these samples was reported in

Berry et al. 396 .

4.3.3 mRNA sequencing

Messenger RNA was isolated and amplified from purified total cellular RNA (3 µL or

approximately 9 µg from each uninfected sample, 25 µL or approximately 3 µg from each

infected sample) using the Illumina TruSeq RNA sample preparation kit according to

manufacturer’s protocol. SuperScript III (Invitrogen) was used for reverse transcription.

Each sample was tagged with a separate barcode and sequenced on an Illumina HiSeq 2000

using 100-bp paired-end chemistry.

4.3.4 Flow cytometry

To assess percent infected cells, 1 × 106 cells per infection were stained for flow cytometry.

All staining incubations were at room temperature. Cells were first washed in PBS and

then twice in FACS wash buffer (PBS, 2.5% FBS, 2 mM EDTA). Cells were fixed and

permeabilized with CytoFix/CytoPerm (BD) for 20 minutes and washed with Perm-Wash

Buffer (BD) before staining with anti-HIV-Gag-PE (Beckman Coulter) for 60 min. Finally

cells were washed in FACS wash buffer and resuspended in 3% PFA. Samples were run

on a LSRII (BD) and analyzed with FlowJo 8.8.6 (Treestar). Cells were gated as follows:

lymphocytes (SSC-A by FSC-A), then singlets (FSC-A by FSC-H), then by Gag expression

(FSC-A by Gag).

4.3.5 Analysis

Reads were aligned to the human genome using a combination of BLAT395 and Bowtie502

through the Rum pipeline503. Estimates of fragments per kilobase of transcript per million
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mapped reads and changes in expression for cellular genes were calculated by Cufflinks397.

Reads found to contain sequence similar to the HIV genome using a suffix tree algorithm were

aligned against the HIV89.6 genome using BLAT395. All statistical analyses were performed

in R 3.1.2388. RNA-Seq reads from Chang et al. 319 were downloaded from the Sequence

Read Archive (SRP013224) and aligned using the Rum pipeline.

Gene lists were obtained from the supplementary materials of four other studies of differential

gene expression during HIV infection319,482,483,486. We called genes differentially expressed

in Li et al. 486 if they had a reported p < 0.01 or in Lefebvre et al. 482 , Chang et al. 319

and Imbeault et al. 483 if they had an adjusted p < 0.05. We called genes as differentially

expressed in our own study if the adjusted p < 0.01. For the comparison of differentially

expressed genes regardless of direction in figure 4.1 (below the diagonal), it was unclear

exactly how many genes were studied in each study so we assumed a background of the

14,192 genes (the number of genes which could be tested for significance in our data).

We obtained transcriptional profiles comparing immune cell subsets from the Molecular

Signatures Database504. MSigDB set names from the MSigDB used in Figure 4.2A were

GSE10325 LUPUS CD4 TCELL VS LUPUS BCELL, GSE10325 CD4 TCELL VS MYELOID,

GSE10325 CD4 TCELL VS BCELL, GSE10325 LUPUS CD4 TCELL VS LUPUS MYELOID,

GSE3982 MEMORY CD4 TCELL VS TH1, GSE22886 CD4 TCELL VS BCELL NAIVE,

GSE11057 CD4 CENT MEM VS PBMC, GSE11057 CD4 EFF MEM VS PBMC, GSE3982

MEMORY CD4 TCELL VS TH2 and GSE11057 PBMC VS MEM CD4 TCELL and in

Figure 4.2B were GSE36476 CTRL VS TSST ACT 72H MEMORY CD4 TCELL OLD,

GSE10325 CD4 TCELL VS LUPUS CD4 TCELL, GSE22886 NAIVE CD4 TCELL VS 12H

ACT TH1, GSE3982 CENT MEMORY CD4 TCELL VS TH1, GSE17974 CTRL VS ACT

IL4 AND ANTI IL12 48H CD4 TCELL, GSE24634 IL4 VS CTRL TREATED NAIVE CD4

TCELL DAY5, GSE24634 NAIVE CD4 TCELL VS DAY10 IL4 CONV TREG, GSE1460

CD4 THYMOCYTE VS THYMIC STROMAL CELL and GSE1460 INTRATHYMIC T

PROGENITOR VS NAIVE CD4 TCELL ADULT BLOOD.
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We downloaded the RepeatMasker412 track from the UCSC genome browser505 and used

the SAMtools library506 to assign reads to the repeat regions. HERV-K age estimates were

obtained from the supplementary materials of Subramanian et al. 507 .

We used a Bayesian estimate of the ratio of expression in uninfected and HIV-infected

samples to account for sampling effort and differing expression in genomic regions. We

modeled the observed counts as a binomial distribution with a flat beta prior (α = 1,β = 1)

separately for uninfected and infected samples. We then Monte Carlo sampled the two

posterior distribution to estimate the posterior distribution of the ratio. For introns, the

number of binomial successes was set to the number of reads mapped to the intron and the

number of trials was the total number of reads observed in the genes overlapping that intron.

For repeat regions, the number of binomial successes was set to the number of reads mapped

to that region and the number of trials was the total number of reads mapped to the human

genome.

To estimate determinants of LTR12C expression, we fit a logistic regression for which

LTR12C increased in expression with HIV89.6 infection (95% Bayesian credible interval

>1) on to characteristics of the LTR12C regions. We extracted all the LTR12C regions

from the human genome and determined the U3-R boundary using a ends free alignment of

the previously reported U3-R border508–512 against the sequences. Regions less than 1,000

bases long were discarded. Previous studies disagreed about the location of the LTR12C

transcription start site and it appears that transcription may start in several places509,510.

We took the 5′ most site that had agreement between studies (transcription starting with

TGGCAACCC). We split the sequences into short, medium and long length classes based

on an indel about 70 bases upstream from the transcription start site. For each length class,

we generated a consensus sequence and counted the Levenshtein edit distance between the

consensuses and each corresponding sequence. We also counted the number of NFY motifs

(CCAAT or ATTGG), MZF1 motifs (GTGGGGA) and GATA2 motifs (GATA or TATC)

in the entire U3 region or checked in any of the three motifs was present in the 150 bases
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Sample Infection
rate (%)

Reads Human reads HIV reads % HIV % HIV in
infected

Uninfected-1 — 232,450,106 212,391,460 — — —
Uninfected-2 — 235,048,212 203,760,783 — — —
Infected-1 37.5 234,378,088 199,871,662 10,219,315 4.86 13.0
Infected-2 26 226,078,422 198,436,507 7,322,556 3.56 13.7
Infected-3 21 233,750,850 205,747,441 7,241,973 3.40 16.2

Table 4.1: Samples used in this study, their infection rates and sequencing depth. “% HIV in
infected” is an estimate based on the assumption that infected and uninfected cells contain
equal amounts of mRNA.

upstream of the TSS. A final regression model was selected using stepwise regression with

an AIC cutoff of 5. For display, the LTR12C sequences were aligned with MUSCLE513.

The abundance of the HIV RNA size classes was estimated as described in Figure 4.6. These

estimates were then multiplied by the within size class proportions estimated by Ocwieja

et al. 419 using PacBio sequencing of HIV89.6 to yield proportions over 78 measured HIV89.6

RNAs.

4.4 Results

4.4.1 Infections studied

Primary CD4+ T cells from a single human donor were infected with HIV89.6, a clade B

primary clinical isolate449, in three replicates. For comparison, two additional replicates

from the same donor were mock infected. Samples were harvested 48 hours after viral

inoculation, which allowed for widespread infection in the primary T cell cultures, though

some cells may have been infected secondarily by viruses produced in the first round. Thus

cultures probably were not tightly synchronized but did have extensive representation of

infected primary T cells. From these samples, we obtained 1,161,705,678 101-bp reads from

primary CD4+ T cells from a single donor; 1,021,207,853 were mapped to the human genome

and 24,783,844 to the HIV89.6 provirus (Table 4.1). Below we first discuss the influence of

infection on cellular gene activity and RNA splicing, then analyze HIV RNAs and lastly

identify chimeras formed between HIV and cellular RNAs.
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4.4.2 Changes in gene activity in primary T cells upon infection with HIV89.6

We observed significant expression changes in 3,142 genes (false discovery rate of q < 0.01),

which is 17.1% of expressed cellular genes. The genes with most extreme increases, all >6×

fold higher, during HIV infection included IFI44L, RSAD2, HMOX1, MX1, USP18, IGJ,

OAS1, CMPK2, DDX60, IFI44, IFI6, IFNG and CCL3. All of these have been reported

to be involved in innate immunity514 or are interferon-inducible515, highlighting a strong

innate immune response in the cells studied. Genes with the largest decreases, all >3× fold

lower, were GNG4, GPA33, IL6R, CCR8, RORC, AFF2 and CCR2.

Many gene ontology categories were significantly enriched for differentially expressed genes.

Notably upregulated with infection were genes involved in apoptosis, immune responses

and cytokine production (all q < 10−4) and down-regulated were genes involved in viral

gene expression and translation elongation and termination (all q < 10−19). These changes

suggest that the cells responded to HIV infection with the induction of inflammatory,

interferon-regulated and apoptotic responses, patterns posited from several previous stud-

ies319,477–484,490,516. Expression significantly increased for several genes that are characteristic

of other hematopoietic lineages, e.g. hemoglobin β , CD8, CD20 and CD117, while several

CD4+ T cell specific genes, e.g. CD4 and CD3, were downregulated, potentially consistent

with de-differentiation of infected or bystander cells. We return to this point in the discussion.

4.4.3 Comparison of transcriptional profiles from HIV89.6 infection of primary

T cells to data on HIV infection in other cell types

We sought to identify the transcriptional responses that were most conserved upon HIV

infection and so collected and analyzed data from four other studies of transcription in

HIV-infected cells (Table 4.2). These included two studies of infection of the SupT1 cell

line319,482, a study of ex vivo infection of primary CD4+ T cells483 and a study of lymphatic

tissue biopsies from acutely viremic patients486. Genes were scored as increased or decreased

in activity in infected cell populations, and the amount of agreement was compared among
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Cell type HIV type Differentially expressed
genes (Up/Down)

Study

Primary CD4+ T HIV89.6 3393 (1756/1637) This study
Primary CD4+ T NL4-3 BAL-IRES-HSA 228 (182/46) Imbeault et al. 483

Lymph node biopsies Acute infection 448 (383/65) Li et al. 486

SupT1 HIVLAI 4997 (2666/2331) Chang et al. 319

SupT1 NL4-3∆env-eGFP/VSV-G 579 (212/367) Lefebvre et al. 482

Table 4.2: Data from this study and four others used for meta-analysis of human gene
expression changes during HIV infection

the different studies.

No gene was called as differentially expressed in all five studies. Eight genes were differentially

expressed in the same direction in 4 out of 5 studies; AQP3 and EPHX2 were down-regulated

with HIV infection and CD70, EGR1, FOS, ISG20, RGS16 and SAMD9L were up-regulated.

Several of the up-regulated genes are known to be interferon-inducible, again emphasizing

the role of innate immune pathways.

For each pair of studies, we compared whether they agreed on the identities of differentially

expressed genes and whether they agreed on the direction of change (Figure 4.1). The

responses to infection in primary cells showed notable differences to responses in the SupT1

cell line. The two SupT1 studies were significantly similar to each other (p < 10−15) but were

not significantly associated or were negatively associated with data from ex vivo primary

cells and from lymphatic tissue from acutely infected HIV patients. In contrast, our data

was significantly associated with the primary cell (p < 10−15) and lymphatic tissue data

(p = 0.003). This documents significant differences in responses to HIV infection between

infected primary cells and SupT1 cells and suggests that results of infections in primary

cells more closely align with actual acute HIV infections in patients. SupT1 cells might

be expected to respond to infection differently that primary cells since they have several

nonsynonymous mutations in innate immunity genes517, have blocks in immune signaling

pathways518 and fail to activate many interferon-stimulated genes during HIV infection484.
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Figure 4.1: Comparisons among stud-
ies quantifying cellular gene expression
after HIV infection. For each pair of
studies, the association between up- and
down-regulation calls was measured for
genes identified by both studies as differ-
entially expressed (above the diagonal).
As another comparison, we also mea-
sured the agreement between studies for
which genes were called differentially ex-
pressed regardless of direction (below
the diagonal). The color scale shows the
conservative (i.e. closest to 1) boundary
of the confidence interval of the odds
ratio with blue indicating a positive as-
sociation and red a negative association
between studies. For confidence inter-
vals overlapping 1, the value was set to
1. Therefore all colored squares indicate
significant associations.

4.4.4 Comparison of the HIV infected cell transcriptional profiles to additional

experimental T cell profiles

To investigate the transcriptional changes in more depth, we compared the results of the five

studies of HIV infection to transcriptional profiles comparing immune cell subsets available

at the Molecular Signatures Database (MSigDB)504. The MSigDB reports genes that are

increased or decreased in relative expression for 185 pairs of transcriptional profiles involving

CD4+ T cells. We compared the lists of affected genes in each pair to genes altered in

activity by HIV infection. Those pairs of studies with the most significant associations with

HIV89.6 data are show in Figure 4.2A. For comparison, the associations with the four other

HIV transcriptional profiling studies mentioned above are shown as well.

The most significant associations for our data showed gene expression in HIV89.6-infected

cells moving away from typical T cell expression patterns and towards patterns more similar

to B cells, myeloid cells and bulk peripheral blood mononuclear cells (all Fisher’s exact test

p < 10−15) (Figure 4.2A). These changes were also seen, although to a lesser extent, in the

Imbeault et al. 519 study which also used primary CD4+ T cells.
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For comparison, we also extracted those profiles most strongly associated with the transcrip-

tional data on lymphatic tissue of HIV patients486. The profiles showed patterns similar to

strongly stimulated T cells, autoimmune disease and to the Th1 T cell subset (all p < 0.01)

(Figure 4.2B). Our data in primary CD4+ T cells paralleled the changes seen in lymphatic

tissue. These transcriptional changes again highlights the strong immune response generated

by HIV infection in primary cells.

4.4.5 Intron retention

Cells respond to infection by shutting down macromolecular synthesis at multiple levels520–524,

so we investigated whether cells also showed perturbations in splicing efficiency after infection.

As a probe, we created a database of cellular genomic regions annotated exclusively as exons

or introns in all splice forms in the UCSC gene database407 and quantified expression in

these regions in infected and uninfected cells. We found a significant increase in intronic

sequences relative to exonic sequence (Wilcoxon p < 10−15) (Figure 4.3A). This increase

in intronic sequence was reproducible between replicates in our study (Kendall’s τ = 0.42,

p < 10−15) (Figure 4.3B). We reanalyzed RNA-Seq data from Chang et al. 319 and also

documented intron retention which correlated with the changes seen in our data (Kendall’s

τ = 0.12, p < 10−15) (Figure 4.3C).

A possible artifactual explanation for enrichment of intronic sequences could involve greater

DNA contamination in the infected cells samples. That is, if the relative amount of DNA

differed between treatments, the amount of apparent intronic sequences could also differ

due to sequencing of contaminating DNA. To examine whether DNA contamination was

abundant in our samples, we compiled a collection of 27 large gene desert regions, defined

here as 1) regions outside the centrosome and first and last cytoband, 2) containing less than

1% unknown sequence, 3) containing no genes annotated in UCSC genes407, 4) containing

no repeats annotated in the repeatMasker database412 and 5) spanning more than 100

kb. No reads were mapped to these 41 Mb of gene deserts in any sample, arguing against

explanations based on DNA contamination. Thus these data indicate that intron retention
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Figure 4.3: Changes in the abundance of intronic regions with HIV infection. Expression
of intronic and exonic regions was quantified as the proportion of reads mapping within
the intron/exon out of the total reads mapping to the transcription units overlapping that
intron/exon. A) Comparison of the ratios of expression between infected and uninfected
replicates in exclusively intronic or exonic regions of transcription units. B) Reproducibility
of intron retention between replicates. Each point quantifies the change in expression with
HIV infection for a specific intronic region. The x-axis shows changes in gene activity
accompanying infection for one set of replicates (Infected-1 and Infected-2 vs. Uninfected-1)
and the y-axis shows the same data for different replicates (Infected-3 vs. Uninfected-2).
C) Reproducibility of intron retention between studies. The plot is arranged as in B but
with all data from our study combined on the x-axis and corresponding data from Chang
et al. 319 on the y-axis.

was increased in these cell populations upon HIV infection, revealing a previously undisclosed

aspect of the host cell transcriptional response to infection.

4.4.6 Induction of transcription from HERVs and LINEs by HIV89.6 infection

In our data, several of the intronic regions with the greatest increases in expression contained

HERVs. Thus we investigated the expression of HERVs, transposons and other repeated

sequences. Figure 4.4A shows a comparison of the association between changes in expression

with HIV89.6 infection and genomic repeat types annotated in the RepeatMasker database412

over varying levels of differential expression. At high levels of expression change, ERV-9 (odds

ratio at 4× expression: 152, 95% CI:82.5–259) and its long terminal repeat LTR12C (odds

ratio at 4× expression: 144, 95% CI: 98.2–207) are the only repeats highly associated with

HIV infection. Looking at genomic repeats with any significant increase during HIV infection,

the expression of many recently acquired genomic repeats, including L1HS, LTR5 Hs (a

human specific LTR of HERV-K), AluYa5, AluYg6 and SVA D and SVA F, were associated
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with HIV89.6 infection (Figure 4.4B).

We saw a relationship between the age of genomic repeats and its likelihood of being induced

by HIV89.6 infection. The most highly enriched repeats were associated with relatively recent

hominid-specific repeat classes as annotated by the RepeatMasker database (repeat classes

with p < 10−50 odds ratio: 31.6, 95% CI: 8.88–112). In HERV-K (HML-2), the most recently

active endogenous retrovirus in the human genome507,525,526, we saw that integrations unique

to the human genome507 were more likely to be differentially expressed than older HERV-Ks

(odds ratio: 5.38, 95% CI: 1.93–16.0).

Previous RNA-Seq studies of cellular expression during HIV infection in transformed cell

lines did not report increases in HERV mRNA319,482. To investigate this difference, we

downloaded and analyzed the RNA-Seq data from Chang et al. 319 , which quantified gene

activity in transformed SupT1 cells infected with a lab-adapted strain of HIV. We found a

much higher level of HERV expression in their data in both HIV-infected cells and uninfected

controls than in primary cells (Figure 4.4C). We suspect that in SupT1 cells, as with many

cancerous cells336,527–530, the baseline expression of transposons and endogenous retroviruses

is higher than in primary cells, masking further induction by HIV infection.

We observed heterogeneous expression among ERV-9/LTR12C sequences and so investigated

the primary sequence determinants. We observed that ERV-9/LTR12C has three variants of

differing length in the U3 region just upstream of the transcription start site (Figure 4.5A),

an important region for transcription initiation509. The U3 region of LTR12C also contains

multiple motifs for transcription factors NFY, GATA2 and MZF1512. To clarify factors

affecting expression levels, we counted the number of motifs matching these transcription

factors’ binding motifs, assigned each LTR12C to one of the length classes, counted the

number of mutations away from the consensus for that length class and checked for integration

in a transcription unit. We then carried out a regression analysis to test the effects of these

variables on LTR12C differential expression. We found that HIV89.6-induced transcription

was more likely with the fewer mutations away from consensus, the number of locations
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Figure 4.4: Repeat categories enriched
upon infection with HIV. A) The asso-
ciation of repeat regions differentially
expressed after HIV89.6 infection of pri-
mary T cells observed for varying thresh-
olds of differential expression. The
threshold used to call a gene differen-
tially expressed based on the Bayesian
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matching the NFY transcription factor binding motif (CCAAT) and LTRs containing the

short length variant of the 3′ U3 region. The presence of a MZF1 motif near the transcription

start site decreased transcription (Figure 4.5B).

4.4.7 HIV mRNA synthesis and splicing

Over 24 million Illumina reads mapped to HIV89.6, yielding an average coverage of over

240,000-fold. Reads mapping to HIV89.6 comprised between 3.4–4.8% of mapped reads in

the infected samples (Table 4.1). It is unclear whether HIV infection increases or decreases

the amount of mRNA in infected cells but if we assume HIV-infected cells contain the

same amount of mRNA as uninfected cells and adjust for rates of infection ranging between

21–37.5% (Table 4.1), we estimate that HIV transcripts comprise between 13.0–16.2% of

the total polyadenylated mRNA nucleotides in infected cells 48 hours after initial infection.

This parallels previous estimates of around 10%531 at 48 hours postinfection, 38% at 24

hours319 or 30% after 72 hours477.

Over 47,257 single reads spanned previously reported HIV splice junctions, allowing a

quantitative assessment of donor and acceptor utilization (Figure 4.7A). As expected from

previous studies419,425, the most abundant junctions were D1-A5 and D4-A7. We confirmed

the use of unusual splice acceptors A8c and A5a, previously reported in HIV89.6
419. In the

Illumina sequencing, we saw a higher abundance of D1-A1 and D1-A2 splice junctions than

in PacBio sequencing419, possibly indicative of recovery bias in PacBio sequencing.

A 3′ bias is apparent in our sequencing data (Figure 4.6). This could be due to the poly-A

capture step of the protocol where any break in the RNA would result in distal 5′ sequences

being lost532. We used sequence reads from the large unspliced HIV intron 1 to measure this

bias using a regression of the log of the number of fragments with a 5′-most end starting at

a given position against the distance of that position from the viral polyadenylation site,

yielding an estimated probability of breakage of 0.021% per base (Figure 4.6). Given this

rate of truncation, there is only a 14% chance of reaching the 5′ end of the 9171 nt unspliced
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HIV genome ((1 − 0.00021)9171).

Ocwieja et al. 419 determined the relative abundance of HIV89.6 of similarly sized transcripts

using PacBio single molecule sequencing, but were not able to estimate the relative abundance

of all transcripts due to a sequencing bias favoring shorter transcripts. For this reason,

relative abundances could only be specified within message size classes (i.e. the 4 kb, 2 kb

and unexpectedly a 1 kb size class as well) and the overall quantitative abundances were

unknown. Our RNA-Seq data are unable to reconstruct the multiply spliced messages due

to short read lengths but do permit estimation of size class abundances after correcting for

3′ bias (Figure 4.6). Thus the PacBio data reported by Ocwieja et al. 419 and the Illumina

data reported here can be combined together to determine complete relative abundance of

78 HIV89.6 transcripts (Figure 4.7B).

The most abundant HIV mRNAs were the unspliced HIV genome (37.6%), a transcript

encoding Nef (D1-A5-D4-A7: 15.5%), two 1 kb size class transcripts (D1-A5-D4-A8c: 10.6%,

D1-A8c: 4.9%) and two Rev-encoding transcripts (D1-A4c-D4-A7: 4.2%,D1-A4b-D4-A7:

3.1%).

Using these abundances, we can estimate the number of HIV89.6 genomes in these primary T

cells 48 hours after infection. To determine the proportion of the mRNA nucleotides from viral

transcripts, we multiplied the estimated abundances by their transcript lengths. Unspliced

genome transcripts appear to form 79% of the mRNA nucleotides from HIV89.6 transcripts.

Assuming T cells contain at least 0.1 pg of mRNA then an infected cell should contain at

least 0.011 pg of unspliced HIV transcript (0.1pg × 0.14HIV mRNA nt
cell mRNA nt × 0.79unspliced mRNA nt

HIV mRNA nt )

or, assuming 9171 bases of RNA weigh about 5 × 10−6 pg, at least 2200 HIV genomes at 48

hour post infection. This estimate roughly agrees with previous estimates of HIV production

per cell531,533,534.
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Figure 4.6: Estimating relative
abundance of HIV89.6 message
size classes using RNA-Seq data.
A) RNA-Seq coverage of the
HIV89.6 genome for the replicates
in this study. Each replicate is in-
dicated by a different color. The
HIV genome is shown on the x-
axis and the number of reads
that aligned to each position is
shown on the y-axis. Black line
indicates the 0.021% coverage de-
crease per base distance from the
3′ end of the mRNA estimated
from a least squares fit on the
read counts in the first intron.
B) Diagram of the segments of
the HIV89.6 RNA present in each
of 9 kb, 4 kb, 2 kb and 1 kb size
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C) The proportion of reads
mapped to each of the segments
of the HIV89.6 genome shown in
B adjusted by the length of the
segment. Each replicate is shown
by a different color.
D) Corrected representation of
RNA segments from the differ-
ent size classes. Because cDNA
synthesis was primed from the
polyA tail, more 3′ sequences are
recovered preferentially. Using
the bias estimate from A, we ad-
justed each genome segment by
the inverse of the bias predicted
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end of the mRNA. Corrected pro-
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replicate.
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mates in D by calculating the dif-
ference between segments. Repli-
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4.4.8 Human-HIV chimeric reads

In our data, 80,045 reads contained sequences matching to both HIV and human genomic

DNA, but a considerable complication arises because chimeras can be formed artifactually

during the preparation of libraries for sequence analysis535–542. Many of the chimeric

sequences in our data contained junctions between the HIV and human sequence where the

ends of the human and HIV sequence were similar and potentially complementary (Figure

4.8A). This raises the concern that some of these chimeras could be products of in vitro

recombinations during the reverse transcription, amplification and sequencing processes.

Template switching between sequences with shared similarity is a well established property

of retroviral reverse transcriptase enzymes used in RNA-Seq library preparation543–545.

Priming off incomplete transcripts during DNA synthesis is another potential source of

chimeric transcripts535,536,546,547. Failing to account for chimeras can hinder interpretation

of deep sequencing data537–542.

Also consistent with artifactual chimera formation, 7,354 reads (9.2% of chimeric messages)

contained HIV sequences joined to human mitochondrial sequences, yet HIV proviruses have

not previously been found integrated in mitochondrial DNA423. To probe this further, we

used ligation-mediated PCR to recover integration site junctions from the same infected cell

populations analyzed by RNA seq, yielding 147,281 unique integration sites (Figure 4.8B)396.

No integrations in mitochondrial DNA were detected. We conclude that chimeric HIV-

mitochondrial sequence reads in the RNA-seq data represent artifacts of library construction

and so used these chimeras as an assay to evaluate subsequent data filtering steps. We

reasoned that reads without sequence similarity at junctions between human and HIV

mapping were less likely to be artifacts caused by template switching. Filtering to only reads

where no overlap and no unknown intervening sequence was present between human and HIV

portions left 2181 junctions and reduced the proportion of reads containing mitochondrial

DNA to 2.4%. Of the remaining HIV-human chimeric reads, the HIV portion of 605 sequences

bordered the 3′ or 5′ end of HIV or an HIV splice donor or acceptor. Filtering to these
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more likely authentic junctions left only 2 (0.3%) chimeric reads containing mitochondrial

sequence. This decrease in likely mitochondrial artifacts suggests that the filtering was

effective. The high rate of mitochondrial chimeras in the unfiltered sequences raises the

concern that artifacts may easily distort results in studies using similar amplification and

sequencing techniques.

Chimeric messages composed of HIV and cellular RNA sequences can be formed by cellular

gene transcription reading into the integrated provirus, by HIV transcription reading out

through the viral polyadenylation site or by splicing between human and viral splice sites.

In our filtered data, the predominant forms appear to be derived from reading through the

HIV polyadenylation signal into the surrounding DNA (78%), splicing out of the viral D4

splice donor to join to human slice acceptors (17%) and reading into the HIV 5′ LTR from

human sequence (4.0%) (Figure 4.8C). No splice site other than D4 had more than two

chimeric reads observed.

The filtered chimeric reads had many traits consistent with biological chimera formation.

The reads containing HIV D4 joined to human sequences had the characteristics expected of

splicing—72.1% of the chimeric junctions mapped to known human acceptors and 96.1%

mapped to a location immediately preceded by the AG consensus of human mRNA acceptors.

The reads containing the 5′ or 3′ LTR border were almost exclusively (93%) found in

transcription units, with odds of being in a gene 2.3-fold (95% CI: 1.6–3.2×) higher than

integration sites from the same sample. The readthrough chimeras were also more likely

to be located in an exon than integration sites (odds ratio: 2.1×, 95% CI: 1.6–2.6× only

considering integration sites and chimeras in transcription units).

Chimeric sequences have the potential to alter the expression of proto-oncogenes leading

to proliferation of the host cell498–501. In our data, we saw no significant enrichment of

integrations in transcription units annotated as proto-oncogenes by the Uniprot Knowledge-

base548,549 (Fisher’s exact test p = 0.15). Chimeras were enriched relative to integration sites

in genes annotated in a broader collection of cancer-related genes550 (odds ratio: 1.3, 95%
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CI: 1.1–1.7). However, the expression of overlapping genes, as estimated by Cufflinks, was

even more highly associated with chimeric reads (generalized linear model of chimera versus

integration site on log(FPKM): p = 2 × 10−9) and adding the cancer-related gene annotation

was not significantly associated after accounting for expression (ANOVA: p = 0.06). This

lack of enrichment might be expected since cells were infected for only 48 hours and it is

unlikely that there would be time for any selection to occur.

We next compared whether the human and viral segments of chimeric reads agreed or

disagreed in orientation (i.e. strand transcribed) for reads with the human portion mapped

within annotated transcription units. The sequencing technique used here does not preserve

strand information, but we can check whether the strand of a sequence read agrees or

disagrees with the annotated gene strand and compare this to the observed strand of the

HIV portion of the read. Chimeras involving HIV splice donor D4 were more highly enriched

for matching orientations (odds ratio: 52.5×, 95% CI: 12.1–307×) suggesting that pairing

with human splice acceptors constrains the orientation of D4 chimeric reads. We also found a

strong association between the orientation of the human and HIV portions of chimeric reads

within 3′ and 5′ chimeras (odds ratio: 6.2×, 95% CI: 3.9–10.2×). This highly significant

enrichment of HIV and human genes in the same orientation (Fisher’s exact test p < 10−15)

might indicate that antisense HIV RNA is rapidly degraded by a response to double-stranded

RNA or that polymerases oriented in opposing directions interfere with one another during

elongation.

Based on these data, we can propose a lower bound on the relative abundance of chimeras. If

we assume that our filtering removed nearly all artifacts so that we have few false positives,

then our estimate should be lower than the true proportion of chimeras. In our data, only

604
12,689,879 = 0.0048% of reads containing sequence mapping to HIV also contained identifiable

chimeric junctions. However, this is an underestimate because in an HIV-derived mRNA, any

fragment of the sequence will be mappable to HIV, while for a chimeric sequence only a read

spanning the HIV-human junction will allow identification of a chimera. If we assume that
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25 bases of sequence are necessary to map to human or HIV sequence, then, with the 100-bp

reads used here, only read fragments starting between 75- and 25-bp downstream of the

chimeric junction will be identifiable. If we assume the average chimeric mRNA sequences is

at least 2 kb long, then a read from a chimeric sequence has at most a 50
2000 = 2.5% chance

of containing a mappable junction. Thus, a lower bound for the proportion of HIV mRNA

that also contain human-derived sequences is 0.2% (0.0048%
2.5%

). Looking only at splicing from

HIV donor D4, we saw 16,843 reads containing a junction from D4 to an HIV acceptor and

104 reads from D4 to human sequence. Thus, in our data, 0.6% of D4 splice products form

junctions with human acceptors instead of HIV acceptors.

4.5 Discussion

Here we used RNA-Seq to analyze mRNA accumulation and splicing in primary T cells

infected with the low passage isolate HIV89.6. We did not carry out dense time series analysis,
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compare different human cell donors or compare different perturbations of the infections—

instead, we focused on generating a dense data set at a single time point. We analyzed

replicate infected cell and control samples to allow discrimination of within-condition versus

between-condition variation and assessed differences using a series of bioinformatic approaches.

Many previous studies have used microarray technology or RNA-Seq to study gene activity

in HIV-infected cells317,319,477–485,490, usually analyzing infections of transformed cell lines or

laboratory adapted strains of HIV-1. Here we present what is to our knowledge the deepest

RNA-Seq data set reported for infection in primary T cells using a low passage HIV isolate

(HIV89.6).

This RNA-Seq data set was paired with a set of 147,281 unique integration site sequences

extracted from the same infections, which were critical to our ability to quality control

chimeric reads. An advantage of studies using cell lines and laboratory adapted strains

is that a high proportion of cells can be infected, whereas in this study we achieved only

∼30% infection. In this study, T cells were activated using IL-2 and PHA-L. Further studies

investigating the effects of cells activated in a more physiological way might provide further

benefits. However, we report distinctive features of the transcriptional response not seen

in studies of HIV infections in cell lines. Novel in this study are 1) identification of intron

retention as a consequence of HIV infection, 2) the finding of activation of ERV-9/LTR12C

after HIV infection, 3) generation of a quantitative account of the structures and abundances

of over 70 HIV89.6 messages and 4) clarification of the predominant types of HIV-host

transcriptional chimeras. These findings are discussed below.

Broad changes in host cell mRNA abundances were evident after infection, with over 17%

of expressed genes changing significantly in activity. Changes included response to viral

infection, apoptosis and T cell activation. Although it is not possible here to separate

the response of infected and bystander cells, this study highlights the drastic changes in

cellular expression caused by HIV-1 infection. In a meta-analysis including four previously

published studies, no gene was detected as differentially expressed in all five studies and
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only a handful of genes appeared in four out of five studies. Further analyses showed that

expression changes appear to be cell type specific, raising concerns that studies using cell

lines may not fully reflect host cell responses in in vivo infections.

Unexpectedly, intronic sequences were more common in the RNA-Seq data from cells after

HIV89.6 infection than in mock infected cells. The mechanism is unclear. It is possible that

the splicing machinery is reduced in activity after 48 hours of infection, perhaps as a part of

the antiviral response of infected and bystander cells. HIV infection does appear to alter

expression and localization of some splicing factors446,551,552 and genes involved in RNA

splicing were more likely to be differentially expressed in our study (Benjamini-Hochberg

corrected Fisher’s exact test: q = 2×10−5). Alternatively, fully spliced mRNAs might be more

rapidly degraded after infection, possibly by interferon-mediated induction of RNaseL553

or off-target binding of viral protein Rev might mediate export of incompletely spliced

cellular transcripts226,227. A speculative possibility is that HIV89.6 encodes a factor that

alters cellular splicing or promotes mRNA degradation to optimize splicing and translation

of viral messages.

Infection resulted in increased expression of specific cellular repeated sequences. HERVs, in

particular HERV-K, have previously been observed to show increased RNA accumulation with

HIV infection328–333,340 and possibly represent vaccine targets because of their production

of distinctive proteins335–340. Here, though we saw modest increases in HERV-K expression,

ERV-9 had the greatest change in expression (33 LTR12C and 14 ERV-9 annotated regions

with greater than 4× change in expression). Previous RNA-Seq studies of HIV infection in

cell lines did not report increases in HERV expression319,482 but this difference is likely due

to a much higher baseline expression of HERVs in transformed cell lines. We also observed

increases in LINE and Alu element transcription, as has been reported previously334, and

expression changes in ERV-9/LTR12C expression associated with transcription factor motifs

and U3 variants.

Many of the repeated sequence elements that were induced by HIV89.6 infection are relatively
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recently integrated in the human genome. The reason for this pattern is unclear. It may

be that older elements have accumulated more mutations, resulting in an inactivation of

transcriptional signals. Alternatively, perhaps the elements that are induced have been

recruited for transcriptional control of cellular functions, so that their transcriptional activity

is preserved evolutionarily511,554–557.

Comparison of the results of sequencing HIV89.6 messages using long-read single molecule

sequencing (Pacific Biosciences) and dense short read sequencing (Illumina data reported

here) allowed a full quantitative accounting of more than 70 HIV89.6 splice forms. The full

length unspliced HIV RNA comprised 37.6% of all messages, corresponding to more than

2000 genomes per cell. Notably abundant messages included the full length genome and

spliced transcripts encoding Nef and Rev transcripts. The full set of messages is summarized

in Figure 4.7B.

Our previous analysis using PacBio sequencing419 revealed an unusually prominent 1 kb

size class. HIV89.6 encodes a splice acceptor (A8c) within Nef responsible for formation of

the short messages. Our data indicated that two members of the 1-kb size class, D1-A5-

D4-A8c and D1-A8c, accounted for 10.6% and 4.9% of all viral messages. The 1 kb size

class as a whole accounted for fully 20% of messages. The function of this large amount

of 1 kb transcript is unknown. The most abundant 1 kb transcripts do not appear to

encode significant open reading frames although other 1 kb transcripts can encode a Rev-

Nef fusion419. Most HIV/SIV variants do appear to encode an acceptor near this position,

suggesting a potential unknown function for these short spliced forms419,427,431. This analysis

also suggests a lower proportion of 4kb than has been seen for another isolate322 suggesting

that these ratios may vary with strain, time of infection or other conditions.

After filtering, we detected a sizeable number of apparently authentic chimeras containing

both HIV and cellular sequences. Mechanisms of insertional activation have been studied

intensively in animal models of transformation and in adverse events in human gene therapy.

One of the most common mechanisms involves insertion of a retroviral enhancer near a
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cellular promoter, so that transcription of a nearby gene is increased499,558–560. However,

another common mechanism involves formation of chimeric messages involving both cellular

and viral/vector sequences498,499. A targeted in vitro study of chimeric message formation

by lentiviral vectors showed examples of multiple types of read-in and -out and splice-in and

-out500, which may have been more frequent and more varied than for HIV89.6 proviruses

studied here. The low level of splicing and reading into HIV in this study may be a reflection

of the high rate HIV transcription in these infected cells–because HIV was so highly expressed,

there would be more opportunities for polymerase to splice out of or read through the HIV

genome than to read or splice in. The vast majority of HIV proviruses in expanded clones

in well-suppressed patients appear to be defective494—going forward, it will be of interest to

investigate whether these HIV proviruses are damaged in ways that promote formation of

chimeric transcripts.

Lastly, we note that several features of the transcriptional response to HIV89.6 infection were

suggestive of de-differentiation away from T cell specific expression patterns. The increase

in expression of cellular HERVs and LINEs is characteristic of cells in early development.

Specific HERVs and transposons, including ERV-9/LTR12C and HERV-K, have been

implicated in regulating gene activity early in development511,554,557,561–564. Several genes

related to other hematopoietic cell types showed elevated RNA abundance after HIV89.6

infection. These data are of interest given the finding that patients undergoing long term

ART can contain long lived T cell clones that may contribute to the latent reservoir494,565–568.

Possibly the transcriptional responses seen in infected primary T cells here are reflective

of processes leading to formation of the long-lived latently-infected cells with stem-like

properties.

4.6 Conclusions

Infections of primary T cells with a low passage HIV isolate showed several distinctive

features compared to previously published data using T cell lines and/or lab-adapted HIV

strains. We found strong changes in expression in genes related to immune response and
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apoptosis similar to studies of HIV infection in patient samples and primary cells but different

from studies performed in SupT1 cell lines. Notable changes after infection included intron

retention and activation of recently integrated retrotransposons and endogenous retroviruses,

in particular LTR12C/ERV-9. We also present complete absolute estimation of over 70

messages from HIV89.6 and specify the major virus-host chimeras as splicing from viral

splice donor 4 to cellular acceptors and readthrough from the 5′ and 3′ ends of the provirus.

4.7 Availability of supporting data

RNA-Seq reads from this study are available at the Sequence Read Archive under accession

number SRP055981. The integration site data is available at the Sequence Read Archive

under accession number SRP057555.
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5.1 Abstract

Diagnostic methods for detecting and quantifying HIV RNA have been improving, but

efficient methods for point-of-care analysis are still needed, particularly for applications in

resource-limited settings. Detection based on reverse-transcription loop-mediated isothermal

amplification (RT-LAMP) is particularly useful for this, because when combined with

fluorescence-based DNA detection, RT-LAMP can be implemented with minimal equipment

and expense. Assays have been developed to detect HIV RNA with RT-LAMP, but existing

methods detect only a limited subset of HIV subtypes. Here we report a bioinformatic study

to develop optimized primers, followed by empirical testing of 44 new primer designs. One

primer set (ACeIN-26), targeting the HIV integrase coding region, consistently detected

subtypes A, B, C, D, and G. The assay was sensitive to at least 5000 copies per reaction for
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subtypes A, B, C, D, and G, with Z-factors of above 0.69 (detection of the minor subtype F

was found to be unreliable). There are already rapid and efficient assays available for detecting

HIV infection in a binary yes/no format, but the rapid RT-LAMP assay described here has

additional uses, including 1) tracking response to medication by comparing longitudinal

values for a subject, 2) detecting of infection in neonates unimpeded by the presence of

maternal antibody, and 3) detecting infection prior to seroconversion.

5.2 Introduction

Despite the introduction of efficient antiretroviral therapy, HIV infection and AIDS continue

to cause a worldwide health crisis570. Methods for detecting HIV infection have improved

greatly with time571–today rapid assays are available that can detect HIV infection in a

yes-no format using a home test kit that detects antibodies in saliva. Viral load assays that

quantify viral RNA with quick turn-around time are widely available in the developed world.

However, quantitative viral load assays are not commonly available with actionable time

scales in much of the developing world. This motivates the development of new rapid and

quantitative assays that can be used at the point of care with minimal infrastructure572,573.

One simple and quantitative detection method involves reverse transcription-based loop

mediated isothermal amplification (RT-LAMP)574. In this method, a DNA copy of the viral

RNA is generated by reverse transcriptase, and then isothermal amplification is carried out to

increase the amount of total DNA. Primer binding sites are chosen so that a series of strand

displacement steps allow continuous synthesis of DNA without requiring thermocycling.

Reaction products can be detected by adding an intercalating dye to reaction mixtures

that fluoresces only when bound to DNA, allowing quantification of product formation by

measurement of fluorescence intensity. Such assays can potentially be packaged in simple

self-contained devises and read out with no technology beyond a cell phone.

RT-LAMP assays for HIV-1 have been developed previously and reported to show high

sensitivity and specificity for subtype B, the most common HIV strain in the developed
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world573,575,576. Another recent study reported RT-LAMP primer set optimized for the

detection of HIV variants circulating in China577, and another on confirmatory RT-LAMP

for group M viruses578. Assays have also been developed for HIV-2579. A complication

arises in using available RT-LAMP assays due to the variation of HIV genomic sequences

among the HIV subtypes580,581, so that an RT-LAMP assay optimized for one viral subtype

may not detect viral RNA of another subtype582. Tests presented below show that many

RT-LAMP assays are efficient for detecting subtype B, for which they were designed, but

often performed poorly on other subtypes. Subtype C infects the greatest number of people

worldwide, including in Sub-Saharan Africa, where such RT-LAMP assays would be most

valuable, motivating optimization for subtype C. Several additional non-B subtypes are also

responsible for significant burdens of disease world-wide583.

Here we present the development of an RT-LAMP assay capable of detecting HIV-1 subtypes

A, B, C, D, and G. We first carried out a bioinformatic analysis to identify regions conserved

in all the HIV subtypes. We then tested 44 different combinations of RT-LAMP primers

targeting this region in over 700 individual assays, allowing identification of a primer set

(ACeIN-26) that was suitable for detecting these subtypes. We propose that the optimized

RT-LAMP assay may be useful for quantifying HIV RNA copy numbers in point-of-care

applications in the developing world, where multiple different subtypes may be encountered.

5.3 Methods

5.3.1 Viral strains used in this study

Viral strains tested included HIV-1 92/UG/029 (Uganda) (subtype A, NIH AIDS Reagent

program reagent number 1650), HIV-1 THRO (subtype B, plasmid derived, University of

Pennsylvania CFAR)584, CH269 (subtype C, plasmid derived, University of Pennsylvania

CFAR)584, UG0242 (subtype D, University of Pennsylvania CFAR), 93BRO20 (subtype F,

University of Pennsylvania CFAR), HIV-1 G3 (subtype G, NIH AIDS Reagent program

reagent number 3187)585.
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Viral stocks were prepared by transfection and infection. Culture supernatants were cleared

of cellular debris by centrifugation at 1500g for 10 min. The supernatant containing virus

was then treated with 100 U DNase (Roche) per 450 uL virus for 15 min at 30◦C. RNA was

isolated using the QiaAmp Viral RNA mini kit (Qiagen GmbH, Hilden, Germany). RNA

was eluted in 80 uL of the provided elution buffer and stored at -80◦C.

Concentration of viral RNA copies was calculated from p24 capsid antigen capture assay

results provided by the University of Pennsylvania CFAR or the NIH AIDS-reagent program.

In calculating viral RNA copy numbers, we assumed that all p24 was incorporated in virions,

all RNA was recovered completely from stocks, 2 genomes were present per virion, 2000 p24

molecules per viral particle, and the molecular weight of HIV-1 p24 was 25.6 kDa.

5.3.2 Assays

RT-LAMP reaction mixtures (15 µL) contained 0.2 µM each of primers F3 and B3 (if a

primer set used multiple B3 primers, mixture contained 0.2 µM of each); 1.6 µM each of FIP

and BIP primers (if a primer set had multiple FIP primes, reaction mixture contained 0.8

µM of each FIP primer); and 0.8 µM each of LoopF and LoopB primers; 7.5 µL OptiGene

Isothermal Mastermix ISO-100nd (Optigene, UK), ROX reference dye (0.15 µL from a 50X

stock), EvaGreen dye (0.4 µL from a 20X stock; Biotium, Hayward, CA); HIV RNA in 4.7

µL; AMV reverse transcriptase (10U/µL) 0.1 µL and water to 15 µL. In most cases where

two primer sets were combined, the total primer concentration within the reaction was

doubled such that the above individual primer molarities were maintained. For the mixture

ACeIN-26+F-IN (S2 Table, line 46), the total primer concentration was not doubled–the

F-IN primer set comprised 25% of the total primer concentration, and the ACeIN-26 primer

set comprised 75% of the total primer concentration with the ratios of primers listed above

preserved. This mixture was combined 1:1 with the ACe-PR primer set (S2 Table, line 47)

such that total primer concentration in the final mixture was doubled.

Amplification was measured using the 7500-Fast Real Time PCR system from Applied
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Biosystems with the following settings: 1 minute at 62◦C; 60 cycles of 30 seconds at

62◦C and 30 seconds at 63◦C. Data was collected every minute. Product structure was

assessed using dissociation curves which showed denaturation at 83◦C. Products from selected

amplification reactions were analyzed by agarose gel electrophoresis and showed a ladder of

low molecular weight products (data not shown).

Product synthesis was quantified as the cycle of threshold for 10% amplification. Z-factors586

were calculated from tests of 24 replicates using the ACeIN-26 primer set in assays with

viral RNA of each subtype. No detection after 60 min was given a value of 61 min in the

Z-factor calculation.

5.4 Results

5.4.1 Testing published RT-LAMP primer sets against multiple HIV subtypes

We first assessed the performance of existing RT-LAMP assays on RNA samples from

multiple HIV subtypes. We obtained viral stocks from HIV subtypes A, B, C, D, F, and

G, estimated the numbers of virions per ml, and extracted RNA. RNAs were mixed with

RT-LAMP reagents which included the six RT-LAMP primers, designated F3, B3, FIP, BIP,

LF and LB574. Reactions also contained reverse transcriptase, DNA polymerase, nucleotides

and the intercalating fluorescent EvaGreen dye, which yields a fluorescent signal upon DNA

binding. DNA synthesis was quantified as the increase in fluorescence intensity over time,

which yielded a typical curve describing exponential growth with saturation (examples are

shown below). Results are expressed as threshold times (Tt ) for achieving 10% of maximum

fluorescence intensity at the HIV RNA template copy number tested.

In initial tests, published primer sets targeting the HIV-1 subtype B coding regions for

capsid (CA), protease (PR), and reverse transcriptase (RT) (named B-CA, B-PR and B-RT)

were assayed in reactions with RNAs from four of the subtypes. Results with each primer set

tested are shown in Figure 5.1 in heat map format, where each tile summarizes the results of

tests of 5000 RNA copies. Primers and their groupings into sets are summarized in S1 and
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S2 Tables, average assay results are in S3 Table, and raw assay data is in S4 Table. Assays

(Figure 5.1, top) with the B-CA, B-PR and B-RT primer sets detected subtypes B and D

at 5000 RNA copies with threshold times less than 20 min. However, assays with B-CA

and B-RT detected subtypes C and F with threshold times > 50 min, indicating inefficient

amplification and the potential for poor separation between signal and noise. B-PR did

not detect subtype C at all. In an effort to improve the breadth of detection, we first tried

mixing the B-PR primers, which detected clade F (albeit with limited efficiency) with the

B-CA and B-RT primers (Figure 5.1 and S3 and S4 Tables). In neither case did this provide

coverage of all four clades tested. We thus did not test these primer sets on RNAs from the

remaining subtypes and instead sought to develop primer sets targeting different regions of

the HIV genome.

5.4.2 Primer design strategy

To design primers that detected multiple HIV subtypes efficiently, we analyzed alignments

of HIV genomes (downloaded from the Los Alamos National Laboratory site580) for regions

with similarity across most viruses, revealing that a segment of the pol gene encoding

IN was particularly conserved (Figure 5.2A). A total of six primers are required for each

RT-LAMP assay574. We used the EIKEN primer design tool to identify an initial primer set

targeting this region. In further analysis, positions in the alignments were identified within

primer landing sites that commonly contained multiple different bases. Primer positions

were manually adjusted to avoid these bases when possible, and when necessary mixtures

were formulated containing each of these commonly occurring bases (S1 and S2 Tables).

An extensive series of variants targeting the IN coding region was tested empirically in

assays containing RNAs from multiple subtypes (5000 RNA copies per reaction, over 700

total assays; S3 and S4 Tables). Based on initial results, primers were further modified by

adjusting the primer position or addition of locked nucleic acids as described below.
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Figure 5.1: Summary of amplification results for all the RT-LAMP primer sets tested in
this study. The data is shown as a heat map, with more intense yellow coloring indicating
shorter amplification times (key at bottom). Primer sets tested are named along the left of
the figure. Primer sequences, and their organization into LAMP primer sets, are cataloged
in S1 and S2 Tables. The raw data and averaged data are collected in S3 and S4 Tables.
ACeIN-26 primer set (highlighted) had one of the best performances across the subtypes
and a relatively simple primer design.
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Figure 5.2: Bioinformatic analysis to design subtype-agnostic RT-LAMP primers. A)
Conservation of sequence in HIV. HIV genomes (n = 1340) from the Los Alamos National
Laboratory collection were aligned and conservation calculated. The x-axis shows the
coordinate on the HIV genome, the y-axis shows the proportion of sequences matching the
consensus for each 21 base segment of the genome (red points). The black line shows a
101 base sliding average over these proportions. The vertical red shading shows the region
targeted for LAMP primer design that was used as input into the EIKEN primer design tool.
Numbering is relative to the HIV89.6 sequence. B) Aligned genomes, showing the locations
of the ACeIN-26 primers. Sequences are shown with DNA bases color-coded as shown at the
lower right. Each row indicates an HIV sequence and each column a base in that sequence.
Horizontal lines separate the HIV subtypes (labeled at left). Arrows indicate the strand
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reverse compliments for ease of viewing.
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5.5 Testing different primer designs

Our first design, ACeIN-1 (“ACe” for “All Clade” and “IN” for “integrase”), targeted the

HIV IN coding region and contained multiple bases at selected sites to broaden detection

(Figure 5.1). ACeIN-2 and-3 have primers (B3) with slightly different landing sites. Tests

showed that the mixture of primers allowed amplification with a shorter threshold time than

did either alone (Figure 5.1).

We also tried to design a new primer set to the CA coding region (Figure 5.1, ACeCA)

but found that the set only amplified clade B, and not efficiently. Thus this design was

abandoned.

ACeIN-3 through-6 were altered by inserting a polyT sequence between the two different

sections of FIP and BIP in various combinations, a modification introduced with the goal of

improving primer folding, but these designs performed quite poorly (Figure 5.1).

Because the FIP primer appeared to bind the region with most variability among clades, we

tried variations that bound to several nearby regions. These were tried with and without

the polyT containing BIP and FIP primers in various combinations (Figure 5.1, ACeIN-7

through-22). We also tried mixing all of the variations of FIP together (ACeIN-23; S2 Table).

The ACeIN-23 primer set was tried as a mixture with the B-PR set to try to capture clade

F, yielding a relatively effective primer set (Figure 5.1, ACeIN-23+B-PR).

In an effort to increase affinity, an additional G/C pair was added to F3 and tested with

various other IN primers (Figure 5.1, ACeIN-24 through-31). Testing showed improvement,

with ACeIN-26 showing particularly robust amplification.

In a second effort to increase primer affinities, we substituted locked nucleic acids (LNAs) for

selected bases that were particularly highly conserved among subtypes (Figure 5.1, ACeIN-30,

-31, -32, -33, and-34). Some improvement was shown over the non-LNA containing bases.

However, the ACeIN-26 primer set was as effective as or better than any LNA containing

92



Primer name Sequence

ACeIN-F3 c CCTATTTGGAAAGGACCAGC
ACeIN-B3a TCTTTGAAAYATACATATGRTG
ACeIN-B3b AACATACATATGRTGYTTTACTA
ACeIN-FIPe CTTGGTACTACYTTTATGTCACTAAARCTACTCTGGAAAGGTG
ACeIN-FIPf CTTGGCACTACYTTTATGTCACTAAARCTYCTCTGGAAAGGTG
ACeIN-BIP GGAYTATGGAAAACAGATGGCAGCCATGTTCTAATCYTCATCCTG
ACeIN-LF TCTTGTATTACTACTGCCCCTT
ACeIN-LB GTGATGATTGTGTGGCARGTAG

Table 5.1: The primers from the ACeIN-26 primer set selected for further study

primer sets.

In further tests, the ACeIN-26, -28 and-30 primers were tested combined with the ACePR

primer set (a slightly modified version of the B-PR primer set, S2 Table, row 2, designed

to accommodate a wider selection of HIV-1 subtypes) but no improvement was seen and

efficiency may even have fallen for some subtypes. We also designed a primer set that

matched exactly to the targeted sequences found in the problematic subtype F, and mixed

this set with the ACeIN-26 primers. However, no improvement was seen (Figure 5.1, mixtures

with F-IN set). Mixing the ACeIN-26 primers with both the ACePR and F-specific primers

did yield effective primer sets (Figure 5.1, ACeIN-26+F-IN and ACeIN-26+F-IN+ACePR).

However, amplification efficiency was not greatly improved over the ACeIN-26 primer set, so

we proceeded with the simpler ACeIN-26 primer set (Figure 5.2B and Table 5.1) in further

studies.

5.5.1 Performance of the optimized RT-LAMP assay

The ACeIN-26 RT-LAMP primer set was next tested to determine the minimum concentration

of RNA detectable under the reaction conditions studied (Figure 5.3). RNA template amounts

were titrated and time to detection quantified. Tests showed detection after less than 20

min of incubation for 50 copies of subtypes A or B, detection after less than 30 min for 5000

copies for C, D, and G, and detection after less than 20 min for 50,000 copies for F.

For clinical implementation the reliability of an assay is critical. This is commonly sum-
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Figure 5.3: Performance of the AceIN-26 primer set with different starting RNA concentra-
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marized as a Z-factor586, which takes into account both the separation in means between

positive and negative samples and the variance in measurement of each. An assay with

a Z-factor above 0.5 is judged to be an excellent assay. Z-factors for detection of each of

the subtypes at 5000 RNA copies per reaction were > 0.50 for subtypes A, B, C, D, and

G, respectively (Figure 5.4, n = 24 replicates per test). Detection of subtype F at 5000

copies per reaction was sporadic, showing a much lower Z-factor. Therefore our ACeIN-26

RT-LAMP primer set appears well suited to detect 5000 copies of subtypes A, B, C, D and

G.
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5.6 Discussion

Here we present an RT-LAMP assay optimized to identify multiple HIV subtypes. Infections

with subtype B predominate in most parts of the developed world, but elsewhere other

subtypes are more common583. Thus nucleic acid-based assays for use in the developing

world need to query HIV subtypes more broadly. Previously reported RT-LAMP assays,

while effective at detecting subtype B, commonly showed poor ability to detect at least some

of the HIV subtypes, including C, which is common in the developing world (Figure 5.1).

Here we first carried out an initial bioinformatic survey to identify regions conserved across

all HIV subtypes that could serve as binding sites for RT-LAMP primers. We then tested

primer sets targeting these regions empirically for efficiency. Testing 44 different primer

sets revealed that assays containing ACeIN-26 were effective in detecting 5000 copies of

RNA from subtypes A, B, C, D, and G within 30 minutes of incubation. For these five

subtypes, the times of incubation to reach the threshold times were not too different, which

simplifies interpretation when the subtype in the sample is unknown. Regardless of the

efficiency, these assays can be applied to longitudinal studies of changes in viral load within

an individual. We propose that RT-LAMP assays based on the ACeIN-26 primer set can be

useful world-wide for assaying HIV-1 viral loads in infected patients.

There are several limitations to our study. Subtypes A, B, C, D, and G were detected

efficiently and showed Z-factors above 0.5, but subtype F was detected reliably only with

higher template amounts, probably due to more extensive mismatches with the ACeIN-26

primer set. Subtype F is estimated, however, to comprise only 0.59% of all infections

globally583, though it is common in some regions. For many of the common circulating

recombinant forms, such as AE and BC, the target site for ACeIN-26 is from a subtype

known to be efficiently detected, though in some cases the efficiency of detection is not easy

to predict and will need to be tested. We did not test subtypes beyond A, B, C, D, F and

G, and we did not attempt to assess multiple different variants within each subtype. Thus,

while we do know that our RT-LAMP assays are more widely applicable than many of those
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reported previously, we do not know whether they are able to detect all strains efficiently. In

addition, although we carried out more than 700 assays in this study, there remain multiple

parameters that could be optimized further, such as primer concentrations, salt type and

concentration, temperature, and divalent metal concentrations, so there are likely further

opportunities for improvement. Also, possible effects of RNA quality on assay performance

were not tested rigorously.

A particularly important parameter for further optimization is primer sequence. Several

groups have recently published primer sets optimized for broad detection of different HIV

lineages577,578, offering opportunities for creating sophisticated primer blends with increased

breadth of detection. However, in developing such mixtures, it will be important to monitor

for possible complicating interactions of primers with each other. As an example of ongoing

development of mixtures, we found that addition of another primer to the ACeIN-26 set

that was matched to a common subtype C lineage allowed improved detection of subtype C

variants (S1 Report). In order to improve detection of subtype F, which was suboptimal with

ACeIN-26, additional primer sets could be mixed to specifically target subtype F, though

the ones we tried so far did not work well. It will be useful to explore the performance of

broader primer mixtures in future work.

Today rapid assays are available that can report infection efficiently, for example by detecting

anti-HIV antibodies in oral samples–however, the nucleic acid-based method presented here

has additional potential uses. We envision combining the RT-LAMP assay with simple

point-of-care devices for purifying blood plasma572 and quantitative analysis of accumulation

of fluorescent signals587. In one implementation of the technology, cell phones could be used

to capture and analyze results, thereby minimizing equipment costs. Point-of-care devices are

available facilitating the concentration of viral RNA from blood plasma or saliva587 to allow

the detection of the 1000 RNA copy threshold that the WHO defines as virological treatment

failure (World Health Organization, Consolidated ARV guidelines, June 2013). Together,

these methods will allow assessment of parameters beyond just the presence/absence of
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infection. Quantitative RT-LAMP assays should allow tracking of responses to medication,

detection in neonates (where immunological tests are confounded by presence of maternal

antibody), and early detection before seroconversion.

5.7 Acknowledgments

We are grateful to members of the Bushman and Bau laboratory for help and suggestions.

98



CHAPTER 6: Conclusions and future directions

In this dissertation, we described studies characterizing HIV-1 latency, expression and

alternative splicing and host cell response to infection. We then developed point-of-care

methods for the detection of infection and quantification of viral load. These projects suggest

many avenues for continuing research.

6.1 Latency and integration location

In Chapter 2, we showed that the chromosomal location of integration affects proviral latency

but the mechanisms appear to differ between cell culture models. Similarly a recent study

of nine cell culture models found that no single model reliably predicted the performance of

activating compounds in ex vivo tests of latently infected cells from HIV patients588. This

suggests that either some cell culture models do not accurately reflect latency in patients or

that there are diverse subsets of cells with differing mechanisms of latency within patients.

Cell culture models are currently used to screen potentially therapeutic compounds148,588. If

some cell culture models are not representative of in vivo conditions then potential treatments

may be discarded or marked for development erroneously. Further comparisons between

additional cell culture models and additional replicates of existing models might allow

discrimination between batch/lab effects and reveal patterns between models. Comparison

with cells extracted from patients or infected lab animals might offer a gold standard

comparison although it is difficult to obtain large amounts of cells and difficult to distinguish

defective provirus from latent provirus in such populations.

Various treatments are now being considered for the reactivation of latent provirus588. To

further understand the mechanisms of these treatments, it would be informative to compare

the features of latent provirus induced by a given treatment to latent viable provirus

remaining uninduced. Repeated cell sorting and integration site sequencing might provide

insight on mechanism. For example, one could first sort out cells with active provirus, then
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treat with the potential latency modulator and sort out cells with newly active provirus and

then treat with a strong inducer or alternative stimuli and sort out cell with newly activated

provirus. This would give subsets of cells where latent proviruses had been activated by

treatment and cells with provirus which were not activated by treatment but still inducible.

Synergies between treatments could be assessed and the location of integration sites could

be determined and used to locate patterns of genomic features correlated with induction for

each treatment.

Current efforts at “shock and kill” therapy, inducing latent virus to activate and then

eliminating infected cells, focus on histone deacetylase inhibitors. If there are diverse

mechanisms of latency within patients then much of the latent reservoir may remain

unactivated by single-target therapies. Clinical trials with histone deacetylase inhibitors

have shown some small increases in viral RNA but little decrease in the latent reservoir of

HIV383,589–591. It appears that the majority of viable latent provirus from patient cells are

not reactivated by current therapies592. These results are particularly worrisome because a

functional cure for HIV will likely require a greater than 10,000-fold reduction of the latent

reservoir593.

In Chapter 2, we used publicly available genomic data. Perhaps there is some chromosomal

feature with a strong association with latency but the data is not currently available or

varies greatly between cell populations. More varieties of annotations are rapidly becoming

available594–598. Decreasing sequencing costs599–601 may also make it feasible to measure

more epigenetic features in the exact cell population of interest. Repeating analyses similar

to Chapter 2, perhaps by simply rerunning the reproducible report in Appendix A.2 with

new data, would allow any new features to be monitored for correlations with latency.

6.2 HIV-1 alternative splicing

In Chapters 3 and 4, we showed that HIV RNA spliceforms are more diverse than previously

appreciated and estimated the abundances of viral spliceforms. We also showed that splicing
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at some splice sites vary between host subjects, between cell types and over the course of

infection. Further characterization of viral splicing would be beneficial to the study and

treatment of HIV-1 especially as there were some technical limitations to our research that

might be improved upon using current techniques.

We studied HIV splicing using droplet PCR455 and a set of customized primer in Chapter

3 and bulk sequencing of cellular mRNA in Chapter 4. Sequencing biases and difficulties

determining full length transcripts from short reads hindered characterization of HIV

messages. One alternative to these techniques is the targeted capture and enrichment602,603

of HIV-specific sequences. Using probes targeted to conserved regions of HIV, similar to

finding conserved regions for primers as in Chapter 5, would allow for enrichment of viral

reads without the biases induced by primer-based PCR while still allowing for efficient use

of sequencing effort.

The research in Chapter 3 was also limited by a short read bias in the PacBio sequencing.

PacBio sequencing has improved604 and additional long read sequencers have been devel-

oped605–607. In addition, Illumina MiSeq sequencers can now produce 25 million paired 300

bp reads in a single run608,609 and better spliceform estimation methods are being devel-

oped610,611. These improved sequencing techniques might allow for more straightforward

analysis of new samples and verification of our previous results.

RNA transcribed antisense to the canonically expressed strand of HIV have been ob-

served482,612–617. These transcripts may be translated to proteins618,619 that trigger immune

response in infected individuals617,618,620. Our sequencing techniques were designed only for

the HIV positive strand (Chapter 3) or did not preserve strand information (Chapter 4).

Strand-specific sequencing621,622 of multiple HIV strains under varying cellular conditions

would clarify the identity of these transcripts.

Cryptic polypeptides encoding epitopes recognized through major histocompatibility complex

type I also appear to be generated from alternative reading frames in the sense strand of
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the virus623,624. Ribosome profiling625–627 of infected cells might reveal whether transcripts

generated through alternative splicing or antisense expression are likely to be translated.

These cryptic transcripts could offer new opportunities in vaccine design617,620,628,629 but

first their abundance, identity and conservation across strains of HIV must be ascertained.

We observed that splicing varies over the course of infection, between human subjects and

between cell types. Further sampling could reveal additional patterns in these splicing

changes.

Long-lived reservoir of HIV infected cells exist in both macrophages630,631 and resting

central memory CD4 T cells139,140,143,632,633. It may be difficult to obtain enough viral

RNA from resting CD4 cells632 but macrophages provide an interesting target. Splicing

changes due to differing abundances of splice factors have been reported in macrophages446.

Characterization of splicing in these important reservoirs might aid in the understanding of

latency.

We quantified the splicing of a single clinical isolate and showed unexpected diversity. Most

previous studies of HIV splicing have been performed with lab-adapted strains425. Additional

studies could determine if the high number of transcripts seen here is an anomaly and whether

additional cryptic splice sites and novel proteins or epitopes exist. In addition, an important

subset of HIV are the founder viruses transmitted between hosts634,635. These viruses are

not well studied and perhaps their splicing and gene expression differ from the rest of the

viral swarm of infected patients. Comparisons to splicing in other retroviral taxa might

highlight evolution and adaptation in this viral lineage.

Disruption of RNA processing can drastically reduce HIV replication288,636–639. Inhibition

of cellular splicing factors reduces the reproduction of HIV in many genome-wide siRNA

screens433,435,640 and several members of the spliceosome interact with viral proteins in

affinity pulldowns310. Small molecules that inhibit cellular SR splicing proteins and disrupt

viral splicing show promise as antiretroviral therapies432,641–643. Characterization of splicing
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in cells treated with splicing inhibitors could reveal potential escape pathways and optimal

combinations of drug therapies.

6.3 Host expression during HIV infection

In Chapter 4, we saw many changes in host expression and splicing in HIV infected cells

including intron retention and strong changes in apoptotic and innate immunity genes.

We focused on generating a dense data set at a single time point and subject to allow

discrimination of within-condition versus between-condition variation. Further sampling

using more human subjects and time points, improved sequencing techniques, alternative

culturing and extraction and more viral strains would clarify and extend these patterns.

In our primary cell infections, only about 25% of cells were infected with HIV. This makes

it difficult to distinguish between the responses of bystander and infected cells. In addition,

changes in expression due to cellular response to infection are confounded with changes

due to hijacking of cellular controls by the virus. For example, bystander cell death has

been suggested as a major driver of HIV pathogenesis644,645 but our data do not make it

clear whether bystander or infected cells are undergoing apoptosis. Cell pull-down with a

labelled HIV strain519 or an anti-Env antibody646 or flow cytometry with a labelled antibody

targeting HIV antigen152,647 might allow the separation of bystander and infected cells.

Additionally, abortive infections can drive cell death489,645 so our populations might be a

mix of three responses; cells responding to a progressive infection, cells responding to an

aborted infection and cells responding to neighbor cell infections. A useful control might be

to infect cells with integrase-deficient virions to guarantee that all infections are aborted.

This would provide a good measure of innate immune response and the effect of abortive

infections undiluted by productive HIV infection and help to deconvolute the patterns seen

in mixed populations.

HIV infection appeared to increase the abundance of intronic sequences. Perhaps these

transcripts escape degradation due to decreased cellular RNA surveillance or mistargeted
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export of incompletely spliced cellular transcripts by viral protein Rev. Alternatively, HIV

Vpr protein has been reported to disrupt nuclear integrity and allow mixing of nuclear and

cytoplasmic components253. These sequences might represent incompletely spliced mRNA

that escaped into the cytoplasm before processing. Infection with a Vpr-deficient HIV virus

and separate isolation of RNA from nuclear and cytoplasmic compartments648–650 would

test these hypotheses.

We saw that chimeric sequences were almost entirely derived from read-in or -out from

viral long terminal repeats or splicing from the viral splice donor D4 to human acceptors.

With this knowledge, we could use targeted amplification of these three sites, analogous to

integration site sequencing396,423,495, on cellular cDNA to get a much deeper and cleaner

sampling of chimera formation. Comparison of these data to deeply sequenced integration

site data from the same samples might reveal associations between integration location and

chimera formation.

MicroRNA are small RNAs that block translation through base pairing with comple-

mentary mRNA651–653. Viral derived microRNA, perhaps in part from Dicer processing

of the structured trans-activation response element of HIV614,654–656, may suppress HIV

expression217,657,658 and inhibit apoptosis656 but the presence of such microRNA is controver-

sial219,659. HIV may suppress silencing by microRNA216–218 but this is also controversial219.

Cellular microRNA may have antiviral effects660,661 or be exploited by HIV to enhance

replication662–666 or promote latency667,668 but there seems to be disagreement on which

microRNA are involved among different studies669. High-throughput genome-wide assays of

small RNA482,516 from primary cells infected with patient isolates would help clarify these

debates.

6.4 LAMP PCR and lab-on-a-chip

In Chapter 5, we report a loop-mediated isothermal amplification system using primers

optimized to to detect most subtypes of HIV-1. An alternative to a single broadly targeted
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primer set would be to design separate primer sets targeted specifically to each subtype so

that a positive amplification would then be able to discriminate viral subtype. Different viral

subtypes can have different rates of disease progression670–673, transmission dynamics674–676

and response to treatment677–679. Simple low-cost devices with multiple reactions chambers

could be used to both identify viral subtype, estimate viral load680,681 and allow more

informed treatment decisions.

A LAMP chip with subtype-specific primers would also allow the detection of intersubtype

superinfections. Superinfection of a single individual with multiple distinct strains of HIV is

common in high risk individuals567,682–685 and the general population686. Superinfection with

a phenotypically different strain of HIV can lead to disease progression687–692 or drug resis-

tance693. Superinfection also allows recombination between divergent strains682,688,689,691,694

and this rapid exchange of genetic information can lead to more fit recombinant strains and

worsen the global epidemic58,62,689,695,696. LAMP detection of superinfection could allow

early intervention and suppression in superinfected individuals.

The techniques described in Chapter 5 also allow for rapid development of detection assays

for novel pathogens. For example, in a recent outbreak in West Africa, Zaire ebolavirus

has infected over 26,000 confirmed, probable and suspected cases and caused over 11,000

reported deaths697–699. Early detection and quarantine are essential to the control of this

epidemic700. Amplification of Ebola virus nucleic acid through polymerase chain reaction is

the best diagnostic test currently available but the necessary resources are often not available

in these resource-poor regions701,702. Antigen-based tests are quicker and available at the

point-of-care but are not as accurate or sensitive as polymerase chain reaction tests and are

still in limited supply702. Loop-mediated isothermal amplification offers the potential for

rapid, sensitive and efficient detection of Ebola virus RNA but available LAMP primers703 do

not match the current outbreak strain. Using sequences from the recent outbreak697,704 and

the methods described in Chapter 5, we designed primers to match all known Zaire ebolavirus

(Figure 6.1). These primer combined with simple lab-on-a-chip devices for purifying blood
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plasma572 and imaging fluorescent signals587,680 could allow rapid point-of-care detection of

Ebola virus.

6.4.1 Conclusions

These studies contribute to the study and treatment of HIV-1 by revealing aspects of latency,

expression and host response. They highlight the importance of primary cell models and

the effects that host cell can have on viral processes. With rapidly increasing sequencing

throughput, further studies like those presented here offer the opportunity for a deeper

and broader understanding of HIV-1 biology and host response and further development of

diagnostics and therapeutics.
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Figure 6.1: Bioinformatic analysis to design Ebola virus RT-LAMP primers. A) Conservation
of sequence in Ebola virus. Ebola virus genomes (n = 131) from Genbank and sequences
from the recent Zaire ebolavirus outbreak697 were aligned and conservation calculated.
The x-axis shows the coordinate on the Ebola genome, the y-axis shows the proportion
of sequences matching the consensus for each 21 base segment of the genome (red points).
The black line shows a 101 base sliding average over these proportions. The vertical red
shading shows the region targeted for LAMP primer design that was used as input into the
EIKEN primer design tool and grey shading indicates the area covered by the optimized
primer set. Numbering is relative to the Ebola Mayinga sequence. B) Aligned genomes,
showing the locations of the LAMP primers. Sequences in the grey-shaded region in A are
shown, with DNA bases color-coded as shown at the lower right. Each row indicates an
Ebola virus sequence and each column a base in that sequence. Horizontal lines separate
Ebola virus outbreaks (SLE: Seirra Leone, GIN: Guinea, COD: DR Congo, GAB: Gabon).
Arrows indicate the strand targeted by each primer. Primers targeting the negative strand
of the virus are shown as reverse compliments for ease of viewing.
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APPENDIX A.1 : Generalized linear models of changes in

use of mutually exclusive HIV-1 splice

acceptors

Reads splicing from D1 to one of five mutually exclusive acceptors, D3, D4c, D4a, D4b,

D5, and D5a, in three primers, 1.2, 1.3 and 1.4, were collected. Since these data are based

on counts, we modeled them as Poisson distributed with an extra variance term allowing

for additional variance using a quasi-Poisson generalized linear model with log link. We

accounted for differences in sequencing effort by including the total number of D1 to mutually

exclusive acceptors reads in each primer-sample as an offset. Differences in the read counts

a) over time,b) between human donor and c) cell type were analyzed separately. A term

was included for each acceptor and its interaction with the variable of interest. The models

included primer and replicate terms and their individual interactions with acceptor to

account for any confounding factors.

A.1.1 HOS vs T Cells

R command:

glm(count˜offset(log(total)) + acceptor:primer + acceptor:isHos

+ acceptor , data = mutEx[mutEx$time == 48,],

family = 'quasipoisson ')

Difference between HOS and T cells may be confounded by run differences between early

sequencing and later sequencing. Verification by agarose gel (Figure 3.4B) suggest that these

differences are likely biological.
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Variable Df Deviance Resid. Df Resid. Dev F Pr(>F )

NULL 395 138 330

acceptor 5 133 985 390 4345 9004 <2.2 × 10−16

acceptor:primer 12 751 378 3594 21.03 <2.2 × 10−16

acceptor:isHos 6 2466 372 1127 138.1 <2.2 × 10−16

So after accounting for primer-acceptor bias, the difference between HOS and T cells is

significant.

The interesting terms in the model are:

Variable Estimate Std. Error t value Pr(>|t |)

acceptorA3:isHosTRUE 1.4717 0.065 86 22.35 <2.2 × 10−16

acceptorA4a:isHosTRUE −0.9449 0.1246 −7.583 2.73 × 10−13

acceptorA4b:isHosTRUE −0.9285 0.1059 −8.767 <2.2 × 10−16

acceptorA4c:isHosTRUE −1.228 0.1066 −11.51 <2.2 × 10−16

acceptorA5:isHosTRUE 0.090 82 0.026 08 3.483 0.000 555

acceptorA5a:isHosTRUE 0.6308 0.079 40 7.945 2.33 × 10−14

So it appears A3 is up; A4c, A4a and A4b are down; A5 is up a little and A5a up in HOS.

A.1.2 HOS Over Time

R command:

glm(value˜offset(log(total)) + acceptor + acceptor:primer

+ acceptor:time , data=mutEx[mutEx$isHos ,],

family ='quasipoisson ')

Looking only within HOS, we see a significant linear effect of time:
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Variable Df Deviance Resid. Df Resid. Dev F Pr(>F )

NULL 53 17 962

acceptor 5 17 710 48 252.2 6698 <2.2 × 10−16

acceptor:primer 12 18.0 36 234.2 2.834 0.010 18

acceptor:time 6 217.8 30 16.4 68.65 3.57 × 10−16

We are assuming that a particular acceptor will have the same change in all three primers

here.

The interesting terms are:

Variable Estimate Std. Error t value Pr(>|t |)

acceptorA3:time 0.024 77 0.001 778 13.93 1.22 × 10−14

acceptorA4a:time −0.016 21 0.002 812 −5.765 2.69 × 10−6

acceptorA4b:time −0.025 26 0.002 271 −11.12 3.62 × 10−12

acceptorA4c:time 0.015 867 0.003 050 5.202 1.32 × 10−5

acceptorA5:time −0.001 918 0.000 631 3 −3.038 0.004 90

acceptorA5a:time 0.004 919 9 0.001 969 2.499 0.0182

So A3, A4c and A5a increase over time and A4a, A4b and A5 decrease over time. All of

these coefficients are with a log link and linear and so multiplicative. That means that for

example A3 will increase 2.5%/hour (exp(.0247)) or equivalently 81% (1.02524) over 24hours.

A.1.3 Between Human Comparison

R command:

glm(value˜offset(log(total)) + acceptor + acceptor:run

+ acceptor:primer + acceptor:subject ,

data=mutEx[! mutEx$isHos ,], family = 'quasipoisson ')

In humans, we added a term to account for any potential run bias between the three

replicates. Subject refers to the seven human blood donors from which T cells were collected:
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Variable Df Deviance Resid. Df Resid. Dev F Pr(>F )

NULL 377 128 430

acceptor 5 126 446 372 1985 19 598 <2.2 × 10−16

acceptor:run 12 136 360 1849 8.792 1.77 × 10−14

acceptor:primer 12 850 348 998 54.91 <2.2 × 10−16

acceptor:subject 36 597 312 401 12.86 <2.2 × 10−16

So after accounting for any run and primer bias, subject ID has a statistically significant

effect on our observed counts. If we compare everything to subject 7, the interesting terms

are:
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Variable Estimate Std. Error t value Pr(>|t |)

acceptorA3:subject6 −0.001 399 0.072 86 −0.019 0.9847

acceptorA4a:subject6 −0.112 90 0.049 44 −2.284 0.023 07

acceptorA4b:subject6 −0.054 33 0.040 38 −1.345 0.1795

acceptorA4c:subject6 0.028 29 0.033 60 0.842 0.4005

acceptorA5:subject6 0.016 83 0.016 00 1.051 0.2939

acceptorA5a:subject6 −0.030 85 0.060 92 −0.506 0.6129

acceptorA3:subject5 −0.077 67 0.074 23 −1.046 0.2962

acceptorA4a:subject5 −0.1144 0.049 82 −2.296 0.0223

acceptorA4b:subject5 −0.0684 0.040 90 −1.672 0.0956

acceptorA4c:subject5 −0.085 85 0.034 75 −2.471 0.0140

acceptorA5:subject5 0.038 88 0.016 16 2.406 0.0167

acceptorA5a:subject5 0.078 77 0.060 38 1.304 0.1930

acceptorA3:subject4 −0.1849 0.095 78 −1.931 0.0544

acceptorA4a:subject4 0.071 86 0.057 91 1.241 0.2156

acceptorA4b:subject4 0.126 20 0.047 14 2.677 0.0078

acceptorA4c:subject4 −0.100 21 0.043 03 −2.329 0.0205

acceptorA5:subject4 −0.001 16 0.019 69 −0.059 0.9531

acceptorA5a:subject4 0.023 46 0.073 53 0.319 0.7499

acceptorA3:subject3 −0.003 51 0.086 65 −0.041 0.9677

acceptorA4a:subject3 0.071 07 0.055 64 1.277 0.2024

acceptorA4b:subject3 0.006 46 0.046 99 0.138 0.8907

acceptorA4c:subject3 −0.063 34 0.040 76 −1.554 0.1212

acceptorA5:subject3 0.010 52 0.018 87 0.557 0.5776

acceptorA5a:subject3 −0.070 95 0.072 85 −0.974 0.3309

acceptorA3:subject2 −0.2329 0.091 76 −2.539 0.0116

acceptorA4a:subject2 0.024 05 0.056 43 0.426 0.6702

acceptorA4b:subject2 0.1107 0.045 35 2.441 0.0152

acceptorA4c:subject2 0.021 76 0.039 52 0.551 0.5823

acceptorA5:subject2 −0.003 760 0.018 69 −0.201 0.8407

acceptorA5a:subject2 −0.1608 0.073 51 −2.187 0.0295

acceptorA3:subject1 0.095 36 0.065 56 1.454 0.1468

acceptorA4a:subject1 0.029 32 0.044 31 0.662 0.5087

acceptorA4b:subject1 −0.2144 0.038 43 −5.578 5.28 × 10−8

acceptorA4c:subject1 −0.3974 0.033 85 −11.74 <2.2 × 10−16

acceptorA5:subject1 0.091 44 0.014 70 6.221 1.58 × 10−9

acceptorA5a:subject1 0.027 47 0.055 94 0.491 0.6238

So there were small but significant effects between subjects especially between subject 1 and

subjects 2–7. A potential confounder is that T cells were collected from apheresis product in
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subject 1 and from whole blood in subjects 2–7 although why this would affect later assays

is unknown.
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APPENDIX A.2 : Reproducible report of HIV integration

sites and latency analysis

A.2.1 Supplementary data

Additional File 2 is a gzipped csv file that includes a row for each uniquely mapped provirus

and its surrounding genomic annotations. The csv file should have 12436 rows (excluding

header) with 6252 expressed and 6184 latent proviruses.

integrationData <- read.csv(" AdditionalFile2.csv.gz",

stringsAsFactors = FALSE)

nrow(integrationData)

## [1] 12436

table(integrationData$isLatent)

##

## FALSE TRUE

## 6252 6184

A.2.2 Lasso regression

The lasso regressions take a while to run so I’ve turned down the number of cross validations

here (set eval=FALSE below to completely skip this step). Leave one out and 480-fold cross

validation were used in the paper but processing may take a few days without parallel

processing. Lasso regression requires the R glmnet package.
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notFitColumns <- c("id", "chr", "pos", "strand", "sample", "isLatent

")

samples <- unique(as.character(integrationData$sample))

sampleMatrix <- do.call(cbind , lapply(samples , function(x)

integrationData$sample == x))

colnames(sampleMatrix) <- gsub(" ", "_", samples)

interact <- function(predMatrix , columns , addNames = NULL) {

out <- do.call(cbind , lapply (1: ncol(columns), function(x)

predMatrix * columns[, x]))

if (!is.null(addNames)) {

if (length(addNames) != ncol(columns)) {

stop(simpleError ("Names not same length as columns "))

}

colnames(out) <- sprintf ("%s_%s", rep(addNames , each = ncol(

predMatrix)),

rep(colnames(predMatrix), length(addNames)))

}

return(out)

}

fitData <- as.matrix(integrationData[, !colnames(integrationData) %in

% notFitColumns ])

fitData2 <- as.matrix(cbind(interact(fitData , sampleMatrix , colnames(

sampleMatrix)),

fitData , sampleMatrix))
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library(glmnet)

penalties <- rep(1, ncol(fitData2))

penalties[ncol(fitData2) - (ncol(sampleMatrix):1) + 1] <- 0

lassoFit <- cv.glmnet(fitData2 , integrationData$isLatent , family = "

binomial", type.measure = "class", nfolds = 3, penalty.factor =

penalties)

seperateFits <- lapply(samples , function(x) cv.glmnet(fitData[

integrationData$sample == x, ], integrationData$isLatent[

integrationData$sample == x], family = "binomial", type.measure =

"class", nfolds = 3))

names(seperateFits) <- samples
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A.2.3 Correlation

We looked for correlation between the genomic variables and expression status of the

proviruses.

corMat <- apply(fitData , 2, function(x) sapply(samples , function(y) {

selector <- integrationData$sample == y

if (sd(x[selector ]) == 0)
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return (0)

isLatent <- integrationData[selector , "isLatent "]

cor(as.numeric(isLatent), x[selector], method = "spearman ")

}))

quantile(corMat , seq(0, 1, 0.1))

## 0% 10% 20% 30%

## -0.185223020 -0.081555830 -0.048938130 -0.030895834

## 40% 50% 60% 70%

## -0.018053321 -0.005613895 0.003580982 0.017822483

## 80% 90% 100%

## 0.036694554 0.062003356 0.170642314

If we looked for genomic variables consistently correlated or anti-correlated with proviral

expression status with an FDR q-value less than 0.01, no variable was significantly correlated

in more than 3 samples.

pMat <- apply(fitData , 2, function(x) sapply(samples , function(y) {

selector <- integrationData$sample == y

if (sd(x[selector ]) == 0)

return(NA)

isLatent <- integrationData[selector , "isLatent "]

cor.test(as.numeric(isLatent), x[selector], method = "spearman",

exact = FALSE)$p.value

}))

adjustPMat <- pMat

adjustPMat[, ] <- p.adjust(pMat , "fdr")
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downPMat <- upPMat <- adjustPMat

downPMat[corMat > 0] <- 1

upPMat[corMat < 0] <- 1

table(apply(upPMat < 0.01 & !is.na(upPMat), 2, sum))

##

## 0 1 2 3

## 298 27 38 10

table(apply(downPMat < 0.01 & !is.na(downPMat), 2, sum))

##

## 0 1 2 3

## 216 36 63 58

A.2.4 RNA expression

We fit a logistic regression to a polynomial of log RNA-Seq reads within 5000 bases from

Jurkat cells for the Jurkat sample and T cells for the rest.

rna <- ifelse(integrationData$sample == "Jurkat",

integrationData$log_jurkatRNA ,

integrationData$rna_5000)

rna2 <- rnaˆ2

rna3 <- rnaˆ3 #

rna4 <- rnaˆ4
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glmData <- data.frame(isLatent = integrationData$isLatent , sample =

integrationData$sample ,

rna , rna2 , rna3 , rna4)

glmMod <- glm(isLatent ˜ sample * rna + sample * rna2 + sample *

rna3 + sample * rna4 , data = glmData , family = "binomial ")

summary(glmMod)

##

## Call:

## glm(formula = isLatent ˜ sample * rna + sample * rna2 + sample *

## rna3 + sample * rna4 , family = "binomial", data = glmData)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.2899 -0.9864 -0.8676 1.0960 1.6007

##

## Coefficients:

## Estimate Std. Error z value

## (Intercept) 1.7623655 0.2138859 8.240

## sampleBcl -2 transduced -2.1625912 0.7061524 -3.062

## sampleCentral Memory -2.5010063 0.2437685 -10.260

## sampleJurkat -2.0800202 0.2836871 -7.332

## sampleResting 0.7840481 0.3312247 2.367

## rna -0.6567268 0.2344422 -2.801

## rna2 0.1387703 0.0770589 1.801

## rna3 -0.0167219 0.0094076 -1.777

## rna4 0.0007572 0.0003845 1.969
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## sampleBcl -2 transduced:rna 0.5750186 0.6366537 0.903

## sampleCentral Memory:rna 0.9067758 0.2750955 3.296

## sampleJurkat:rna 0.5294036 0.3867163 1.369

## sampleResting:rna 0.0366276 0.3436248 0.107

## sampleBcl -2 transduced:rna2 -0.0369353 0.1878816 -0.197

## sampleCentral Memory:rna2 -0.2106715 0.0915492 -2.301

## sampleJurkat:rna2 -0.0766215 0.1641153 -0.467

## sampleResting:rna2 -0.0760450 0.1086998 -0.700

## sampleBcl -2 transduced:rna3 0.0032503 0.0213743 0.152

## sampleCentral Memory:rna3 0.0237064 0.0112661 2.104

## sampleJurkat:rna3 0.0042183 0.0263910 0.160

## sampleResting:rna3 0.0153132 0.0128711 1.190

## sampleBcl -2 transduced:rna4 -0.0002532 0.0008267 -0.306

## sampleCentral Memory:rna4 -0.0009877 0.0004627 -2.135

## sampleJurkat:rna4 0.0001725 0.0014215 0.121

## sampleResting:rna4 -0.0008049 0.0005119 -1.572

## Pr(>|z|)

## (Intercept) < 2e-16 ***

## sampleBcl -2 transduced 0.00219 **

## sampleCentral Memory < 2e-16 ***

## sampleJurkat 2.27e-13 ***

## sampleResting 0.01793 *

## rna 0.00509 **

## rna2 0.07173 .

## rna3 0.07549 .

## rna4 0.04891 *

## sampleBcl -2 transduced:rna 0.36643
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## sampleCentral Memory:rna 0.00098 ***

## sampleJurkat:rna 0.17101

## sampleResting:rna 0.91511

## sampleBcl -2 transduced:rna2 0.84415

## sampleCentral Memory:rna2 0.02138 *

## sampleJurkat:rna2 0.64059

## sampleResting:rna2 0.48419

## sampleBcl -2 transduced:rna3 0.87913

## sampleCentral Memory:rna3 0.03536 *

## sampleJurkat:rna3 0.87301

## sampleResting:rna3 0.23415

## sampleBcl -2 transduced:rna4 0.75939

## sampleCentral Memory:rna4 0.03280 *

## sampleJurkat:rna4 0.90339

## sampleResting:rna4 0.11585

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 17240 on 12435 degrees of freedom

## Residual deviance: 15874 on 12411 degrees of freedom

## AIC: 15924

##

## Number of Fisher Scoring iterations: 4
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A.2.5 Strand orientation

We used a Fisher’s exact test to check if silent/inducible proviruses were enriched when

integrated in the same strand orientation as cellular genes.

selector <- integrationData$inGene == 1

strandTable <- with(integrationData[selector , ], table(ifelse(

isLatent , "Silent/Inducible", "Active "), ifelse(inGeneSameStrand

== 1, "Same", "Diff"), sample))

apply(strandTable , 3, fisher.test)

## $Active

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 0.06061

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.7219466 1.0081995

## sample estimates:

## odds ratio

## 0.8532127

##

##

## $`Bcl -2 transduced `

##

## Fisher 's Exact Test for Count Data
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##

## data: array(newX[, i], d.call , dn.call)

## p-value = 2.177e-05

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 1.446896 2.872562

## sample estimates:

## odds ratio

## 2.036148

##

##

## $`Central Memory `

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 0.2907

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.9386167 1.2320238

## sample estimates:

## odds ratio

## 1.07529

##

##

## $Jurkat

##
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## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 0.1674

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.9207548 1.5699893

## sample estimates:

## odds ratio

## 1.202007

##

##

## $Resting

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 0.5732

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.7825231 1.1405158

## sample estimates:

## odds ratio

## 0.9447415
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A.2.6 Acetylation

To reduce correlation between acetylation marks, we generated the first ten principal

components of the acetylation data and ran a logistic regression against them. We compared

the cross validated performance of this regression with a base model only including which

dataset the integration site came from. The cross-validation here has been reduced for

efficiency but 480-fold cross-validation was used in the paper.

acetyl <- integrationData[, !grepl(" logDist", colnames(

integrationData)) & grepl("ac", colnames(integrationData))]

acetylPCA <- princomp(acetyl)

cumsum(acetylPCA$sdev [1:10]ˆ2/ sum(acetylPCA$sdev ˆ2))

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

## 0.5947268 0.6786611 0.7267433 0.7610502 0.7833616 0.7964470

## Comp.7 Comp.8 Comp.9 Comp .10

## 0.8093295 0.8215027 0.8299358 0.8372584

cv.glm <- function(model , K = nrow(thisData), subsets = NULL) {

modelCall <- model$call

thisData <- eval(modelCall$data)

n <- nrow(thisData)

if (is.null(subsets))

subsets <- split (1:n, sample(rep(1:K, length.out = n)))

preds <- lapply(subsets , function(outGroup) {

subsetData <- thisData[-outGroup , , drop = FALSE]

predData <- thisData[outGroup , , drop = FALSE]

thisModel <- modelCall

thisModel$data <- subsetData
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return(predict(eval(thisModel), predData))

})

pred <- unlist(preds)[order(unlist(subsets))]

subsetId <- rep(1:K, sapply(subsets , length))[order(unlist(

subsets))]

return(data.frame(pred , subsetId))

}

inData <- data.frame(isLatent = integrationData$isLatent , sample = as

.factor(integrationData$sample),

acetylPCA$score[, 1:10])

modelPreds <- cv.glm(glm(isLatent ˜ sample + Comp.1 + Comp.2 +

Comp.3 + Comp.4 + Comp.5 + Comp.6 + Comp.7 + Comp.8 + Comp.9 +

Comp.10, family = "binomial", data = inData), K = 5)

basePreds <- cv.glm(glm(isLatent ˜ sample , family = "binomial",

data = inData), subsets = split (1: nrow(inData),

modelPreds$subsetId),

K = 5)

modelCorrect <- sum(( modelPreds$pred > 0) == integrationData$isLatent

)

baseCorrect <- sum(( basePreds$pred > 0) == integrationData$isLatent)

prop.test(c(baseCorrect , modelCorrect), rep(nrow(integrationData),

2))

##

## 2-sample test for equality of proportions with
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## continuity correction

##

## data: c(baseCorrect , modelCorrect) out of rep(nrow(

integrationData), 2)

## X-squared = 0.00017372 , df = 1, p-value = 0.9895

## alternative hypothesis: two.sided

## 95 percent confidence interval:

## -0.01187726 0.01219890

## sample estimates:

## prop 1 prop 2

## 0.6362978 0.6361370

A.2.7 Gene deserts

We used Fisher’s exact test to look for an association between integration outside a gene

and proviral expression status.

geneTable <- table(integrationData$isLatent , integrationData$inGene ,

integrationData$sample)

apply(geneTable , 3, fisher.test)

## $Active

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value < 2.2e-16

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:
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## 0.3629548 0.5446204

## sample estimates:

## odds ratio

## 0.4452621

##

##

## $`Bcl -2 transduced `

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 0.1052

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.9203418 2.3478599

## sample estimates:

## odds ratio

## 1.472224

##

##

## $`Central Memory `

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 0.7803

## alternative hypothesis: true odds ratio is not equal to 1
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## 95 percent confidence interval:

## 0.8525329 1.1253952

## sample estimates:

## odds ratio

## 0.9791165

##

##

## $Jurkat

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 0.5443

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.7909269 1.6167285

## sample estimates:

## odds ratio

## 1.127836

##

##

## $Resting

##

## Fisher 's Exact Test for Count Data

##

## data: array(newX[, i], d.call , dn.call)

## p-value = 3.071e-08
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## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.4384828 0.6864112

## sample estimates:

## odds ratio

## 0.5500205

We used a two-sample t-test to investigate whether there was a significant difference in

distance to the nearest gene between expressed and silent/inducible proviruses integrated

outside genes.

geneDistData <- integrationData [! integrationData$inGene , c(" isLatent

", "logDist_nearest", "sample ")]

by(geneDistData , geneDistData$sample , function(x) t.test(

logDist_nearest ˜ isLatent , data = x))

## geneDistData$sample: Active

##

## Welch Two Sample t-test

##

## data: logDist_nearest by isLatent

## t = -2.4539, df = 287.73 , p-value = 0.01472

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.80738340 -0.08867607

## sample estimates:

## mean in group FALSE mean in group TRUE

## 9.608737 10.056767
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##

## ---------------------------------------------

## geneDistData$sample: Bcl -2 transduced

##

## Welch Two Sample t-test

##

## data: logDist_nearest by isLatent

## t = 0.40978 , df = 86.2, p-value = 0.683

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.6309351 0.9586004

## sample estimates:

## mean in group FALSE mean in group TRUE

## 9.036872 8.873039

##

## ---------------------------------------------

## geneDistData$sample: Central Memory

##

## Welch Two Sample t-test

##

## data: logDist_nearest by isLatent

## t = -0.07188, df = 861.61 , p-value = 0.9427

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.2371374 0.2203819

## sample estimates:

## mean in group FALSE mean in group TRUE
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## 10.19225 10.20063

##

## ---------------------------------------------

## geneDistData$sample: Jurkat

##

## Welch Two Sample t-test

##

## data: logDist_nearest by isLatent

## t = -1.8217, df = 139.56 , p-value = 0.07064

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.26342086 0.05167979

## sample estimates:

## mean in group FALSE mean in group TRUE

## 9.925782 10.531652

##

## ---------------------------------------------

## geneDistData$sample: Resting

##

## Welch Two Sample t-test

##

## data: logDist_nearest by isLatent

## t = -5.1275, df = 193.49 , p-value = 7.096e-07

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.2687917 -0.5638568

## sample estimates:
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## mean in group FALSE mean in group TRUE

## 9.489931 10.406255

To check for a relationship between silent/inducible status and distance to CpG islands, we

used a two sample t-test on the logged distance and saw a significant difference between

silent/inducible and expressed proviruses (before accounting for a correlation between being

near CpG islands and in genes)

t.test(integrationData$logDist_cpg ˜ integrationData$isLatent)

##

## Welch Two Sample t-test

##

## data: integrationData$logDist_cpg by integrationData$isLatent

## t = -2.0233, df = 12381, p-value = 0.04306

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.105657514 -0.001675563

## sample estimates:

## mean in group FALSE mean in group TRUE

## 10.16362 10.21728

sapply(unique(integrationData$sample), function(x) with(

integrationData[integrationData$sample ==

x, ], p.adjust(t.test(logDist_cpg ˜ isLatent)$p.value , method = "

bonferroni",

n = 5)))

## Active Central Memory Jurkat
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## 0.512040457 1.000000000 1.000000000

## Bcl -2 transduced Resting

## 1.000000000 0.005866539

Many CpG islands are found near genes. To account for this relationship, we used an ANOVA

test including whether the integration site was inside a gene prior to including CpG islands.

After including integration inside genes, CpG islands were not significantly associated with

silent/inducible status of the proviruses with all samples grouped or individually after

Bonferonni correction for multiple comparisons.

anova(with(integrationData , glm(isLatent ˜ I(logDist_nearest == 0) +

logDist_cpg , family = "binomial ")), test = "Chisq")

## Analysis of Deviance Table

##

## Model: binomial , link: logit

##

## Response: isLatent

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev

## NULL 12435 17240

## I(logDist_nearest == 0) 1 26.2682 12434 17213

## logDist_cpg 1 1.1328 12433 17212

## Pr(>Chi)

## NULL
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## I(logDist_nearest == 0) 2.971e-07 ***

## logDist_cpg 0.2872

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

sapply(unique(integrationData$sample), function(x) {

p.adjust(anova(with(integrationData[integrationData$sample == x,

], glm(isLatent ˜ I(logDist_nearest == 0) + logDist_cpg ,

family = "binomial ")), test = "Chisq")[" logDist_cpg", "Pr(>Chi

)"], method = "bonferroni", n = 5)

})

## Active Central Memory Jurkat

## 1.0000000 1.0000000 1.0000000

## Bcl -2 transduced Resting

## 1.0000000 0.2007788

A.2.8 Alphoid repeats

When analyzing repetitive elements, we treated each read as an independent observation and

included reads with multiple alignments to the genome. Additional File 3 is a gzipped csv file

containing a row for each read with multiple alignments and one row for each dereplicated

integration site with a single alignment with the count variable indicating the number of

reads dereplicated to that integration site. There should be 26,190 rows (excluding header)

with 14,494 rows of expressed provirus and 11,696 rows of silent/inducible provirus.

repeats <- read.csv(" AdditionalFile3.csv.gz", check.names = FALSE ,

stringsAsFactors = FALSE)
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nrow(repeats)

## [1] 26190

summary(repeats$isLatent)

## Mode FALSE TRUE NA's

## logical 14494 11696 0

notRepeatColumns <- c("id", "isLatent", "sample", "count")

To analyze whether there was an association between proviral expression status and integra-

tion within alphoid repeats, we used Fisher’s exact test with a Bonferroni correction for five

samples. For comparison, we looked at the association between proviral expression and the

other repeats in the RepeatMasker database. We did not Bonferroni correct for the multiple

repeat types so that the repeats could be compared with the analysis of alphoid repeats (for

which we had an a priori hypothesis for an association with latency).

dummyX <- rep(c(TRUE , FALSE), 2)

dummyY <- rep(c(TRUE , FALSE), each = 2)

repeatData <- repeats[, !colnames(repeats) %in% notRepeatColumns]

repeatData <- repeatData[, apply(repeatData , 2, sum) > 0]

testRepeats <- function(x, repeats) {

sapply(samples , function(thisSample , repeats) {

selector <- repeats$sample == thisSample

repLatent <- rep(repeats$isLatent[selector], repeats$count[

selector ])

repRepeat <- rep(x[selector], repeats$count[selector ])
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fisher.test(table(c(dummyX , repLatent), c(dummyY , repRepeat))

- 1)$p.value

}, repeats)

}

repeatPs <- apply(repeatData , 2, testRepeats , repeats[,

notRepeatColumns ])

table(apply(repeatPs * 5 < 0.05, 2, sum))

##

## 0 1 2 3

## 611 76 15 1

which(apply(repeatPs * 5 < 0.05, 2, sum) >= 3)

## ALR/Alpha

## 178

p.adjust(repeatPs[, "ALR/Alpha"], "bonferroni ")

## Active Central Memory Jurkat

## 5.026890e-02 3.940207e-03 1.027189e-08

## Bcl -2 transduced Resting

## 1.000000e+00 2.424896e-02

A.2.9 Neighbors

We looked at all pairs of viruses on the same chromosome separated by no more than a

given distance, e.g. 100 bases, either with all samples pooled or split between within sample

pairs or between sample pairs.
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allNeighbors <- data.frame(id1 = 0, id2 = 0)[0, ]

ids <- 1:nrow(integrationData)

for (chr in unique(integrationData$chr)) {

chrSelector <- integrationData$chr == chr

neighborPairs <- data.frame(id1 = rep(ids[chrSelector], sum(

chrSelector)),

id2 = rep(ids[chrSelector], each = sum(chrSelector)))

neighborPairs <- neighborPairs[neighborPairs$id1 <

neighborPairs$id2 , ]

allNeighbors <- rbind(allNeighbors , neighborPairs)

}

allNeighbors$dist <- abs(integrationData$pos[allNeighbors$id1] -

integrationData$pos[allNeighbors$id2 ])

allNeighbors$latent1 <- integrationData$isLatent[allNeighbors$id1]

allNeighbors$latent2 <- integrationData$isLatent[allNeighbors$id2]

allNeighbors$sample1 <- integrationData$sample[allNeighbors$id1]

allNeighbors$sample2 <- integrationData$sample[allNeighbors$id2]

allNeighbors <- allNeighbors[allNeighbors$dist <= 1e+06, ]

The expected number of matching pairs was calculated as
∑

j ∈samples nj,d (θ j,dθ¬j,d + (1 −

θ j,d ) (1 − θ¬j,d )) for between sample,
∑

j ∈samples nj,d (θ
2
j,d + (1 − θ j,d )

2) for within sample and

nd (θ
2
d + (1 − θd )

2) for all pairs, where nj,d is the number of pairs of proviruses separated by

no more than d base pairs where the first provirus is from sample j, θ j,d is the proportion of
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silent/inducible proviruses in sample j appearing in at least one pair of proviruses separated

by less than d base pairs and ¬j means all samples except sample j.

dists <- unique(round (10ˆ seq(1, 6, 1)))

pairings <- do.call(rbind , lapply(dists , function(x, allNeighbors) {

inSelector <- allNeighbors$dist <= x & allNeighbors$sample1 ==

allNeighbors$sample2

outSelector <- allNeighbors$dist <= x & allNeighbors$sample1 !=

allNeighbors$sample2

allSelector <- allNeighbors$dist <= x

out <- data.frame(dist = x, observedIn = sum(allNeighbors[

inSelector , "latent1 "] == allNeighbors[inSelector , "latent2 "])

, observedOut = sum(allNeighbors[outSelector ,

"latent1 "] == allNeighbors[outSelector , "latent2 "]),

observedAll = sum(allNeighbors[allSelector , "latent1 "] ==

allNeighbors[allSelector , "latent2 "]), totalIn = sum(

inSelector),

totalOut = sum(outSelector), totalAll = sum(allSelector))

out$expectedIn <- sum(with(allNeighbors[inSelector , ], sapply(

samples ,

function(x) {

inLatent <- c(latent1[sample1 == x], latent2[sample2 ==

x])[! duplicated(c(id1[sample1 == x], id2[sample2 ==

x]))]

if (length(inLatent) == 0) return (0)

return(sum(sample1 == x) * (mean(inLatent)ˆ2 + mean(!

inLatent)ˆ2))

})))
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out$expectedOut <- sum(with(allNeighbors[outSelector , ],

sapply(samples , function(x) {

inLatent <- c(latent1[sample1 == x], latent2[sample2 ==

x])[! duplicated(c(id1[sample1 == x], id2[sample2 ==

x]))]

outLatent <- c(latent1[sample1 != x], latent2[sample2 !=

x])[! duplicated(c(id1[sample1 != x], id2[sample2 !=

x]))]

if (length(inLatent) == 0) return (0)

return(sum(sample1 == x) * (mean(inLatent) * mean(

outLatent) +

mean(! inLatent) * mean(! outLatent)))

})))

out$expectedAll <- sum(with(allNeighbors[allSelector , ],

{

allLatent <- c(latent1 , latent2)[! duplicated(c(id1 ,

id2))]

return(length(latent1) * (mean(allLatent)ˆ2 + mean(!

allLatent)ˆ2))

}))

return(out)

}, allNeighbors))

rownames(pairings) <- pairings$dist

To look for more matches than expected by random pairing between neighboring proviruses,

we used a one sample Z-test of proportion to compare the observed number of matching

pairs with the expected proportion of pairs.
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combinations <- c(All = "All", `Between sample ` = "Out", `Within

sample ` = "In")

lapply(combinations , function(x, pairing) {

vars <- sprintf(c(" observed%s", "expected%s", "total%s"), x)

expectedProb <- pairing[, vars [2]]/ pairing[, vars [3]]

prop.test(pairing[, vars [1]], pairing[, vars [3]], p =

expectedProb)

}, pairings ["100" , ])

## $All

##

## 1-sample proportions test with continuity correction

##

## data: pairing[, vars [1]] out of pairing[, vars [3]], null

probability expectedProb

## X-squared = 13.002 , df = 1, p-value = 0.0003111

## alternative hypothesis: true p is not equal to 0.5000141

## 95 percent confidence interval:

## 0.5586837 0.6962353

## sample estimates:

## p

## 0.63

##

##

## $`Between sample `

##

## 1-sample proportions test with continuity correction

##
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## data: pairing[, vars [1]] out of pairing[, vars [3]], null

probability expectedProb

## X-squared = 0.21919 , df = 1, p-value = 0.6397

## alternative hypothesis: true p is not equal to 0.4836763

## 95 percent confidence interval:

## 0.3570532 0.5572662

## sample estimates:

## p

## 0.4554455

##

##

## $`Within sample `

##

## 1-sample proportions test with continuity correction

##

## data: pairing[, vars [1]] out of pairing[, vars [3]], null

probability expectedProb

## X-squared = 24.446 , df = 1, p-value = 7.644e-07

## alternative hypothesis: true p is not equal to 0.5561437

## 95 percent confidence interval:

## 0.7140170 0.8776751

## sample estimates:

## p

## 0.8080808
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A.2.10 Compiling this document

This document was generated using R’s Sweave function (http://en.wikipedia.org/wiki/

Sweave). If you would like to regenerate this document, download Additional Files 2, 3 and

4 from Sherrill-Mix et al. 366 and make sure the files are all in the same directory and named

AdditionalFile2.csv.gz, AdditionalFile3.csv.gz and AdditionalFile4.Rnw. Then compile by

going to that directory and using the commands:

R CMD Sweave AdditionalFile4.Rnw

pdflatex AdditionalFile4.tex

Note that you will need R and LATEX (and the R package glmnet if you would like to rerun

the lasso regressions) installed.
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[280] C Gélinas and HM Temin. 1986. Nondefective spleen necrosis virus-derived vectors
define the upper size limit for packaging reticuloendotheliosis viruses. Proc Natl Acad
Sci USA, 83:9211–9215

[281] SA Herman and JM Coffin. 1987. Efficient packaging of readthrough RNA in ALV:
implications for oncogene transduction. Science, 236:845–848. doi: 10.1126/science.
3033828

[282] NH Shin, D Hartigan-O’Connor, JK Pfeiffer and A Telesnitsky. 2000. Replication of
lengthened Moloney murine leukemia virus genomes is impaired at multiple stages. J
Virol, 74:2694–2702

169

http://dx.doi.org/10.1126/science.3261888
http://dx.doi.org/10.1074/jbc.M109807200
http://dx.doi.org/10.1074/jbc.M109807200
http://dx.doi.org/10.1038/nature06553
http://dx.doi.org/10.1016/j.chom.2008.03.001
http://dx.doi.org/10.1126/science.3033828
http://dx.doi.org/10.1126/science.3033828


[283] S Kammler, M Otte, I Hauber, J Kjems, J Hauber and H Schaal. 2006. The
strength of the HIV-1 3’ splice sites affects Rev function. Retrovirology, 3:89. doi:
10.1186/1742-4690-3-89

[284] CM Stoltzfus. 2009. Chapter 1. Regulation of HIV-1 alternative RNA splicing and its
role in virus replication. Adv Virus Res, 74:1–40. doi: 10.1016/S0065-3527(09)74001-1

[285] MM O’Reilly, MT McNally and KL Beemon. 1995. Two strong 5’ splice sites
and competing, suboptimal 3’ splice sites involved in alternative splicing of human
immunodeficiency virus type 1 RNA. Virology, 213:373–385. doi: 10.1006/viro.1995.
0010

[286] BA Amendt, D Hesslein, LJ Chang and CM Stoltzfus. 1994. Presence of negative
and positive cis-acting RNA splicing elements within and flanking the first tat coding
exon of human immunodeficiency virus type 1. Mol Cell Biol, 14:3960–3970. doi:
10.1128/MCB.14.6.3960

[287] JD Levengood, C Rollins, CHJ Mishler, CA Johnson, G Miner, P Rajan, BM Znosko
and BS Tolbert. 2012. Solution structure of the HIV-1 exon splicing silencer 3. J Mol
Biol, 415:680–698. doi: 10.1016/j.jmb.2011.11.034

[288] M Caputi, M Freund, S Kammler, C Asang and H Schaal. 2004. A bidirectional
SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency
virus type 1 rev, env, vpu, and nef gene expression. J Virol, 78:6517–6526. doi:
10.1128/JVI.78.12.6517-6526.2004

[289] C Asang, I Hauber and H Schaal. 2008. Insights into the selective activation of
alternatively used splice acceptors by the human immunodeficiency virus type-1
bidirectional splicing enhancer. Nucleic Acids Res, 36:1450–1463. doi: 10.1093/
nar/gkm1147

[290] TO Tange, CK Damgaard, S Guth, J Valcrcel and J Kjems. 2001. The hnRNP A1
protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J, 20:
5748–5758. doi: 10.1093/emboj/20.20.5748

[291] JA Jablonski, E Buratti, C Stuani and M Caputi. 2008. The secondary structure
of the human immunodeficiency virus type 1 transcript modulates viral splicing and
infectivity. J Virol, 82:8038–8050. doi: 10.1128/JVI.00721-08

[292] A Tranell, EM Feny and S Schwartz. 2010. Serine- and arginine-rich proteins 55
and 75 (SRp55 and SRp75) induce production of HIV-1 vpr mRNA by inhibiting the
5’-splice site of exon 3. J Biol Chem, 285:31537–31547. doi: 10.1074/jbc.M109.077453

[293] CM Stoltzfus and JM Madsen. 2006. Role of viral splicing elements and cellular RNA
binding proteins in regulation of HIV-1 alternative RNA splicing. Curr HIV Res, 4:
43–55. doi: 10.2174/157016206775197655

170

http://dx.doi.org/10.1186/1742-4690-3-89
http://dx.doi.org/10.1186/1742-4690-3-89
http://dx.doi.org/10.1016/S0065-3527(09)74001-1
http://dx.doi.org/10.1006/viro.1995.0010
http://dx.doi.org/10.1006/viro.1995.0010
http://dx.doi.org/10.1128/MCB.14.6.3960
http://dx.doi.org/10.1128/MCB.14.6.3960
http://dx.doi.org/10.1016/j.jmb.2011.11.034
http://dx.doi.org/10.1128/JVI.78.12.6517-6526.2004
http://dx.doi.org/10.1128/JVI.78.12.6517-6526.2004
http://dx.doi.org/10.1093/nar/gkm1147
http://dx.doi.org/10.1093/nar/gkm1147
http://dx.doi.org/10.1093/emboj/20.20.5748
http://dx.doi.org/10.1128/JVI.00721-08
http://dx.doi.org/10.1074/jbc.M109.077453
http://dx.doi.org/10.2174/157016206775197655


[294] E Buratti and FE Baralle. 2004. Influence of RNA secondary structure on the pre-
mRNA splicing process. Mol Cell Biol, 24:10505–10514. doi: 10.1128/MCB.24.24.
10505-10514.2004

[295] PJ Shepard and KJ Hertel. 2008. Conserved RNA secondary structures promote
alternative splicing. RNA, 14:1463–1469. doi: 10.1261/rna.1069408

[296] M Alló, V Buggiano, JP Fededa, E Petrillo, I Schor, M de la Mata, E Agirre,
M Plass, E Eyras et al. 2009. Control of alternative splicing through siRNA-mediated
transcriptional gene silencing. Nat Struct Mol Biol, 16:717–724. doi: 10.1038/nsmb.1620

[297] H Tilgner, C Nikolaou, S Althammer, M Sammeth, M Beato, J Valcrcel and R Guig.
2009. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol
Biol, 16:996–1001. doi: 10.1038/nsmb.1658

[298] S Schwartz, E Meshorer and G Ast. 2009. Chromatin organization marks exon-intron
structure. Nat Struct Mol Biol, 16:990–995. doi: 10.1038/nsmb.1659

[299] TL Crabb, BJ Lam and KJ Hertel. 2010. Retention of spliceosomal components along
ligated exons ensures efficient removal of multiple introns. RNA, 16:1786–1796. doi:
10.1261/rna.2186510

[300] K Takahara, U Schwarze, Y Imamura, GG Hoffman, H Toriello, LT Smith, PH Byers
and DS Greenspan. 2002. Order of intron removal influences multiple splice outcomes,
including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal
pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type I. Am J Hum Genet,
71:451–465. doi: 10.1086/342099

[301] M de la Mata, C Lafaille and AR Kornblihtt. 2010. First come, first served revisited:
factors affecting the same alternative splicing event have different effects on the relative
rates of intron removal. RNA, 16:904–912. doi: 10.1261/rna.1993510

[302] AM Zahler, KM Neugebauer, WS Lane and MB Roth. 1993. Distinct functions of SR
proteins in alternative pre-mRNA splicing. Science, 260:219–222. doi: 10.1126/science.
8385799
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superinfection and recombination within HIV-1 subtype B 12 years after primoinfection.
J Acquir Immune Defic Syndr, 42:12–18. doi: 10.1097/01.qai.0000214810.65292.73

[695] DL Robertson, PM Sharp, FE McCutchan and BH Hahn. 1995. Recombination in
HIV-1. Nature, 374:124–126. doi: 10.1038/374124b0

[696] MH Malim and M Emerman. 2001. HIV-1 sequence variation: drift, shift, and
attenuation. Cell, 104:469–472. doi: 10.1016/S0092-8674(01)00234-3

[697] SK Gire, A Goba, KG Andersen, RSG Sealfon, DJ Park, L Kanneh, S Jalloh, M Momoh,
M Fullah et al. 2014. Genomic surveillance elucidates Ebola virus origin and transmis-
sion during the 2014 outbreak. Science, 345:1369–1372. doi: 10.1126/science.1259657

[698] WHO Ebola Response Team. 2014. Ebola virus disease in West Africa–the first 9
months of the epidemic and forward projections. N Engl J Med, 371:1481–1495. doi:
10.1056/NEJMoa1411100

206

http://dx.doi.org/10.1056/NEJMoa020263
http://dx.doi.org/10.1056/NEJMoa020263
http://dx.doi.org/10.1086/512240
http://dx.doi.org/10.1086/520024
http://dx.doi.org/10.1086/520024
http://dx.doi.org/10.1084/jem.20080281
http://dx.doi.org/10.1016/j.jcv.2010.01.013
http://dx.doi.org/10.1097/01.qai.0000214810.65292.73
http://dx.doi.org/10.1038/374124b0
http://dx.doi.org/10.1016/S0092-8674(01)00234-3
http://dx.doi.org/10.1126/science.1259657
http://dx.doi.org/10.1056/NEJMoa1411100
http://dx.doi.org/10.1056/NEJMoa1411100


[699] World Health Organization. 2015. Ebola situation report: 13 May 2014. URL http:

//apps.who.int/ebola/en/current-situation/ebola-situation-report-13-may-2015

[700] G Chowell and H Nishiura. 2014. Transmission dynamics and control of Ebola virus
disease (EVD): a review. BMC Med, 12:196. doi: 10.1186/s12916-014-0196-0

[701] AS Fauci. 2014. Ebola–underscoring the global disparities in health care resources. N
Engl J Med, 371:1084–1086. doi: 10.1056/NEJMp1409494

[702] World Health Organization. 2015. Interim guidance on the use of rapid Ebola
antigen detection tests. URL http://www.who.int/csr/resources/publications/ebola/

ebola-antigen-detection/en/

[703] Y Kurosaki, A Takada, H Ebihara, A Grolla, N Kamo, H Feldmann, Y Kawaoka and
J Yasuda. 2007. Rapid and simple detection of Ebola virus by reverse transcription-
loop-mediated isothermal amplification. J Virol Methods, 141:78–83. doi: 10.1016/j.
jviromet.2006.11.031

[704] T Hoenen, D Safronetz, A Groseth, KR Wollenberg, OA Koita, B Diarra, IS Fall,
FC Haidara, F Diallo et al. 2015. Mutation rate and genotype variation of Ebola virus
from Mali case sequences. Science, 348:117–119. doi: 10.1126/science.aaa5646

207

http://apps.who.int/ebola/en/current-situation/ebola-situation-report-13-may-2015
http://apps.who.int/ebola/en/current-situation/ebola-situation-report-13-may-2015
http://dx.doi.org/10.1186/s12916-014-0196-0
http://dx.doi.org/10.1056/NEJMp1409494
http://www.who.int/csr/resources/publications/ebola/ebola-antigen-detection/en/
http://www.who.int/csr/resources/publications/ebola/ebola-antigen-detection/en/
http://dx.doi.org/10.1016/j.jviromet.2006.11.031
http://dx.doi.org/10.1016/j.jviromet.2006.11.031
http://dx.doi.org/10.1126/science.aaa5646

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	The HIV epidemic
	The HIV virus
	HIV detection
	Contributions

	HIV latency and integration site placement in five cell-based models
	Abstract
	Background
	Methods
	Results
	Conclusions
	Availability of supporting data
	Acknowledgements

	Dynamic regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing
	Abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements

	Gene activity in primary T cells infected with HIV89.6: intron retention and induction of distinctive genomic repeats
	Abstract
	Background
	Methods
	Results
	Discussion
	Conclusions
	Availability of supporting data
	Acknowledgements

	A reverse transcription loop-mediated isothermal amplification assay optimized to detect multiple HIV subtypes
	Abstract
	Introduction
	Methods
	Results
	Testing different primer designs
	Discussion
	Acknowledgments

	Conclusions and future directions
	Latency and integration location
	HIV-1 alternative splicing
	Host expression during HIV infection
	LAMP PCR and lab-on-a-chip

	APPENDICES
	Generalized linear models of changes in use of mutually exclusive HIV-Â�1 splice acceptors
	HOS vs T Cells
	HOS Over Time
	Between Human Comparison

	Reproducible report of HIV integration sites and latency analysis
	Supplementary data
	Lasso regression
	Correlation
	RNA expression
	Strand orientation
	Acetylation
	Gene deserts
	Alphoid repeats
	Neighbors
	Compiling this document

	BIBLIOGRAPHY

