MEDIUM CAPACITY GUIDED TRANSIT SYSTEMS

Increasing Need

Longitudinally April 25th, 2002

Prof. Vukan R. Vuchic University of Pennsylvania

VRV0204-1

Contents

- 1. Increasing Need for Medium Capacity Transit Systems
- 2. Importance of Right-of-Way (ROW) Separation for System Performance
- 3. Light Rail Transit
 the Dominant Medium Capacity System
- 4. Review of LRT Applications
- 5. Automated Guided Transit AGT (or APM)
- 6. Comparison of LRT and AGT
- 7. Technical Evaluation of Transit System Concepts
- · 8. Comments on Transit Developments in Korea

1. Increasing Need for Medium Capacity Transit Systems

- Large gap between Bus and Metro Systems
- Services which Buses or Metros can not provide
- Need for higher performance systems than Buses at lower cost than Metros

VR V0204-3

- Medium-capacity transit modes
 - · Bus Semirapid Transit BST
 - · Light Rail Transit LRT
 - · Automated Guided Transit AGT, rubbertired or rail
- Human factor in cities: transit is needed that has a strong distinctive image, but can penetrate inner city and pedestrian areas

Importance of Right-of-Way (ROW) Separation for System Performance

- Definitions of ROW Categories:
- Streets, mixed traffic C;
- Longitudinally separated B; and
- Fully grade-separated A.

VRV0204-5

- Separated ROW, B and A, provide high performance and competitiveness with auto travel
- Comparison between ROW B and A:
- ROW B requires lower investment, has greater diversity in alignment geometry and locations
- ROW A allows higher performance and full automation

- Light Rail Transit the Dominant
 Medium Capacity System
- Comparison of LRT with buses
 - · LRT is easier to separate and thus provide faster and more reliable service
 - · LRT has better performance, higher capacity and lower operating cost

VRV0204-7

- With electric propulsion,

 LRT produces no air pollution and much lower noise
- And attracts more riders
 - · LRT contributes to livability of the city
 - Buses require lower investment and need fewer transfers

- Comparison of LRT with Metro systems
 - · LRT requires substantially lower investment
 - · LRT can penetrate high-density and pedestrian areas
 - · LRT can be built incrementally
 - Metro has a higher capacity, speed and reliability
 - Metro has a strong positive impact on shaping the city

VRV0204-9

- Planning, technology and operational innovations in LRT since the 1950s
 - · Diversity of LRT: from Tramways to
 High-Performance Light Metro
- Light Rail Rapid Transit LRRT
- Automated LRRT moderates Who in amongolove C -

4. Review of LRT Applications

- Developments of LRT by region:
 - · Europe: Germany, Belgium, Switzerland, Austria, France
 - · North America: USA, Canada, Mexico
 - Developing countries: Tunis, Egypt,
 Philippines, Hong Kong
 - Japan working on catching up in LRT development
 - · Korea: any progress so far? Inadequate understanding, failure to use LRT
- Nine types of applications of LRT

VR V0204-11

Automated Guided Transit – AGT (or APM)

- The beginnings: theoretical concepts: AGT, including GRT and PRT
- Theoreticians and idealistic inventors introduced many incorrect concepts: from monorails to PRT "systems"
- Real world experience eliminated PRT, modified GRT into practical AGT systems
- Development of Westinghouse, Airtrans, VAL and other AGT systems

- Two categories of AGT: airport and other shuttles, and transit systems

rechnical Evaluation of Transit

- AGT as transit:
 - · North America: Miami and Detroit
 - · VAL in France: Lille, Toulouse, Orly, Rennes, and in Taipei
 - · Japanese AGT's: Kobe, Osaka, Yokohama
 - · ALRT systems AGT on rails: Vancouver, London Docklands
- Automated metros: Lyon, Paris, Berlin

VR V0204-13

6. Comparison of LRT and AGT

- Experiences in mode selection in USA, French and Italian cities, Taipei
 - · Reasons for much wider use of LRT than AGT:
 - Diversity in alignment capability, vehicle types and performance
- · Ability to fit into urban environment
 - · Much lower investment and somewhat lower operating costs
 - Rail systems are not proprietary multiple suppliers prevent excessive 14supply costs

These advantages usually greatly outweigh the advantages of automated systems

Technical Evaluation of Transit System Concepts

- Transit system planning should be based on functional definition, then proceed to selection of mode technology
- Major components that should be planned for guided modes are:
 - Right-of-way categories: ability to use not only A, but also B or C, may be a great advantage, resulting in much lower investment costs
 - · Which vehicle and train sizes should be used?
 - · Rail or rubber-tired systems?
- What role should the system have in human-oriented city and urban design

VRV0204-15

- Advantages and disadvantages of fully automated transit systems:

Would the advantages of automated systems be worth their much higher cost, inability to be integrated in urban areas and other problems?

Comments on Transit Developments in Korea

- Present conditions and needed improvements: Seoul, Busan and medium-size cities
- Medium capacity systems neglected:
 they are not used
- Importance of economic efficiency; need for networks, not only single lines

VR V0204-1

- Expanded diversity and roles of rail transit should be utilized
- Automation is a secondary aspect:
 it is method of operation, not a determinant of modes
- Generic systems should be favored over proprietary systems with single suppliers which carry considerable risks
- "Family of rail transit modes" should be introduced.

Advantages and disadvantages of LRT as compared to BST are:

- + LRT has a stronger image, it is popular and attracts more riders
- + Greater capacity, vehicle performance and quality of ride
- + Vehicles are more spacious and comfortable, have better image
- + Much easier provision and protection of separate ROW (B or A)
- + LRT can use tunnels, BST can not
- + More acceptable in pedestrian streets and zones
- + Due to electric propulsion, LRT has no exhaust, much less noise
- + Has a much stronger positive impact on urban development
- Higher investment costs
- More construction required, longer implementation
- Introduces new technology, requires special facilities
- Limited to track network, involves more transfers

Figure 23. Comparison of Light Rail Transit with Bus Semirapid Transit

VRV0204-23

Major innovations in LRT in recent decades include:

- Consolidation of networks into fewer, but higher quality lines (tramways to Light Rail Transit)
- · Systematic replacement of ROW C by ROW B and A
- · High-quality tracks and switches prevent any noise production
- · Articulated vehicles, 1-4 car trains
- · Low-floor vehicles
- · Self-service fare collection
- · 1-4 car trains have 8 to 32 door channels for simultaneous boarding/alighting
- Integration of tunnel, surface and aerial alignments on the same line
- · Intermodal integration with buses and metros
- · Operation of LRT in central cities in pedestrian zones
- · Integration (track sharing) of LRT with Regional Rail lines for services to suburbs

Figure 24. Major innovations in LRT since the 1950's

Main Categories of Light Rail Transit Systems Are:

- Conventional Tramways: Toronto, Moscow, St. Petersburg
- Upgraded Conventional Tramways: Zürich, Melbourne, Amsterdam, Oslo
- New Tramway Systems: Grenoble, Portland "loop," Valencia (Spain)
- LRT Networks Developed from Tramways: Köln, Stuttgart, Berlin
- New LRT Systems: Calgary, San Diego, Birmingham, Nantes
 - LRT Systems in Suburbs of Megacities: Paris Bobigny, Hong Kong, New York Hudson-Bergen, London Croydon
- LRT Regional Rail Integrated Systems: Manchester, Karlsruhe, Saarbrücken
- Light Rail Rapid Transit, LRRT Philadelphia-Norristown, Essen-Mülheim, Manila
- Automated Light Rail Transit, ALRT Vancouver, London-Docklands, Kuala Lumpur

Figure 25. Nine categories of LRT/Tramway systems and their applications

VRV0204-25

	System – City	Manufacturer ? Country	Length L [m]	Width W [m]	Gross Area A _g [m ²]	Capacity Seats / Total a	Gross wgt Wg[kg]b	Power P [kW]	Wg/n _{ax} [kg]	P/W _t [kw/t]
A	Airtrans – Dallas/FW	LTV/Vought ?USA	6.48	2.24	14.52	16/40	8,150	56	4,075	10.47
В	ALRT – Vancouver	UTDC ? Canada	12.70	2.50	31.75	40/100	20,600	(LIM):	5,150	(LIM)
С	KCV - Kobe	Kawasaki ? Japan	8.00	2.39	19.12	20/62	14,840	90	7,420	8.57
D	M – Bahn	Siemens -Germany	11.80	2.30	27.14	?/70	12,700	(LIM) ^c	n.a.	(LIM)
E	Morgantown	Alden/Boeing -USA	4.73	1.83	8.66	8/21	5,370	45	2,685	11.54
F	New Tram – Osaka	Niigata/LTV ? Japan	8.00	2.29	18.32	20/62	14,340	90	7,170	9.00
G	Skybus – Miami	Westinghouse Elec. ? USA	9.30	2.59	24.09	28/70	13,500	90	6,750	10.47
Н	VAL – Lille	Matra ? France	12.50	2.06	25.75	34/86	19,870	240	9,935	17.33

Figure 26. Vehicle characteristics for selected AGT systems

a Assumed area per standee: 0.20 m². Capacity may vary due to different seating arrangements.
b Assumer weight per person: 70 kg.
c Propulsion by linear induction motor (LIM) which has different power characteristics than conven.

System - City	Types of Service	Headway (min/TU)	Frequency (TU/h)	Cars/TU	Car capacity (prs/car)	Offered capacity (sps/h)
• ALRT –	Min	2.5	24	6	20	480
Vancouver	Max	1.25	28		100	28,800
2. KCV ? Kobe	Min Max	2.5 2.0	24 30	6	10 62	1,440 11,160
3. New Tram –	Min	2.5	24	4 4	10	960
Osaka	Max	2.0	30		62	7,440
4. Skybus -	Min	2.5	24	6	14	336
Miami	Max	1.5	40		70	16,800
5. VAL –	Min	2.5	24	2 4	17	816
Lille	Max	1.25	48		86	16,512

Figure 27. Data for service / capacity computations of different AGT systems

VRV0204-2

Compared to AGT, LRT has the following characteristics:

- + LRT requires much lower investment cost
- + It has lower operating cost
- + LRT is not limited to ROW A only; it can utilize streets
- + LRT can fit into urban and pedestrian zones and enhance their attraction
- + Vehicles offer considerably better riding comfort
- + LRT has a good image and it is very popular as a symbol of the city
- LRT can not be operated automatically, unless it has only ROW A
- It has lower speed and frequency of service than AGT
- LRT has somewhat lower safety than AGT
- Its schedule can not be quickly adjusted to unexpected changes, as AGT

Figure 28. Comparison of Light Rail Transit and Automated Guided Transit

Rubber-tired guided as compared to rail transit systems have the following differences:

- + Rubber tired vehicles allow more flexible alignment: sharper curves and steeper gradients than rail vehicles
- + For small and medium-size vehicles design with rubber tires is simpler
- + Rubber tired vehicles produce less noise in curves than rail vehicles
- They are less stable and provide a considerably less comfortable ride than rail vehicles because of rail stability, larger size of rail vehicles and use of bogies
- Average vehicle weight is similar, but rubber-tired vehicles have greater rolling resistance and therefore use more energy
- Rubber tires produce more heat in tunnels and represent certain fire hazard
- Rubber-tired systems can be used on ROW A only; they can not cross any streets
- Their switching is slower, more complicated and takes more space; guideways can not cross each other
- Rubber-tired systems are more vulnerable to snow and ice

Figure 11. Comparison of rail with rubber-tired guided transit

VRV0204-29

Fully automated operation of transit vehicles and trains as compared to driver operated ones has these advantages and disadvantages:

- + Very frequent operation of short trains is feasible even during off-peak periods
- + Quick adjustments of schedules to any changing conditions are possible
- + Driving regime can be optimized for all conditions
- Investment cost is much higher
- Lines can not go through streets, pedestrian or green areas
- Presence of a crew member has certain advantages for security, informing passengers, etc. For this reason some fully automated systems still place a crew member on the train
- Handling of emergencies is more difficult
- Mechanical and control systems are much more complex, require high-cost maintenance
- Operating cost is usually higher on automated systems

Figure 12. Evaluation of fully automatic transit systems

	il aven	Train Length:				ared guided as o	Rubber-	
City / Line	Year	Cars	Meters	Spaces	Crew Size	Operation - Event	Innovation	
New York Subway	1904	6	108	1100	7	Driver + 6 Guards	miQUqred.	
Paris Metro	1930?	5	71	750	2	1 Guard / Car 1 Guard / Train	2-Person Crew	
Hamburg U-Bahn	1957	8	112	1100	a shire	Eliminate Guard	1-Person Crew +Platform Attendant	
New York / Times Square Shuttle	1964	3	54	540	(1)	Driver Sitting	(1), ATO	
London / Victoria Line	1968	8	128	1480	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Driver Door Control	1 Person, ATO	
Philadelphia / PATCO	1969	6	124	1200	noo Paga	Central Station Supervision	Unattended Stations	
San Francisco / BART	1972	10	220	2160	fav k nos	Driver Door Control	1-Person, 10-Car	

Figure 31. Historic development of automation of guided transit systems

VR V0204-31

	Year	Train Length:			v diane	et to nortevento he	Fully automay	
City / Line		Cars	s Meters	Spaces	Crew Size	Operation – Event	Innovation	
Dallas - Forth Worth / Airtrans	1974	2	13	80	0	ATO, ATS; Low Capacity	Automated Network in Airport	
Morgantown	1975	1	5	21	0	ATO, ATS; Very Low Capacity	Automated Low- Capacity Transit	
Atlanta Airport / Westinghouse	1980	3	36	420	0	ATO, ATS; Medium Capacity	Med. Capacity Automated Shuttle	
Lille / VAL	1983	2	28	172	0	ATO, ATS	Automated Regular Transit	
Vancouver / Skytrain	1986	4	51	440	0	ATO, ATS	Roving Driver- Attendant	
London / Docklands LRT	1988	2	56	524	(1)	ATO, ATS	Driver-Attendant on Each Train	
Lyon Metro Line D	1993	3	50	450	0	ATO, ATS	Fully Automated Metro	
Paris Metro Line 14	1998	5	75	750	0	ATO, ATS	Fully Automated Metro	

Figure 13 (cont). Historical development of automation of guided transit systems

도시철도 국제 세미나 및 Workshop

●일 시: 2002년 4월 25일 ~ 4월 26일

장 소 : 조치원 홍익대학교 국제경영연수원

주관: 한국철도기술연구원
Korea Railroad Research Institute

후원: 🔊 건설교통부