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Abstract 
The automated detection of human skin has become an important task for machine vision systems. Prior 

vision and graphics research on this topic has primarily focused on images acquired with conventional color 
cameras. Formal spectrographic analyses have largely been undertaken in the medical domain and focus on 
the detection of pathology. 

We have constructed a facility capable of producing accurate, dense and repeatable reflectance measure- 
ments. The light reflected from the skin is measured using a high resolution, high accuracy spectrograph 
under precisely calibrated lighting conditions. This paper presents observations from the$rst body of data 
gathered at this facility. From the measurements collected thus fa?; we have observed population-indepen- 
dent factors of skin reflectance. We show how these factors can be exploited in skin recognition. Finally, we 
provide a biological explanation for the existence of a distinguishing pattern in human skin rejkctance. 

1 Introduction 
The understanding of human skin reflectance is motivated by a number of compelling applications. First and foremost is 

the automated location and identification of humans from color images. There is a substantial body of work in this area 
which relies on conventional tri-color RGB sensor data [7] and on chroma-model based approaches [18]. RGB data is 
prevalent, easy to collect and mimics human color sensitivity. Unfortunately, the RGB model produces significant color- 
distortions [8]. It is therefore a natural and practical approach to take in investigating skin recognition. What happens, how- 
ever, if the constraint of using data from an RGB sensor is lifted? Establishing ground-truth measurements of skin reflec- 
tance provides the foundation for reasoning about new multi-spectral techniques and evaluating existing methods. 

Recognition and simulation are closely linked topics. Skin reflectance is also an important aspect of photo-realistic ren- 
dering of humans. This is clearly a problem of great theoretical, if not to say commercial, interest. Accurate data will lead 
to improved rendering and possibly display technologies. 

The ultimate goal of this work is to build a complete, validated model of human skin reflectance which incorporates a 
multitude of population and individual-based variables. This goal, ambitious as it is, promises to be of great benefit for the 
vision and graphics comminutes. 

In this work we present our measurement facility and provide a brief error analysis about the accuracy of our measure- 
ments. We then show how the dense spectral data can be used to discriminate between the reflectance of human skin and a 
material made to mimic human skin tone. The discriminatory power of the dense spectral sampling is explained by the 
absorption of visible light by the human skin. 

2 Measurement Facility 
We have constructed a facility capable of physically measuring the spectrum of light reflected from a surface. Our setup, 

composed of a light source, a mounting stage for the surface sample and a high resolution spectrograph allows us to pro- 
duce accurate, dense and repeatable reflectance measurements. 



2.1 Illumination 
The incident illumination is strictly controlled. The light reflected from a surface depends on the direction, the intensity 

and the spectrum of the light falling on the surface. We use a single light source located approximately lOOcm from the 
sample. Our lamp (shown in fig. 1) produces a collimated beam of even irradiance over a small area on the sample, 
(smaller than lcm2). The source is a quartz halogen lamp encased in an housing which allows focusing and alignment. The 
beam passes through an IR-cut filter which transmits light from 420nm to 630nm. The light goes also through a UV filter 
that blocks even further the transmission of light under 415nm. 

Fig. 1. Light source illuminating the skin, 

2.2 Detection 
The light reflected from a skin sample is scattered in all possible directions of the viewing hemisphere. We are interested 

in measuring only that amount of the scattered light that is reaching a single viewpoint. Thus, a 2m long fiber optic bundle 
with a 200pm x 6mm sensing area is mounted at the desired viewpoint. A lens mounted in front of the fiber optic cable 
focuses the light on the tip of the bundle. The facility is designed to measure the Bidirectional Reflectance Distribution 
Function (BRDF) of various materials. Thus, it allows for the generation of all possible viewpoints by having the fiber 
optic cable mounted on a motorized goniometer which covers an angle of 180" . The platform on which the sample rests is 
a motorized stage with 3 degrees of freedom. That allows for the reflectance measurement of anisotropic samples from all 
possible viewpoints and angles of incidence. 

Fig. 2. The reflectance measurement sensor. 

As can be seen in fig. 2, the other end of the fiber optic bundle is connected to an Oriel Multispec 77400 spectrograph. 
The spectrograph uses a diffraction grating to disperse the light into its component wavelengths. We use a 600 lines per 
mm grating. The dispersed light falls on a photodiode array which takes 1024 measurements in the 390nm to 710nm range 
approximately. Thus we get reflectance measurements every 0.32 nm. Photodiode arrays have almost an order of magni- 
tude better signal to noise ratio than the corresponding CCD sensors. 

3 Skin Reflectance Data 
We asked our subjects to rest their right hand on the platform touching the back plate of the stage. Two different samples 

were taken for each subject: one for the back of their hand and one for the palm (see fig. 3). The light was falling approxi- 
mately on the center of the hand. The reflected light was collected via the fiber optic cable which was located 21cm away 
from the sample. To further improve our signal to noise ratio, we took the average of 10 reflectance measurements for each 
skin sample. 



Each session of data collection included taking a measurement of the dark reference (background) of our apparatus and 
a sample of the incident light beam. Each of these samples was also collected 10 times to reduce the signal to noise ratio. 
We also applied a local average smoothing over a 5 pixel area to each sample. 

Fig. 3. Experimental setup. 

The color of the reflected light depends on the color of incident light. Thus, the true descriptor of the spectral behavior 
of a material is the ratio of the light reflected from that material over the light that is incident on that material. For non- 
Lambertian surfaces this ratio changes as the angle of incidence and angle of reflectance change. The ultimate goal is to 
produce a complete BRDF for in-vivo human skin. Our current measurements are for a 0" angle of incidence and approx- 
imately 4" angle of reflectance (to avoid placing the fiber optic cable on the direction of the beam) Thus, what we are 
measuring is: 

where BRDF() is the Bidirectional Reflectance Distribution Function, which is a five parameter function, 
BRDF(B,, (p,;8,, q i ;h) .  8 ,  cp ,  are the spherical coordinates of the angle of reflectance, 8 ,  cp ,  are the spherical coordi- 
nates of the angel of incidence and h is the wavelength at which the BRDF is measured. The following figures show the 
BRDF ratio plotted against the wavelength of the visible part of the electromagnetic spectrum. 

Skin Reflectance 

450 500 550 600 650 700 
Wavelength 

Fig. 4. Spectra of the back of the hand. 



We measured the skin reflectance of 23 volunteers ranging from 20 to 40 years old. Out of the 23 volunteers, 18 were 
male and 5 female. We tried to get a diverse collection of skin tones: 16 of our subjects were caucasian, 3 were asian, 2 of 
african descent and 2 were indian. The green plots are the spectra of asians. The magenta and the blue plots are spectra of 
our african descent and indian volunteers respectively. 
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Fig. 5. Spectra of the back of the hand. 

The first three figures (fig. 4, fig. 5 and fig. 6)show the spectrum of the back of the hand. Although we collected a 
diverse set of skin spectra, there is clearly a particular pattern that can be observed. A gradual increase with respect to 
wavelength can be immediately noticed, with a dip around 575nm. 
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Fig. 6. Spectra of the back of the hand. 

The skin spectra of various races are interspersed and no clear classification can be done. There is one exception. One 
can observe that darker shaded skin, independent of race, reflects a smaller proportion of the incident light (which is how a 
darker surface can be described) and does not exhibit the curvature variation of the other plots. 



Fig. 7 shows a subset of the previous curves after their albedo has been rescaled to vary between 0% and 1%. By divid- 
ing each reflectance distribution by the maximum value of that distribution we are ignoring the effect of the darkness of 
skin and are concentrating on the shape of the spectrum. 

Normalized Skin Reflectance 
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Fig. 7. Scaled spectra of the back of the hand. 

In order to test whether the variations of the shape of the skin spectra could be attributed to the local skin structure and 
to melanin, we measured the spectra of the palm of the same volunteers. 
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Fig. 8. Spectra of the palm. 

For the palms, the measured spectra (fig. 8 and fig. 9) still exhibit the same general pattern as the back of the hand. (A 
gradual increase with respect to wavelength with a dip around 575nm.) As expected the palm has a more reddish spectrum 



than the back of the hand. Notice that the various spectra are much more closely clustered and exhibit an almost identical 
shape. 
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Fig. 9. Spectra of the palm. 

Fig. 10. shows the palm spectra after their albedo has been rescaled to vary between 0% and 1%. Fig. 7 and fig. 10 show 
the rescaled spectra of the palm and the back of the hand of the same subjects. Notice that, in the absence of melanin at the 
palm, the BRDF plots for the darker skinned subjects exhibit the same curvature as the rest of the plots. The closer cluster- 
ing also indicates that variations in the superficial skin structure, like hair, pores, follicles, wrinkles etc., do have a minor 
impact on the spectrum of the human skin. 
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Fig. 10. Scaled spectra of the palm. 

The measured spectra demonstrate that there is a very specific pattern in the spectral distribution of the color of skin. 
The next question that arose is whether this pattern is sufficiently unique to provide for the identification of human skin, 



especially when compared to a mannequin which cames the same key features with humans (lips, nose, eyes, arms, legs 
etc.) We took 5 measurements of the spectrum of light reflected by a mannequin (fig. 11). 

Fig. 11. Measuring the reflectance of a mannequin. 

Once again the measurements we present are measurements of albedo, the ratio of reflected over incident light. The 
spectra of the mannequin are shown in blue, while the spectra of human skin are shown in red. 
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Fig. 12. Spectra of human hands versus mannequin. 

We plotted the reflectance spectra of the mannequin versus that of the back of the hand, since that is more representative 
of the skin variations which are typically observed in humans. The four skin spectra belong to members of both genders 
and the four races that we tested. Notice the different shape of the spectral distributions between the two groups. 



Fig. 13 shows the same spectra as in fig. 12 after they have been rescaled so that the albedo would vary between 0% and 
1%. The rescaled mannequin spectra are almost overlapping. In the rescaled plots the existence of two separate spectra 
becomes more evident than in fig. 12. 
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Fig. 13. Rescaled spectra of human hand versus mannequin, 

4 Error Analysis 
Before we proceed in analyzing the reflectance data, it is important to evaluate the accuracy of our measuring facility. 

To that end, we used 3 calibrated flat disks: a Labsphere Standard Red Spectralon CSTM-SCS-RD-22547, a Labsphere 
Standard Green Spectralon CSTM-SCS-GN-22547 and a Labsphere Standard Blue Spectralon CSTM-SCS-BL-22547. 
Labsphere had provided us with the reflectance spectra of these samples. We measured the reflectance spectrum of each of 
these samples in our spectrographic facility. Fig. 14 shows the measured spectra alongside the spectral distributions pro- 
vided by Labsphere. 
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Fig. 14. Calibrated versus measured reflectance spectra. 



There is slight dip in our measurements at above 650nm. It is caused by the use of the IR-cut filter in our light source 
that allows for the transmission of only 15% of the light above 630nm. For each of the three colored samples we computed 
both the average absolute error and the average square error (see Table 1). The overall average absolute error is 1.67, while 
the overall average square error is 4.96. 

Table 1: Error of Measuring Facility 

5 Automatic Detection 
The preceding error analysis indicates that our skin reflectance measurements are accurate. Eye inspection of the reflec- 

tance data shows that there is a persistent pattern that seems to be unique to the human skin. All the measured reflectances, 
with the exception of the more tanned people, exhibit a localized " W  pattern (two dips with a bump in the middle) in the 
middle of the visible spectrum. 

The critical issue is whether this pattern can be automatically detected in a consistent and reliable manner. We devel- 
oped the following algorithm. 

Avg. Square 
Error 

3.22965 

0.10275 

11.56619 

Sample 

Red 

Green 

Blue 

" W  pattern detection algorithm: 
1. Find all the local minima and maxima of the curve (places where the derivative is zero). 
2, Find the two smallest local minima after 430nm. 

They should be the two dips of the 'W" pattern. 
3. Let h,=wavelength of the leftmost dip. 
4. Let %=wavelength of the rightmost dip. 
6. If h3-h1<50nm 

Find the local max between hl and h3. 
This should be ,the middle bump. 
Let h2=wavelength of the middle bump. 

else 
No " W  pattern is present, because the two 
smallest local mins. are not close to each other. 

Avg. Absolute 
Error 

1.68171 

0.26407 

3.06967 

This algorithm was 100% successful in locating the "W" pattern when it was present. Out of the 46 human skin samples, 
44 exhibited the "W" pattern and our algorithm accurately located it all 44 times. The two samples that did not exhibit the 
pattern were those of the back of the hands of the very dark-toned skin. Similarly, none of the 5 BRDF plots of the manne- 
quin contained this pattern, so all of them were correctly identified as lacking the pattern. 

A statistical analysis was performed on the location of the local minima and maxima that define the " W  pattern. We 
computed the mean and median wavelengths at which the pattern's local extrema occur. We also computed the correspond- 
ing standard deviations to get a measure of the localization for each of these features. Table 2 summarizes these findings. 



Table 2: Wavelengths of Local Min and Max 

6 Human Skin 
All the analysis thus far indicates that the existence of the "W" pattern implies the presence of live human skin. Such a 

strong statement should also be supported by the physics of skin reflectance. A closer look at the various chromophores in 
the skin and their absorption spectra provides an explanation to the existence of the " W  pattern. 

The skin is considered the largest organ of the body. It is divided into two main regions, the epidermis, and the dermis. 
The dermis is attached to the underlying hypodermis (see fig. 15). 

epidermis (melanin) 

Feature 

Left Min. 

Local Max 

Right Min. 

dermis (hemoglobin, collagen, melanin) 

Location 
Mean h 

546.56 

559.72 

575.45 

Location 
Median h 

546.42 

559.48 

576.26 

- - 
hypodermis (melanin) 

Standard 
Deviation 

2.54 

0.95 

2.34 

I skin 

Fig. 15. The skin, the hypodermis and their chromophores. 

6.1 Epidermis 
The epidermis is the most superficial layer of the skin. Its principal cell is called a keratinocyte. The epidermis is made 

out of 5 layers: the stratum corneum, the stratum lucidium (present only in areas of very thick skin, like the palms of the 
hands and the soles of the feet), the stratum granulosum, the stratum spinosum and the stratum germinatum. The epidermis 
is constantly regenerated. The stratum germinatum is in the innermost layer which provides the germinal cells necessary 
for the regeneration of the layers of the epidermis. Newly formed cells undergo a progressive maturing process called kera- 
tinization. As the cells of the epidermis mature, they migrate to the outer layer, the stratum corneum. 

6.2 Dermis 
The dermis is the inner layer of the skin. It supports the vascular network that supplies the avascular epidermis with 

nutrients. The dermis contains mostly fibroblasts which secret collagen, elastin and ground substance that give the support 
and elasticity of the skin. The dermis itself is made out of 2 layers: the papillary layer (the outer layer), which contains the 
vascular network, and the reticular layer, which houses among other things hair follicles and glands. 

6.3 Hypodermis 
Hypodermis is a subcutaneous ('under-the-skin') layer of connective tissue which connects the skin to deeper structures. 

Gross anatomists call this layer the superficial fascia; histologists call it the hypodermis - it is NOT part of the skin. 



7 Formation of Skin Reflectance 
The reflectivity (BRDF) of the skin at various wavelengths is mainly determined by the chromophores present in the 

various layers of the skin [14, 17, 191. In order to explain the presence of the "W'pattern we must take a closer look at the 
contribution of each of these chromophores. 

7.1 Melanin 
In most individuals, the absorption of the epidermis is usually dominated by the absorption caused by melanin. Melanin 

is a class of biological polymer synthesized from tyrosine by a complex series of reactions. There are two types of melanin: 
eumelanin, a black-brown pigment which is insoluble and is found in brownhlack hair and brown eyes. 
pheomelanin, reddish pigment which is alkali-soluble and is found in red hair and red feathers. 

All healthy individuals have varying degrees of eumelanin in their skin, while pheomelanin is present only to individu- 
als who carry the corresponding genetic trait. Thus, when people talk about melanin, they typically refer to eumelanin. 
From this point whenever we mention melanin we will assume that it is eumelanin. 

Although melanin is one of the most ubiquitous of natural pigments, its chemical structure is unknown as it is formed by 
a random polymerization process which ends up incorporating many intermediates into the final heterogeneous process. 
Since the exact chemical structure of melanin is unknown, human eumelanin can not be artificially generated and studied. 
Instead, the eumelanin particles from the ink sacs of the cuttlefish Sepia oficinalis are used as a model system. In general, 
the reflectance spectrum of melanin in the visible range is monotonically increasing with wavelength with maximum 
absorption occurring in the UV range. Buckley and Grum [I] who compared non-pigmented versus healthy adjacent 
patches of skin in vitiligo patients observed a similar melanin reflectance curve. This partly explains the predominant ten- 
dency of skin BRDF to increase with wavelength. 

Melanin originates in the melanocytes, which are also found in the epidermis. They are dendritic cells which are sur- 
rounded by, but not connected to the keratinocytes in the epidermis. Inside the melanocytes is a special type of organelle, 
the melanosome, which is where melanin is synthesized. The melanosomes are secreted out of the melanocytes and into 
adjacent keratinocytes via dendritic processes. The keratinocytes which now contain the melanin carrying melanosomes 
move up through the epidermal layers as part of the constant regeneration process. Thus, melanin is formed in the lower 
layers of the skin, attaches to the keratinocytes in the form of melanosomes and slowly moves to the outer layers of skin 
until it reaches the stratum corneum. 

The various hues and degrees of pigmentation found in the skin of human beings are directly related to the number, size, 
and distribution of melanosomes within the melanocytes and other cells. According Jacques [lo] it is estimated that: 

in light-skinned adults 1.6-6.3% of the epidermis volume is occupied by melanosomes; 
in moderately pigmented adults 11-16% of the epidermis volume is occupied by melanosomes; 
in darkly pigmented adults 18-43% of the epidermis volume is occupied by melanosomes; 

7.2 Keratin 
Keratin is a fibrous protein found in the epidermis. It is formed inside the keratinocytes, during the keratinization pro- 

cess. Its fibers cause light scattering, but they are too thin to have a critical effect in skin reflectance. 

7.3 Carotene 
Carotene is one of the chromophores of the dermis, but it can also be present in the blood. It is an unsaturated hydrocar- 

bon found as a pigment in many higher plants, particularly carrots, sweet potatoes, and leafy vegetables. Its presence in 
humans depends on food consumption. Its absorption peaks at 480nm but it has a very weak effect on the overall skin color 
[I]. 

7.4 Collagen 
Collagen is a fibrous protein that can also be found in the dermis. Its fibers are the primary source of light scattering in 

the dermis. Jacques [lo] has done extensive analysis on the scattering effects of Collagen but does not mention any impact 
on the reflectance spectrum of the skin. 

7.5 Hemoglobin 
The dermis is heavily permeated with blood vessels which contain hemoglobin, Hb. Hemoglobin is a protein contained 

in the red blood cells (95% of the dry mass of red cells is Hb). Hemoglobin binds very easily to Oxygen, making it the ideal 
"vehicle" for the transportation of oxygen from the lungs to the tissue. Hb has a unique absorption spectrum with charac- 
teristic absorption bands at 420nm and in the 545nm-575nm range, right where the " W  pattern is observed. Using the 
measurements of Zijlstra et al [20] we plotted the hemoglobin absorption spectrum versus our skin reflectance measure- 



ments (see fig. 16). 

Skin Albedo and Oxygenated Hemobglobin 

Fig. 16. Skin reflectance vs. hemoglobin absorption. 
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The locations of the absorption bands, shown in Table 3, are almost identical to the locations of the " W  pattern, which 
were shown in Table 2. 
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Table 3: Wavelength of Hb02 absorption bands 
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These absorption bands occur only when hemoglobin is bound with oxygen. De-oxygenated hemoglobin exhibits 
shifted absorption bands and the distinct pattern is no longer present. Nonetheless, the majority of hemoglobin in the 
human blood vessels is oxygenated. More specifically, in the arteries 90-95% of the Hb is oxygenated while 5-10% of the 
Hb id de-oxygenated. In the veins, more than 47% of the Hb is oxygenated. 

Finally hemoglobin like melanin exhibits most of its absorption in the lower wavelengths, contributing to higher skin 
reflectance in the higher wavelengths. By now, it is clear that the oxygenated hemoglobin in the blood vessels is responsi- 
ble for the skin-BRDF "W" pattern. Heavily pigmented skin, has increased amounts of melanin which absorbs most of the 
light in the epidermis, allowing a much smaller percentage of the incident light to reach the vasculature of the dermis. 
Thus, the hemoglobin absorption bands, although still present are not detectable. 

Since the spectrum of skin is closely tied with the chromophores in the skin, one would expect the skin BRDF to be 
quite different for dead people. Indeed, older studies, by Brunsting and Sheard [l] verify this theory. They performed spec- 
trophotometric analysis on postmortem skin and in vivo skin of people of approximately the same body type, age, gender 
and race. Their data indicates the absence of the absorption bands at 540nm, 580nm and 630nm. The reflectance spectrum 
of postmortem skin looks relatively flat. Almost monotonically increasing ever so slighlty in the red region, i.e as the 
wavelength increases [I]. Thus, a BRDF database for human skin must be generated using, in-vivo not postmortem skin. 

Feature 

Left Max. 

Local Min. 

Right Max. 

Location 
Mean h 
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576 



As a last note, we would like to point out that the medical and biomedical communities have done extensive work in 
analyzing the skin reflectance spectrum. However, most of their work is either laser-based, or is concentrating in the infra- 
red part of the spectrum. There is of course the exception of very early work (1930s) of Edwards and Duntley [6] and Brun- 
stig and Sheard [I] .  An extensive comparison of their results with ours is beyond the scope of this paper. It is however 
worth noting that our spectrophotometer is of higher accuracy, that the number of our human volunteers is much more 
extensive and that both these papers are influenced in the interpretation of their results by common gender and racial 
beliefs of that period. 

8 Conclusions 
We have constructed a facility capable of producing accurate and dense measurements of the reflectance spectrum of 

human skin. The initial data of skin spectra gathered at our facility show that despite variations the spectral distribution of 
skin exhibits a certain pattern. This population-independent pattern can be automatically detected with 100% accuracy. 
Furthermore, the patteni is directly tied to the human skin composition. 

Additional analysis and more measurements of skin reflectance are in progress. We are collecting data from with differ- 
ent parts of the human body. We are also interested in examining the reflectance data over a variety of age groups. 
Although the initial samples were collected with specialized equipment, spectral information can be collected with a CCD 
camera and a set of narrow bandpass filters. Such a setup will provide for the fine sampling of the reflected spectrum and 
will allow researchers to take advantage of the knowledge of skin reflectance. 
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