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Phase contrast in intermittent-contact atomic force microscopy (AFM) reveals in-plane structural and
mechanical properties of polymer monolayers. This is surprising, because measurements of nanoscale
in-plane properties typically require contact mode microscopies. Our measurements are possible because
the tip oscillates not just perpendicular but also parallel to the sample surface along the long axis of the
cantilever. This lateral tip displacement is virtually universal in AFM, implying that any oscillating-tip
AFM technique is sensitive to in-plane material properties.
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Materials with highly anisotropic properties are used in
a wide array of mechanical, optical, and electronic applica-
tions. Recently, anisotropic properties have been studied
at the nanometer scale with atomic force microscopy
(AFM) [1-6]. Measuring anisotropies with AFM requires
breaking the rotational symmetry of the tip-sample interac-
tion. Most studies of in-plane anisotropies have been con-
ducted with lateral force microscopy (LFM), in which the
tip-sample rotational symmetry is broken by the scan direc-
tion. LFM, however, is a contact-mode technique. Studies
of soft materials must avoid it in favor of intermittent-
contact (IC) AFM. A symmetry-breaking tip-surface
interaction for IC AFM would enable nanoscale measure-
ments of in-plane properties.

We report that phase contrast in IC AFM images is
directly correlated with the in-plane anisotropy of poly(di-
acetylene) (PDA) monolayers. The phase shifts we ob-
serve depend on the orientation of the cantilever relative
to the in-plane polymer backbone orientation of the PDA.
These phase shifts arise from energy dissipation due to
in-plane dissipative forces which in turn are due to tip
motion parallel to the surface. Such motion is not in-
cluded in current interpretations of IC AFM, which con-
sider only one-dimensional motion of the tip perpendicular
to the surface [7-10]. By symmetry, such models will not
be sensitive to in-plane properties [11]. Because the can-
tilever is tilted relative to the plane of the sample in virtu-
ally all AFMs (11° in our case), its oscillation breaks the
tip-sample rotational symmetry and enables measurement
of in-plane anisotropies.

PDA monolayer films were prepared on a mica sub-
strate using a Langmuir deposition technique [12]. PDA
monolayers exhibit strong anisotropy that is correlated
with their aligned polymer backbone structure [Fig. 1(a)
inset] [12—15]. For example, friction measured with LFM
is 3 times larger when sliding perpendicular vs paral-
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lel to these backbones [12—15], which is likely due to
anisotropy in the monolayer’s inelastic shear deformation
modes [13].

Figure 1(a) shows an IC AFM topographic image of a
PDA film with large monolayer regions. The experimental
parameters are in Ref. [16]. Islands of multilayer PDA are
also visible. The monolayer regions are polycrystalline,
and each domain can be identified by the orientation of the
striations visible in the phase image along which the PDA
backbones lie [12,17]. The typical phase ¢ in Fig. 1(b)
is approximately 116° [18]. Surprisingly, the phase ¢
differs from domain to domain by up to 2° in Fig. 1(b).
The maximum phase ¢max occurs when the long axis of
the cantilever is parallel to the striations (6 = 0°).

Phase shifts between the drive and the response in IC
AFM indicate energy loss. In IC AFM, the cantilever’s
base is driven with a small amplitude, resulting in a larger
tip oscillation, of order 15 nm peak to peak in our case.
Cleveland et al. [19] have shown that, if the tip’s mo-
tion is nearly sinusoidal, the power dissipated due to the
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FIG. 1 (color). (a) Topographic IC AFM image of a PDA thin
film acquired in constant amplitude mode. The inset shows the
PDA structure and its backbone. (b) Simultaneously acquired
phase contrast image. 6 is the angle between the local PDA
backbone striations and the long axis of the cantilever.
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tip-sample interaction is well described by

2
Pap = 5 Lo (B 1),
where k is the cantilever stiffness, Ay is the free amplitude
of oscillation, A is the amplitude during imaging, wy is the
angular frequency of the cantilever, Q is the quality factor
of the free cantilever, and ¢ is the phase of the oscillation
relative to the drive.

From Eq. (1), the phase shifts in Fig. 1(b) indicate varia-
tions in the dissipated power. Because the overall phase
in Fig. 1(b) is larger than 90°, and the amplitude is held
constant, an increase in phase ¢ corresponds to a decrease
in the power dissipated. Thus, Fig. 1(b) shows that the
power dissipated is smallest when the striations are parallel
to the long axis of the cantilever. Using Eq. (1) and our
system parameters [16], we find that the cantilever loses an
extra amount of energy AE = 2.4 eV per cycle in domains
where the striations are perpendicular, rather than parallel
to the long axis of the cantilever.

A simple model for an in-plane anisotropic tip-sample
interaction force Fiy_plane 1S an isotropic dissipative force
F, plus an anisotropic term that varies as sin(#) with
maximum value F5:

Fin—planc =F + F2|Sin(0)|7 (2

where 6 is defined in Fig. 1(b). Equation (2) accurately
describes the anisotropic friction force between PDA
monolayers and LFM tips [13], where it was found that
F2 = 2F1.

If Eq. (2) describes the dissipation, the difference in
Fin-plane between two domains will be proportional to
Alsin(8)| = |sin(@,)| — |sin(#;)|. The difference in
power dissipated between two domains from Eq. (1) is
proportional to A sin(¢) = sin(¢,) — sin(¢;), because
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FIG. 2. The difference in the sines of the phase angles ¢,
proportional to the difference in energy loss between domains,
versus the difference in the absolute values of the sines of the
angles 6, proportional to the difference in the in-plane tip-sample
dissipative forces. The line is A sin(¢) = a A sin(f) with @ =
(1.58 * 0.05) X 1072. Data are extracted from Fig. 1.

226103-2

the amplitude A is constant. Figure 2 is a plot of A sin(¢)
vs Alsin(@)| for the data in Fig. 1. Remarkably, we find
that A sin(¢) is proportional to Alsin(#)|, with propor-
tionality constant @ = (1.58 * 0.05) X 10~2. This linear
proportionality can be understood by considering the tip’s
motion. While interacting with the surface, the tip moves
laterally in the plane of the surface for a distance . If we
assume that 6 is nearly independent of the domain orienta-
tion, the work done by in-plane dissipative forces is simply
proportional to Fi,_pane. Thus, the difference in the work
done between domains is proportional to A Fiy_piane, Which
is proportional to Alsin(#)| by Eq. (2). Power is the work
done per cycle multiplied by the cantilever oscillation fre-
quency, so we conclude that indeed A sin(¢) « Al sin(6)].
Because Fiy_plane does change from domain to domain, &
might be expected to depend on domain orientation. In
fact Fin-plane 1s relatively small, so the lateral motion & is
nearly constant in our experiment, independent of domain
orientation.

We have assumed that the component of the tip oscil-
lation parallel to the surface is the important symmetry-
breaking motion. In principle, this need not be true,
because the raster scan also causes lateral tip motion. The
phase data in Fig. 3, however, demonstrate that lateral mo-
tion due to the raster scan has no effect on the data pre-
sented here. Figures 3(a) and 3(b) were acquired with
the fast scan direction perpendicular and parallel to the
long axis of the cantilever, respectively. Figures 3(c) and
3(d) are plots of Asin(¢) vs Alsin(#)| corresponding to
the data in 3(a) and 3(b), fit with the line Asin(¢) =
aAl|sin(@)|. The slopes « are the same within the fitting
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FIG. 3 (color). (a) Phase image with the fast scan axis parallel
to the cantilever axis, and (b) phase color image with the fast
scan axis perpendicular to the cantilever axis. (c) Correlation
between energy loss difference and difference in dissipative
forces for image (a). The line is Asin(¢p) = a A sin(0) with
a =(51=1.1) X 1073, (d) Corresponding correlation for
image (b). The line corresponds to & = (4.2 + 0.7) X 1073,
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uncertainty, demonstrating that the in-plane component
of the cantilever oscillation is the important symmetry-
breaking interaction.

The data in Figs. 1-3 provide a measurement of surface
anisotropy. The two candidates for this anisotropy are shear
deformation and friction, which in fact must both be pres-
ent here. Because the tip is moving at a finite lateral ve-
locity with respect to the sample just before contact, there
will be relative motion between the tip and the sample as
the tip does work on the surface to increase the surface lat-
eral velocity to match that of the tip. Similarly, as the tip
slows and reverses direction near maximum compression
into the sample, at some point its lateral velocity will
match that of the surface. Any degree of static friction will
then require a finite shear deformation before any relative
sliding resumes [20]. Friction and shear deformation are
in fact closely related on the length scales considered
here [21].

Figure 4 is a schematic of a simple dynamic model
of IC AFM designed to explain the essential character-
istics of our results. The critical feature is that the tip

(0

is constrained to move along the z’ axis, which is tilted
an angle ¢ = 11° from the sample normal. To solve for
the motion of the tip, all tip-sample forces are projected
onto the z' axis. Ignoring motion along x’ is a good ap-
proximation, as an analysis of the cantilever indicates that
the effective spring constant in the x’ direction is more
than 30 times larger than any other spring constant in the
model [22].

The key result of this model is that the sample com-
pression during contact now occurs along z’, resulting in
components of motion in both the z and the x directions
(Fig. 4). The in-plane motion along x is what we have
demonstrated here. The forces on the tip are (i) can-
tilever restoring force and a damping force due primarily
to interactions with the air, both acting along the z' di-
rection; (ii) Hertz contact force acting in the z direction;
(iii) tip-sample damping along the z direction acting dur-
ing contact, due to inelastic deformation along z, taken to
be larger than the air damping by a factor M = 40 [7]; and
(iv) viscous tip-sample interaction along x during contact,
due to both shear deformation and friction. The cantilever

| is driven at its resonance frequency w, giving

p <0

wo [open

3 wo . 2 _ — 2 2 .
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where p is the distance between the tip and the sample
along z’, defined to be zero when the tip first touches the
sample and positive when in contact. The displacement of
the base of the cantilever ¢ drives the cantilever on reso-
nance: ¢ = {y(Ag/Q) sin(wgt). K is the reduced contact
modulus, k is the cantilever force constant, R is the tip ra-
dius, Q is the damping due to air, and Q. is the in-plane
damping.

Using parameters appropriate for Fig. 1, see Ref. [16],
our model indicates a maximum tip-sample compression
of 0.27 nm along z’, giving a tip-sample in-plane tip mo-
tion of 6 = 49.9 = 0.1 pm along the x direction. The
time spent in contact with the surface is 0.35 us per cy-
cle. The distance 6 is extremely small, and it is difficult
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FIG. 4. Geometry of the tip-sample interaction. Cantilever

oscillation occurs along the 7’ axis.
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to make firm distinctions between friction and shear defor-
mation at such a small scale. The important result of the
calculation is that the distance 6 is virtually independent
of the in-plane damping. Furthermore, our model produces
a nearly sinusoidal tip motion, indicating that Eq. (1) re-
mains valid for the tilted-cantilever geometry.

Phase shifts in IC AFM result from energy dissipation.
However, anisotropic in-plane elastic forces can cause
phase shift differences from domain to domain, because
such forces would alter the normal penetration of the tip,
changing the amount of damping. Including in-plane elas-
ticity in our model allows us to estimate the size of this
effect. The elastic in-plane stiffness of a Hertzian con-
tact is given by ki, = 8G*a, where a is the contact ra-
dius and G* = [(2 — wppa)/Gppa + (2 — vsi)/Gsi] ™"
G represents the respective shear moduli. For a Si-PDA
interface, G* = 1 GPa. Replacing in-plane damping with
this in-plane stiffness in our model, we find that the PDA
shear modulus would need to change by over an order of
magnitude between the two orthogonal directions in order
to cause the change in energy loss we observe (2.4 eV).
Varying Gppa by a more reasonable factor of 3 produces
an energy loss of 0.1-0.4 eV per cycle. While in-plane
elastic anisotropy may play arole, it is not the primary loss
mechanism. Measurements of the amplitude and phase as a
function of tip-sample displacement may allow us to quan-
tify in-plane stiffness and sliding in the future [23-27].

There are several models of IC AFM [7-10,19,23,26,
28-30], many of which include sophisticated treatments

226103-3



VOLUME 88, NUMBER 22

PHYSICAL REVIEW LETTERS

3 JunE 2002

of adhesion and viscoelasticity—effects we have either
ignored or simplified in our model. The distinguishing
feature we have introduced is that the tip oscillates along an
off-normal line. It is this feature that breaks the rotational
symmetry of the tip-sample interaction and explains the
behavior shown in Figs. 1-3.

A nonzero tilt ¢ of the cantilever with respect to the
sample normal is nearly universal in AFM. Increasing
the tilt angle would provide greater contrast in resolv-
ing in-plane properties, as demonstrated in the shear-force
mode commonly used in near-field scanning optical mi-
croscopy [14,31]. Also, the local angle ¢ will change due
to local variations in sample topography, contributing to
contrast in any phase image, even in the case of isotropic
in-plane properties. Finally, measurement of in-plane mag-
netic forces is possible using in-plane tip magnetization
[32—34]. The lateral tip-sample motion we demonstrate
here may allow measurements of in-plane anisotropies in
other long range forces, such as electric forces.
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No. CMS0134571, and DMR0079983, Research Corpo-
ration, and UW-Madison. Some images were prepared
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