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ABSTRACT
KINEMATIC CONTROL OF HUMAN POSTURES FOR TASK SIMULATION
XINMIN ZHAO
NORMAN I. BADLER

Kinematic control of human postures for task simulation is important in human factor
analysis, simulation and training. It is a challenge to control the postures of a synthesized
human figure in real-time on today’s graphics workstations because the human body is
highly articulated. In addition, we need to consider many spatial restrictions imposed on
the human body while performing atask.

In this study, we simplify the human posture control problem by decoupling the
degrees of freedom (dof) in the human body. Based on severa decoupling schemes, we
develop an analytical human posture control algorithm. This analytical algorithm has a
number of advantages over existing methods. It eliminates the local minima problem, it
is efficient enough to control whole human body postures in real-time, and it provides
more effective and convenient control over redundant degrees of freedom. The limitation
of this agorithm is that it cannot handle over-constrained problems or general constraint
functions. To overcome this limitation, we transform the human posture control problem
from a 40 variable joint space to a 4 to 9 redundancy parameter space. We then apply
nonlinear optimization techniques on the transformed problem. Because the search space
is reduced, this new numerical algorithm is more likely to find a solution than existing

methods which apply optimization techniques directly in the joint space.

The contributions of this thesis include a decoupling approach for simplifying the
human posture control problem, an analytical human posture control algorithm based on
this decoupling approach, and a numerical human posture control algorithm in redundancy
parameter space. These two new algorithms are more efficient and effective than existing
methods, and they also give the user control to select the desired solution. Moreover, the

analytical algorithm can control postures of afew 92 dof human figures at 30 Hz.
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Chapter 1

| ntroduction

1.1 Motivation

For design evaluations, virtual prototyping offers a cost-effective aternative to building
real prototypes of complex systems such as space stations, airplanes, ships[18] [15]. With
the progress of CAGD, the building of virtual prototypes (in terms of geometry) is well
understood today. On the other hand, much more work is needed in design evaluation

using virtual prototypes.

One important aspect of a complex system design is the geometry of the human-
machine interface. In evaluating a human-machine interface, we want to make sure that
all prospective users are able to perform the required tasks in the designed system. An
intuitive way of doing thisisto simulate those tasks and see if they are feasible. This can
be done by putting a simulated human in the virtual prototype and controllingit to perform
the tasks. By simply observing and analyzing the motions of the simulated human, we
can assess the feasibility of al tasks, and thus the feasibility of the design. We call this
process virtual prototype evaluation. A key issue in this process is the control of the
simulated human for performing agiven task. In additionto virtual prototype evaluations,

the human motion control problemisalso important to many other areas such assimulation
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and training, computer animation, and virtual environment.

1.2 Problem statement

In this study, we are interested in the human motion control problem for task performance
in a virtual environment. More specifically, given the position and orientation of the
end-effector (usually the hand) or its trgjectory, an environment and a simulated human
model, we need to compute a posture or a motion sequence of the human body that places
the end-effector at the desired location.

In solving the human motion control problem, we need to consider the geometrical

restrictions on the human body imposed by the environment, including:

1. Collision avoidance constraints: During the movements, there should be no inter-

sections of rigid bodies.

2. Task-related constraints: These depend on the particular task. For example, if the
task is to put a cup of coffee on the table, holding the coffee cup upright to avoid
spilling would be a task-related constraint.

3. Sructural constraints; These are the constraints inherent to the human articul ated

structure. For example, each joint has joint limits.

In order to avoid collisions and handle task-related constraints, we must be able to
control the position and orientation of not only the end-effector but other parts of the body
aswell. That is, we must be able to control the redundancy in the postures that place the
end-effector at the given location.

Another consideration is the efficiency of the motion control system. The human body
has many degrees of freedom, and many points on the body may be involved in collisions
at the same time. Thus, the motion control algorithm must be very efficient in order to

have real-time control over the human figure in a workstation environment.
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For many tasks, the human body is a redundant system: there are an infinite number
of ways to perform them. The user may prefer that the task be performed in a particular,
“desired” way. This requires that the motion control algorithm provide a mechanism to
express and compute the “desired" postures or motions.

A motion sequence consists of a series of coherent postures. In order to simplify the
human motion control problem, in thisthesis we do not consider the coherencein a posture
sequence. Asaresult, we can solve the human motion control problem as ahuman posture

control problem. Thus, we only discuss the human posture control problem in this thesis.

With these considerations, the goal of thisthesisisto develop a human posture control

algorithm for task simulationsin avirtual environment that:

1. controlsthe hand to follow a given trgjectory;

2. controls positions and orientations of other parts of the body to handle geometrical

restrictions such as collision avoidance and task-related constraints;

3. provides amechanism to let users express and synthesize “desired” human postures

and motions; and

4. isefficient enough for real-time control of a human figure with 40 dof.

To satisfy the third requirement, we can provide either a direct mechanism for the user to
manipul ate the posture interactively in redundancy space, an indirect mechanism for the

user to specify a scalar performance criterion minimization function, or both.

Human task performance is a complex process. There are many considerations that
determine how atask is performed. Correspondingly, we can study human postures in
task performance using many toolsincluding kinematics, dynamics, biomechanics, human
motor control theory, psychology, physiology, etc. In this study we are only interested in
evaluating the geometry of the human machine interface. For this reason, we confine our

study to kinematic human posture control for task performance.
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1.3 Redated work

There are a number of areas in computer animation and robotics which are related to our
work. In this section we briefly review some of the posture and motion control techniques
developed inthose areas. Inthe next chapter we discuss the drawbacks of these techniques
when they are applied to solving the human posture control problem. Herewe only review
kinematic motion and posture control techniques since they are directly related to this

thesis work.

1.3.1 Pseudoinverseand task priority

In general we can decompose atask R into anumber of subtasks r;:

R=ro,r1,..., rm]T

Each subtask can be either end-effector tracking, collision avoidance, etc. These subtasks

(also called tasks) can be represented by a set of nonlinear equations:
ri—fi{q) =01<:<m

where mis the number of tasks, ¢ = [¢1, ..., ¢,]7 isthe vector of joint variables.

Let J; be the Jacobian matrix, r/ be the velocity vector of the :-task. Let ¢’ be the joint
velocity vector. We have the following equation relating joint space velocity and task
space velocity:

R =0 ry )" =[fd g - frq1 =Jd (L1

where J = [J1 Jo ... J, )8 = [fl f5... f2.]F. Ingeneral m # n, where n is the number of
degrees of freedom (dof) in the system. So we cannot directly invert the Jacobian matrix
J to compute ¢’. Instead, J*, the pseudoinverse of .J is used [26] [43]. That is:

4



¢ =JR (1.2)

Moreover, the general solution of the linear system R’ = .J¢' isgiven by:

¢ =JR+(I—-JJ)z

where [ isthen x n identity matrix, and z is an arbitrary vector.

Inequations 1.1 and 1.2, all tasks are treated equally. There are situations where some
of the tasks are more important than others, and we would like to give higher prioritiesto
those tasks. Methods based on priority tasks system are discussed in [26].

1.3.2 Damped least squaresand singular robust inverse

In section 1.3.1, the pseudoinverse of the Jacobian matrix is used to transform 3D space
velocity to joint velocity. This approach works well when the Jacobian matrix is well
conditioned. However, if the Jacobian matrix is singular or nearly singular, the joint
velocity computed from pseudoinverse of it will be excessively large. A method called
damped least squares (also called singular robust inverse) is proposed by Nakamura and
Hanafusa[27] and Wampler [41] to addressthis problem. Their work leadsto thefollowing

formula

¢ = (J w,J +w,)  w’ = Jr'

J=JTT+ kDT = JN (I + kD!

Notethat evenif .J issingular, J 7 J + k1 ispositivedefiniteand itsinverseexists. Thus, Jis
asingular robust inverse of the Jacobian matrix .J. & isthe damping factor, which balances
the trade off between the joint velocity norm ||¢’|| and the task error norm ||r" — J¢'||.
Larger & sacrificestask accuracy to avoid excessivejoint velocity, whilesmaller & improves

task accuracy at the cost of possibly large joint velocity.
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1.3.3 Configuration control

The damped least squares method was formulated to compute inverse kinematics robustly
in the presence of a singular Jacobian. This approach has also been extended for motion
control of redundant robots using the augmented Jacobian by Sergi, et al. [34] [8] [36]
[13] [37] [35]. Their approach is summarized here.

Let R = [rq,72,...]7 bethetasks to be performed.

R = [rllv r/27 ]T = [Jl, Jo, ...]Tq’ =Jq

where J is the augmented Jacobian of the system (i.e., we augment the original Jacobian
matrix ./, with .J,, J3, ...). Because the singularities of the augmented Jacobian depend on
the tasks being performed, in general they are complicated and unavoidable. Thus, the
handling of singularitiesis necessary during the simulation. In this situation, the damped
least squares method proves to be valuable, and it is used in the configuration control.
Instead of using astrict task priority scheme, aweight matrix is used to control the relative

priorities of various tasks.

Let r; be the desired task trgjectory and r the actual task trajectory. We can use the
damped least squares solution to control the end-effector to follow the desired trajectory
4.

A

¢ = J(rg+ Ge)

where 1/, is the desired velocity, Ge is the feedback term, ¢ is the gain matrix, and
e = rq — r isthe error term. This method is called configuration control since it worksin
configuration space and a feedback term is added to the formulation.

In configuration control, when inequality constraints are violated they are treated as
equality constraints. Multi-objective optimization is achieved through the minimization

of the sum of weighted error squares.



1.3.4 Inversekinematics

If we ignore the constraints, the human posture control problem is essentially an inverse
kinematics problem. There has been much work in this area [6] [10] [14] [24] [31] [33].
In this proposal we review an approach by Jianmin Zhao and Badler [44] which is very

successful in controlling simulated human movements [1].

The inverse kinematics problem can be stated as an optimization problem:

ming |le(q) = egoul]

where ¢(q) is the end-effector coordinates in terms of joint angles ¢, e,.. is the goal
coordinates of the end-effector. Instead of using first order methods such as gradient
descent, a second order method was used by Zhao and Badler [44] to |ocate the minimizer.
In general, it is much more efficient and stable than gradient-based methods. Moreover,
the algorithm also handles joint limitsin the form of linear constraints *, whichis essential

in simulated human motion and posture control [1].

1.3.5 Human arm inver se kinematics and human motion planning

The inverse kinematics a gorithms discussed in section 1.3.4 work for any n-dof structure.
An inverse kinematics algorithm designed to be used for human arm structureis proposed
by Kondo [20]. It decouples the problem into finding an upper and lower arm posture
to match the hand position first and then computing the wrist joint angles to match the
hand orientation. The computation of hand posture follows amodel based on results from
neurophysiology [39] [38]. The extra dof in the upper/lower arm (4 dofs) for positioning
the hand (3 dofs) is used to select feasible (within joint limits) joint angles of the shoulder
and elbow joints. Since the neurophysiology model is only an approximate model, final

adjustment of the joint angles using a Jacobian-based approach is needed to zero out the

1Constraints are linear if they can be represented by linear functions. Otherwise, they are nonlinear.
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end-effector position and orientation errors.

Koga, et a. use the above inverse kinematics algorithm and a randomized motion
planning algorithm [2] [22] to plan human manipulationmotions[19]. Chingand Badler [7]
use a motion planning approach successfully to plan human task motionsin configuration
space. For surveys on motion planning, the reader is referred to the work by Latombe
[22], Hwang and Ahuja[17]. One drawback of motion planning approaches is that they
are usually too slow to be useful in an interactive system. For the human task simulation

problem, we cannot use the motion planning approach.

Lee et. a. simulate human lifting tasks by considering the figure geometry, the
external load, the goal position and the human strength model [23]. They also model
different human behaviors (e.g., pull back) during the lifting task. The user can also

control the level of comfort of the agent.

Tolani and Badler developed an analytical algorithm to the human arm inverse kine-
matics problem [40]. It controlsthe clavicle, the shoulder, the elbow and the wrist joints.
The redundancy in the system is controlled by the elbow twist parameter. Given the hand
position and orientation, and the elbow twist parameter, the algorithm can compute the

joint angles analytically to put the hand in the desired location.

Zhao and Badler developed a collision avoidance algorithm for human movement
simulation [45]. It surrounds obstacles with potentia fields. Once the human body (or
parts of it) enters a potential field, it will be pushed away by the repulsive force generated
by the potential field. The action of repulsive forces is simulated using a nonlinear

optimization solver.

1.4 Thesisoutline

Inthefollowing chapter, we analyze the human posture control problemin detail. Thenwe
discuss the deficiencies of existing methods when they are applied to the human posture

control problem. Based on these discussions, we propose our approach to the problem.
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The main idea of our approach is to reduce the complexity of the human posture control

problem by decoupling the dofs in the human body.

In Chapter 3, we introduce a decoupling approach for human posture control. Using
this approach we develop several decoupling schemes by considering the human body
articulated structure. Based on these decoupling schemes, weidentify anumber of intuitive
variables to parameterize the redundancy space of the human body for task performance.

Then we develop an analytical human posture control algorithm.

In Chapter 4, we present anumerical algorithm for human posture control in redundancy
parameter space. This algorithm solves the human posture control problem better than
existing numerical algorithms because it works in the redundancy space of the human
body, a significantly smaller space than the joint space of the human body in which most

existing algorithms work.

In Chapter 5, we describe a few experiments with a prototype implementation of the
analytical and numerical human posture control algorithms. Finally, in Chapter 6, we

summarize the contributions of this thesis and discuss future work.



Chapter 2

Human Posture Control: Problem

Analysisand Our Approach

Inthis chapter, wefirst describe the articulated human model. Then we analyzein detail the
posture control problem for human task simulations. The deficiencies of existing methods
in the context of the human posture control problem are discussed in section 2.2. Based

on the discussions, we propose our approach to solve the human posture control problem.

2.1 Articulated human figure model

In this study, we use the Jack ®2 human model [1]. Figure2.1 showsthe articulated model
of the human figure in Jack. The human posture control algorithm directly controls the
following joints: thewrists (2 x 3 = 6 dofs), the elbows (2 x 1 = 2 dofs), the shoulders
(2 x 3 = 6 dofs)?, the neck (3 dofs), the waist (3 dofs) 3, the hips (2 x 3 = 6 dofs), the
knees (2 x 1 = 2 dofs), and the ankles (2 x 3 = 6 dofs). In addition, it also controls the

LJack is atrademark of the Trustees of the University of Pennsylvania.

2The shoulder joint in Jack is an abstract (group) joint with 3 dof. It represents the mobility of 2 real
jointswith 5 dof: the real shoulder joint with 3 dof, and the real clavicle joint with 2 dof.

3The human spine has a complex articulated structure. In Jack, the torso has atotal of 51 dofs[1]. To
simplify the control structure, a group joint waist with 3 dof is used to represent the mobility of the torso
structure.
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Heck (3 dofs)
Shoulder (3 dofs)
(5 dofs)

Shoulder (3 dofs)

Elbow (1 dof) (5 dofs)

bow { 1 dof)
Haist { 3 dof:
(51 dafs)

Base (6 dofs)

Hips {2x3 dofs)

Enees (2x1 dofs)

Ankles (2x3 dofs)

Figure 2.1: Articulated model of the smulated human figure Jack

position and orientation of the human figure which has 6 dofs. The total number of dofs

inthese jointsis 40 (or 92 if we count all therea joint dofs).

Note that because of the spine model developed by Monheit and Badler [25], we only
need 3 dofs to represent the human spinal structure of 51 dofs. This model provides a

major reduction in the complexity of the problem.

2.2 Problem formulation and analysis

As described in Chapter 1, we need to control the position and orientation of the end-
effector in ssimulating human tasks. In addition, we may also control how the task is to
be performed by giving a set of task-related constraints €S, and a scalar performance

criterion minimization function PC'.

In this study, we are interested in geometrical constraints. These constraints are

specified using the position and orientation information of the human body and the objects
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in the environment. Similarly, the performance criterion function is also specified using

position and orientation parameters.

Let ¢ = [q1, 92, .., q,])7 beaset of joint parametersfor the human body. All the possible
values of ¢ compose the joint space (also called the configuration space) of the human
body. A human posture is defined by giving values to all of its joint parameters. Each
posture is a point in the joint space. A posture ¢ is feasible if and only if none of the
constraintsin C'S isviolated. A posture ¢ isa goal postureif it places the end-effector at
the goal position and orientation. Let /'S = {¢ | qisfeasible} be the set of al feasible
postures. The human posture control problem isto compute a feasible goal posture that

minimizes the performance criterion function PC'.

Mathematically, solving the human posture control problem corresponds to finding a
pointin the feasiblejoint space to minimizethe performance criterion function specified by
the user. Asdescribed in section 1.3, there are many approaches to solving this problem.
Most of the approaches are search-based with different guidance information including
function values, Jacobian, Gradient, and Hessian. These methods usually work well if
the dimension of the search space is not large, and more importantly, if the objective and
constraint functions are not very nonlinear. Unfortunately, neither is true in the case of
human posture control. First, the search space of the human posture control problem we
want to solve has a dimension of 40 (since there are 40 dofs to control), which is large.
More importantly, the geometrical constraints and objective functions describe relations
in 3D space, and they are highly nonlinear in joint space variables. Because of these two
factors, there are anumber of problemsif we apply existing methods to the human posture

control problem. We discuss these problems bel ow.

2.2.1 Number of degreesof freedom

For posture control purposes, the human body has 40 degrees of freedom. Searching such

a large space for a solution is computationally expensive, no matter which approach is
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used. This problem can be overcome, to a certain extent, by using gradient (Jacobian) and

Hessian information to speed up the search process.

2.2.2 Local minima problem

A more serious problem is the local minima problem: The search process may get stuck
at a position (local minima) other than the goal. Since the performance criterion and
constraint functions are highly nonlinear in joint angles, there may be many local minima
Further, usually it is not possible to choose the best local minimaby finding all the minima
and selecting one because of the large search space. Thus, in many cases solutions exist

but we cannot find them using a search-based method.

2.2.3 Redundancy resolution and control

The human body is aredundant system for performing many tasks. Whilethisis certainly
an advantage from the task performance point of view, it also presents problemsfor human
posture control. Among the infinite number of ways to perform atask, how do we choose
a particular or “desirable” way of doing it. From a posture control point of view, what

mechanisms should we provide so that:

1. the user can effectively and conveniently specify the “ desired” postures, and

2. the posture control algorithm can compute the “desired” postures efficiently.

We call this problem the redundancy control problem. In existing approaches, the redun-
dancy is not resolved effectively or conveniently. For example, in Jacobian-based or in
optimization-based inverse kinematics algorithms, redundancy itself isnot aproblem. The
algorithmsresolveit automatically by providing a minimum change solution asis donein
the pseudoinverse approach. The problem is that the solution obtained may not be what

the user wants. Moreover, under these approaches, the user loses control over how the
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redundancy isresolved. In order to regain control, the user may need to specify additional
tasks (constraints) to perform in the Jacobian case, or additional criteriafunctions to min-
imize in the optimization case. Still there are two problems with this approach. First, it
is not always easy to design an objective function to specify the intended characteristics
of the desired postures or movements. Second, and more importantly, even if a criterion
function can be specified that truly represents what the user wants, it is often impossible
to compute the global minima solution of the nonlinear criterion and constraint functions,

as explained earlier.

In summary, there arethree problemsassociated with existing approacheswhen they are
applied to solve the human posture control problem. The first one is high computational
cost. The second one is the loca minima problem. The third one is inefficient and
ineffective redundancy control. In the next section, we propose a new approach to solve

the human posture control problem which overcomes these problems.

2.3 Our decoupling approach

As described above, it is computationally expensive to search for a solution in a 40-
dimension human joint space involving nonlinear constraint and performance criterion
functions. In order to successfully solve the human posture control problem, it is very

important to reduce the complexity of the problem.

Although human posture control is a very complex problem mathematically, humans
do it every day with little effort. We are apparently not doing it by searching through a
space of 40 dimensions. We must have strategies to reduce the problem complexity to a
manageable size. It isnot the aim of thisthesis to investigate those strategies. Instead, we
will study the mathematical structure of the problem and reduce the complexity through
dof decoupling: partitioning the joint space into a set of independent subspaces. We

illustrate the idea through the following example.

Let us consider human arm reach tasks. The human arm has 3 joints: the wrist with 3
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dof, the elbow with 1 dof, and the shoulder with 3 dof. A reach task generally specifiesthe
goal position and orientation of the hand (6 dofs). Using most existing approaches, this
problem can be solved by searching the 7 dofsjoint space of the arm for a point that places
the hand at the goal position and orientation. Searching for a solution in a 7 dimensional
space is computationally expensive. In general, there is no guarantee that a solution will
be found even when one exists. And when thereis no solution, the search process will not
be able to tell. Search-based methods also have the local minima problem and the lack of

effective redundancy control problem.

In fact, we can solve the arm reaching problem much better if we consider the special
articulated structure of the arm [40]. Consider the figure of the human arm shown in Fig.
2.2. Given the shoulder position .S and the hand (wrist) position I/, the elbow angle §. is
uniquely determined by equation 2.1:

d? = LU? + LL? — 2% LU * LL % cos(0.) (2.1)

where d isthe distance from the shoulder joint S to thewrist joint W, LU and L L arethe

upper and lower arm lengths, respectively.

Figure 2.2: Human arm structure and the elbow joint angle computation

From the figure, it is easy to see that the 3 dofs at the wrist have no control over
the wrist position. Their maor role is to control the orientation of the hand without
changing its position. So to a large degree, the control of hand position and orientation
are decoupled: the shoulder and the elbow joint control the wrist position, and the 3 dofs

at the wrist control hand orientation. Through this decoupled control scheme, the position
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part and the orientation part of the human arm inverse kinematics problem can be solved
independently. More importantly, their solutions can be computed using simple analytical

formulas as shown by Tolani and Badler [40].

In order to have effective control over all available dofs in the human body, similar
decoupling schemes are needed for the rest of the body. In Chapter 3, we analyze the
articulated structure of the human body and propose a number of decoupling schemes that
enable us to control the postures and movements of the whole human body analytically.

Note that Ching and Badler [7] employed decoupling to simplify the human motion
planning problem. In their work, they used decoupling as a tool to speed up the search
process. Our goal is to use decoupling to develop an analytical human posture control

algorithm. The detail is discussed in the next chapter.
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Chapter 3

Analytical Human Posture Control

In this chapter, we propose a decoupling approach for solving the human posture control
problem. First, we analyze the human body articulated structure and identify several
important decoupling schemes for human posture control. Based on these schemes,
we parameterize the human body redundancy using a small number of intuitive control
variables. Under this parameterization, we develop an analytical human posture control
algorithm. There are two steps in the algorithm. Given the goal position and orientation,
wefirst compute adefault posturethat placesthe hand at thegoal. Using the default posture
astheinput, we control the redundancy in the posture to satisfy additional constraints (e.g.,

collision avoidance and task-related constraints).

3.1 Human posture control and the decoupling approach

As discussed in Chapter 2, there are a number of problems if we attempt to solve the
human posture control problem in joint space using existing search-based approaches.
These problems include high computational cost, the local minima problem, and the
ineffective and inconvenient redundancy control problem. In order to overcome these
problems, we must reduce the size of the search space. The reason that we have a joint

space of 40 dimensionsis that the dofs are coupled. Adjusting one dof changes the whole
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body posture. For example, let us consider a human figure with the base ! at the left toe.
Adjusting one dof at the lower body causes the whole upper body to move. Assume the
hand is at the desired position and orientation, and we need to move the left foot alittle
bit. After moving the foot, the hand will not be in the desired location any more. So we
have to adjust the upper body again to restore the hand position. It is precisely thiskind of

coupling which makes the search space enormous.

To reduce the search space, we need to decouple the dofs so that their movements
become independent. This decoupling approach can greatly simplify the human posture
control problem, as will be shown throughout this chapter. In the following, we discuss

several possible decoupling schemes useful for human posture control.

3.1.1 Decoupling upper and lower body movements

From experience we know that most human tasks are performed by the hands. 1n most
cases, the lower body supports the upper body in performing a task, but the lower body
itself does not perform the task directly. For this reason, we decouple the upper and the
lower body degrees of freedom by treating them independently. The only constraint is that
they connect to a common rigid body: the lower torso. The decoupling of the upper and
the lower body can be done effectively by setting the figure base at the lower torso. By
doing so, the upper body is controlled directly by the movements of the lower torso and not
by the lower body joints. No mater how the jointsin the lower body move, as long as the
base (lower torso) does not move, the upper body does not have to move either. In many
cases involving human task performance, the base (lower torso) position and orientation
are determined by the task and the upper body dofs. This makes the lower body control
simple: it just follows the movements of the lower torso in a natural manner. As aresult,

we may control the movements of the lower body independently of the upper body.

Each figure has a coordinate frame called the base or the root. The positions and orientations of points
on the figure are defined in this frame. These are the local coordinates. To move the figure, we only need
to move the base (root) frame. Note that local coordinates of the points stays the same, and their global
coordinates can be computed once we know the position and orientation of the base frame.
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There are anumber of advantages of thislower and upper body decoupling:

1. Reduction of configuration space:

Before decoupling, al the lower body dofs (>= 14) appear in the configuration
(joint) space as independent variables. After decoupling, only the 6 dofs of the
lower torso (arigid body) appear in the configuration space asindependent variables
(and only 4 of the 6 dofs are used to control human movements, aswill be discussed
further later). Also, the decoupling scheme eliminates the problem of maintaining
the closed-loop constraint imposed on the two legs when the two feet are on the

ground.

2. Simpler center of mass control:

The lower torso is close to the human body’s center of mass. The center of mass
motions in many tasks (such as rising from a chair) can be mapped directly to the
motions of the base site. Without decoupling, the center of mass control is more
difficult. For instance, if the base of thefigureisat one of thetoes, itis very difficult
to adjust thejoint angles of the lower body such that the body’s center of mass moves
to acertain location, and at the same time maintain the closed-loop constraint on the

two legs.

3. Analytical control of lower body:

This decoupling not only gets rid of the closed-loop problem, but also makes it
possible to control the lower body movements analyticaly. Aswe will show later,
given the lower torso position and orientation, we will be able to compute the hip,
knee, and ankle joint anglesanalytically to place the two feet at the desired positions

and orientations.
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3.1.2 Decoupling torso bending and arm movements

In addition to upper and lower body decoupling, the movements of the torso can also
be decoupled from the movements of the arm. Note that the torso bending controls the
positions and orientations of the neck and the shoulder. Once the shoulder position and
orientation are fixed, the arm posture can be controlled analytically by specifying the hand

goal position and orientation, as will be shown in section 3.4.1.

3.1.3 Decoupling position and orientation for arm posture computation

As described in section 2.3, we can decouple position and orientation in solving the arm
reach problem. Through the decoupled control scheme, the human arm inverse kinematics
problem can be solved analytically. In addition to the arm, we can also use position and
orientation decoupling to solve the lower body posture control problem, as will be shown

in section 3.4.5.

3.2 Human body redundancy parameterization

Given the hand goal position and orientation, there are an infinite number of postures
which can place the hand at the goal. These postures are controlled by a set of control
parameters. In the previous section, we discussed the decoupling of human body dofs for

posture control. Here we identify the control parameters under this decoupled scheme:

1. Base (lower torso):

The position of the base has 3 dofs: the (x,y, z) global coordinates. In this study,
we only consider 1 dof in the base orientation: the angle of the forward direction
(of the human body projected onto the X 7 plane) with the X axis. Thus, for human

posture control purposes, the base has only 4 dofs.
2. Upper Body (including the arm):
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AsshowninFig. 2.1, with the base fixed and considering the joint chain in one arm,
the upper body has 10 dofs: 3 at the waist, 3 at the shoulder, 1 at the elbow, and 3 at
the wrist.

If wefix the hand (wrist) position and orientation, we only have 6 constraints. Thus, there
are 4 dofs left in the upper body joint chain. There are many ways to parameterize the 4

dofs redundancy. Two examples of control parameterization are given below:

1. Oneway to parameterize the 4 dofs redundancy is:

() Elbow height: With the shoulder and the hand positions fixed, the elbow
traverses acircle. The elbow height controls the position of the elbow on the

circle.

(b) Torso flexion/extension: This dof controls the forward and backward bending

of thetorso.

(c) Torso side bending: This dof controls the left and right side bending of the

torso.

(d) Torsotwist: Thisdof controlsthe torso twist around the vertical direction.

2. Another way to parameterize the 4 dofs redundancy is:

(a) Elbow flexion/extension: This dof controls the distance between the shoulder

and the wrist joints.

(b) Elbow height: With the shoulder and hand positions fixed, the elbow traverses

acircle. The elbow height controls the positions of the elbow on the circle.

(c) Shoulder height: With the base and the hand position fixed and the elbow angle
given, the shoulder traversesacircle. The shoulder height controlsthe position

of the shoulder on the circle.

(d) Torsotwist: Thisdof controlsthe torso twist around the vertical direction.
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Each parameterization is more suitable than the other for certain applications. For
example, if the elbow flexion angle must be controlled explicitly in one application, the
second parameterization is a better choice. In this study, we use the first parameterization
since it is simple and intuitive, and since for many human tasks we want to control torso

posture (torso bending) explicitly.

When we consider both arm joint chains together, we add 7 more dofs to the system (3
dofs at the shoulder, 1 at the elbow, and 3 at the wrist) and 6 more constraints (the position
and orientation of the other hand). Thisleaves 1 redundancy dof, the elbow height control.
The corresponding parameterization for the redundancy space of postures involving two

handsis;

=

. Left elbow height;

N

. Right elbow height;
3. Torso flexion;
4. Torso side bending;

5. Torso twist.

Given the hand position and orientation and the 8 control parametersfor one hand tasks
(4 base control parametersand 4 upper body control parameters), or the9 control parameters
for two hands tasks, the human body posture is completely determined. Specificaly, the
elbow height parameter controls the arm posture (arm twist); the torso bending parameters
control the upper body and the arm posture; and the base position and orientation parameters

control the whole body posture.

3.3 Analytical human posture control algorithm

As discussed in Chapter 2, the human posture control problem is to compute a posture
that:
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1. placesthe hand at the goal;
2. satisfies the geometrical constraints;

3. minimizes the performance criterion function.
To solvethisproblem, we devel oped atwo-step anal ytical human posture control algorithm:

1. First, it computes a default posture that places the hand at the goal.

2. Second, it utilizesthe redundancy in the postureto satisfy the geometrical constraints

and to minimize the performance criterion function.

These two steps are discussed in sections 3.4 and 3.5, respectively.

3.4 Default posture computation

The problem we address in this section is. given the hand goal position and orientation,
we wish to compute a default posture of the human body that places the hand at the goal.
Depending on the starting joint in the joint chain from the base to the end-effector, we

need to consider severa cases:

1. The shoulder position and orientation are fixed. In this case, the upper body does
not move and we want to compute a default arm posture that places the hand at the

goal.

2. The base (lower torso) position and orientation are fixed. In this case, we want to

compute a default upper body and arm posture that places the hand at the goal.

3. The base is mobile. Here we need to compute a whole body posture to place the
hand at the goal.
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We discuss these cases in sections 3.4.1, 3.4.2, 3.4.3, and 3.4.4. Note that the basic
requirement for default posture computation is to compute a posture that puts the hand at

the goal. Also the posture must obey the joint limits of the human body. While we aso
try to compute a reasonable (natural) default posture, thisisnot donerigorously and thisis
not an absolute requirement (the only absolute requirements are the hand goal constraint
and the joint limits). From the task performance point of view, thisis not a problem since
the user can adjust the default posture either directly by adjusting the redundancy control

parameters, or indirectly by giving a performance criterion function to minimize.

Before we proceed, we introduce the following notations that will be used throughout

this report.
A

® Q

: global transformation matrix of the shoulder proximal frame;
59 global position of the shoulder;

AJ: global transformation matrix of the wrist distal frame;

2@

W

A’ local transformation matrix of the wrist distal framein shoulder proximal frame;
W9 global position of the wrist;

W#: local position of the wrist in shoulder proximal frame;

E9: global position of the elbow;

E?: local position of the elbow in shoulder proximal frame.

3.4.1 Default arm posture computation

The problem we want to solve is. given the shoulder and the hand positions and orienta-
tions, we wish to compute a default arm posture (the shoulder, the elbow, and the wrist

joint angles) that places the hand at the goal 2.

2This problem has been solved by Tolani and Badler [40]. We include it here for completeness. Note
that here we give a simple treatment of this problem under the position and orientation decoupling scheme.
For a more extensive discussion of this problem, see Tolani and Badler [40]
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Asdiscussed in Chapter 2, to solve the human arm inverse kinematics problem anal yt-
ically, we decouple the control of the hand (wrist) position from the hand orientation. We
use the wrist position to determine the shoulder and elbow angles, and the hand orientation

to compute the wrist angles.

34.1.1 Determinetheebow angle

Given the wrist position W¢ and the shoulder position 57, the elbow angle 0. € [0, 7] is

uniquely determined by the following equation (see Fig. 2.2):

d? = LU? + LL? — 2% LU * LL % cos(0.) (3.1)

0. = acos((LU? + LL? — d?) /(2% LU x LL)) (3.2)

where d isthe distance from the shoulder joint S to the wrist joint 119,
d? = (S9 —W9). (59 — W)

LU and LL arethe upper and lower arm lengths. From equation 3.1, we know that only

the elbow joint angle controls the distance between the wrist and the shoulder.

3.4.1.2 Control theelbow position

The human arm has 2 joints (with 4 dof) that control the position of the wrist: the shoulder
joint (3 dofs) and the elbow joint (1 dof). Since the position in 3D space only has 3 dofs
(3 congtraints), the system has 1 dof redundancy in terms of wrist position control. One
way to utilize this extra dof is to use it to control the height of the elbow as discussed by
Korein [21], Tolani and Badler [40]. Asshown in Fig. 2.2, the elbow traces through a
circlein aplane perpendicular to the line connecting the wrist and the shoulder. Given the

elbow position on the circle, the arm posture is uniquely determined.
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In computing the default arm posture, wewill find adefault value of the elbow position
control parameter through experiments. The objectiveisto put thearmin arelaxed posture.
One possibility isto find an elbow position parameter value so that the wrist is close to the

neutral position. We may also need to put the shoulder in a comfortable posture as well.

3.4.1.3 Determinetheshoulder angles

Given the elbow position £° and the wrist position 11/#, we can determine the shoulder
angles in a straightforward manner. In Jack, the real shoulder joint rotation axes are: Y,
then X and then Z. Since the shoulder twist angle §,. does not change the elbow position
E?, wemay use F° to compute thefirst two dofs 4, and 4. (Note that there are two sets
of solutions for 6, 6,,, and 0,, € [—=, =] . They are denoted as: [0, 0,,, 0.] and [0’ ,

0,0

syt sz

FEa = LU *sin(8sy) * cos(8sy) (3.3
Fy = —LUx*sin(fs,) (3.9
FE*.z = LU % cos(0sy) * cos(0s;) (3.5

From equations 3.3, 3.4, 3.5 we have:

E°.
sin(ls:) = — LUy
Es.x)2+ (F5.2)2
cos(ls,) = :l:\/( )LU ( )
Thus, we can compute 4,,. as follows:
O = atan2(—E*y,\J(£5.x)2+ (£5.2)2) (3.6)

o =

ST

(3.7)

=05 ifsin(lsy) = —% > 0;
—7 — 0, otherwise.
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From equation 3.6 we know that cos(fs,) >= 0. Thus, 6,, € [—7 /2, /2]. Correspond-
ingly, 9’ € [—7,—7/2) or ., € [x/2,x]. From egquations 3.3 and 3.5, we can compute

0., asfollows:

0, = atan2(E°.x,E°.z), sincecos(f,,) >=0. (3.8
Oy +m ifd,, <O
0, = { I (39)

0., — ™ otherwise.

Given d,, and 4, the elbow angle 4., and the position of the wrist W, we can compute

the third shoulder angle 4. (shoulder twist) as follows:

Ag A AT AT.,[0001)7 = W (3.10)

where A, arethe transformation matrices for the dofs of the shoulder and the elbow joints,
T, and T, are the trandation matrices from the shoulder joint to the elbow joint and from
the elbow joint to the wrist joint, respectively. Everything except A;. in equation 3.10
is known. From equation 3.10 and following some simple manipulations, we obtain the

following equations:

LLxsin(0.) * cos(0s,) = W?®.xxcos(0s,) — W?.z*sin(fs,) (3.11)
LLxsin(0.) * sin(8s,) = W?oyxcos(bs,:) + sin(0s,) « Wo.a x sin(f,)

+ sin(0s,) * Wz % cos(y,) (3.12

Thus, we can compute 4, asfollows:

b — { atan2(y, x) if sen(f.) >=0; (313)

atan2(—y,—x) otherwise.

/ _
052 -

(3.14)

0,. +x ifo,, <O;
0,. —m otherwise.
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y = Wiyxcos(bs,)+ sin(0s,)« W sin(by,)
+ sin(Bs;) * Wz * cos(y,) (3.15)
r = W?°axxcos(fy)— Wz sin(b,,) (3.16)

In the preceding discussions, we assumed that the shoulder is a spherical joint. In the
Jack human model, thisis not the case. The Jack shoulder is an abstract (group) joint that
includestwo redl joints: the clavicle joint with 2 dof and the shoulder joint with 3 dof. To
get around this problem, we use asimilar trick employed by Tolani and Badler [40]: using

the elbow position, we compute a set of default clavicle joint angles as follows:

1. Given the elbow position (x, y, z), we compute its spherical coordinates (4, 3,r) in

the claviclejoint base frame.

2. We use ¢ and 3 as the clavicle joint angles (projecting them inside the joint limits

when necessary).

It is possible that the above scheme may sometimes put the shoulder in awkward postures.
For example, when the elbow position isstraight down, the above scheme putsthe shoul der
inthedown postureinstead of the neutral posturemost peoplemaintain (i.e., 5 < Brecutral =
0). We may need to experiment with it to find a better scheme. For example, if thereisno

load on the hand, we may simply set 3 = S,cuirar = OWhenever 5 < 3,cutrat = 0.

3.4.1.4 Determinethewrist angles

We have determined the shoulder and the elbow angles. By doing so, the position and the
orientation of the wrist joint (or its proximal site) have been determined. Since we know
the hand’s goal orientation, we may determine the wrist angle by simply using Roll, Pitch
and Yaw angles extraction (for details see Paul [30]). Similar to the shoulder joint case,

there are two sets of solutions which are denoted as [4,,.;, 8., 6.,-] and [¢ ]. In

! /
wx? ewy ' ewz

Jack, the rotation axes of the wrist joint are: 7, then X and then Y. Thus, we have:
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AZ, = Asy Asx Asz Tse Ae Tew sz wa Awy

szwa = (AsyAsxAsszeAeTew)_1142;(14101/)_1

= T(Awy)_l
where
wy  Lyy 1.
T = (ASyASQUASZTSSAeTew)_lAZ} _ Y vy Y
0 0 0

From matrix equation 3.17, we have:
cos(0yy) * Tow + s10(0yy) ¥ T, = 0

Thus, we have;

Oy = atan2(—=T..,T..)

{ Oy + 7 i, <=0;

0/
wy .
0.,, — 7 otherwise.

From matrix equation 3.17, we also have:

0 = cos(luy) * Tow + stn(fyy) * T

c0s(0,.) = cos(Oy) % Tro + sin(0,,) * T
sin(0,.) = cos(0uy) % Tyo + sin(fuy) * T
c0s(0,0) = —sin(0,,)* Tow + cos(0,) * T
sin(0ue) = T.,
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Thus, we have;

0. = atan2(cos(0yy) * Tyw + sin(0yy) * T,

c08(0yy) * Tyz + stn(0y) * Ty) (3.24)
0 = T (3.25)
f,. —m otherwise.
Owe = atan(T.y, —sin(Oyy) * Toy + cos(0y,) * 1) (3.26)
. T —0u,  ifsin(lyu:) =T, >0; (327)
-7 —0,, otherwise.

3.4.2 Default torso posture computation

In subsection 3.4.1, we discussed the default arm posture computation when the shoulder
position and orientation arefixed. In thissubsection, we consider the same problem, except

now the shoulder is mobile. We assume that the base (lower torso) is fixed.

As discussed in section 3.2, the joint chain from the lower torso to the hand has 4
dofs redundancy in placing the hand at the goal. To compute a unique default posture
analytically, we need to assign values to the redundancy parameters. However, these
redundancy parameter values cannot be assigned arbitrarily since some assignments may
not produce a solution to the problem. That is, each of these parameters has a range of
values, and this range depends on the hand goal position and orientation. In computing
the default torso posture, we want to make sure that the goal is in the reachable space of

the hand in the default torso posture. This problemis solved in two steps:

1. If the goal is comfortably (defined later) inside the reachable space of the hand in

the current torso posture, we keep the current torso posture.

2. Otherwise, we compute a new torso posture so that the goal is inside the hand's

reachable space.
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In thefollowing, we discuss these two stepsin detail. Before we proceed, wewould liketo
emphasize that while we are attempting to compute a reasonable or a natural posture, the
only absolute constraint is that the hand is at the goal. Aswe pointed out at the beginning
of this section, it is not a problem if the computed posture is not desirable since it can be
adjusted later.

A related point is that we have much more freedom to compute the default upper and
lower body posture than we have with the default arm posture. This is because for many
positions and orientations of the shoulder, we can compute an arm posture to place the
hand at the goal. For this reason, our main considerations in the default upper and lower

body posture computations are simplicity and efficiency.

3.4.2.1 Reachable space approximation

Figure 3.1: Reachable space of the hand and its projections (torso is straight)

As shown in Figs. 3.1 and 3.2 , with the shoulder position and orientation fixed, the
reachable space of the hand can be crudely approximated using a half sphere. The origin
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Figure 3.2: Reachable space of the hand and its projections (torso is bending)

of the sphere is the shoulder joint, the radius of the sphere is the arm length, and the X,
Y, Z axis of the half sphere is approximately the clavicle joint base frame. Note that
for efficiency and simplicity, here we only do a very crude approximation of the hand’s
reachable space. For our purposes, this is sufficient because we only need to compute a
default posture so that the goal is comfortably inside the hand’s reachable space. So even
if there arelarge errorsin our reachabl e space approximation, we can still compute an arm

and body posture to put the hand at the goal .

For theright arm, the X, Y, Z axes of the clavicle joint in a standing posture are:
1. X: forward direction;
2. Y: upward direction;
3. Z: from left to right.
For the left arm, the X, Y, Z axes of the clavicle joint in a standing posture are:

1. X: forward direction;
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Left hand

Right hand

Figure 3.3: Half sphere approximations of the left and right hand reachable spaces

2. Y: downward direction;

3. Z: fromright to left.

In spherical coordinates, the half sphere can be described as follows (see Fig. 3.3):

— 45deg <= 6 <= 13bdeg (3.28)
— 90deg <= <= 90deg (3.29)
O<=r<=LU+LL (3.30)

To check if the hand goal position is inside the reachable space, we first compute its
spherical coordinates (6,4, Bug, Thg)- 1 01y, Bry, and 1, satisfy eguations 3.28, 3.29 and
3.30, then we assume that it is inside the reachable space. Otherwise, it is outside the
reachable space. For many applications, we may wish to place the goal comfortably inside
thereachable space. There are many possible definitions of what isacomfortable subspace

of the reachable space. One possible definitionis as follows:
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— 10deg <= 6§ <= 100deg (3.31)

— 65deg <= [ <= 65deg (3.32)

0.4+ (LU + LL) <=r <= 0.8 (LU + LL) (3.33)

If the hand goal position is comfortably inside the reachable space (satisfying equations
3.31, 3.32, and 3.33), then we keep the current torso posture. Otherwise, we compute a

new torso posture as described below.

3.4.2.2 New torso posture computation

If the hand goal is not comfortably inside the reachable space, we try to compute a new
torso posture to place the hand goal position inside the reachable space comfortably. In
order to do this, we move the shoulder towards the goal or away from the goal as needed.
Using the new shoulder position, we compute the corresponding torso posture (waist group

joint angles) as follows:

1. First, compute the spherical coordinates (6, 314, rr,) Of shoulder goal position

under the figure's base frame (lower torso’s base frame);

2. Project the spherical coordinates (6}, 314, rny) iNto the reachable space of the shoul -

der;

3. Compute the waist group joint angles using the projected spherical coordinates of
the shoulder goal.

We will discuss coordinates projection and waist group joint angles computation in
section 3.5.4. After computing a new torso posture, we can compute the arm posture as
discussed in subsection 3.4.1.



Figure 3.4: Compute the orientation of the base
3.4.3 Default base orientation computation

Inthis case, the base positionisfixed, but the base orientationisfreeto rotate. \WWe compute
the default base orientation angle € (i.e., the angle between the forward direction of the
human body and the global X axis) such that the hand goal is at the front center of the
body. Let B be the base position, and H be the hand goal position projected on the floor,

this default base orientation can be computed as follows (see Fig. 3.4):

0 = atan2(BH.y, BH.x) — 9deg (3.34)

Given the base orientation, we can compute the upper body and the arm posture as
discussed in subsections 3.4.1 and 3.4.2.

3.4.4 Default base position computation

In this case, the base position and orientation are mobile. We first compute the base
orientation (using the current base position) as discussed in the previous subsection. Inthe
following, we assume that the base orientation has been properly determined, and here we

focus on the computation of the base position.

3.4.4.1 Baseheight and torso bending

In computing the base height, we adopt the minimal bending principle: do not bend the
torso unlessit is necessary. For ssmplicity, we assume that the waist group joint angles are

0 in the default posture. We also adopt the minimal squatting principle in controlling the
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Figure 3.5: Compute the base position on the floor (X 7 plane)

lower torso height: If the goal is reachable without squatting, we set the base height at the
standing height. Otherwise, the base height is computed using the following equation:

Base.y+ Liyrso — LU — LL = H 0.y (3.35)

where L., 1S the length of the torso, LU and LI are the lengths of the upper and the

lower arms. H ...y isthe height of the hand goal position.

3.4.4.2 Basefloor position

Given the base height, now we compute the base position inthe X 7 plane so that the hand

can reach the goal position.

Having determined the base orientation as discussed in the previous subsection, the
desired position of the base on the floor (the X 7 plane) lies in a straight line from the
hand goal position (inthe X 7 plane) to the current base position (inthe X 7 plane). The
distance from the base to the hand goal position (projected onto the X 7 plane) determines
the base position. The constraint on the distance is [0, dist]|, where dist is the maximum
reachable distance of the hand in the X 7 plane (see Fig. 3.5). The default distance of the
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base from the goal is 0.5 * dust. The maximum d:st can be computed as follows:

dist = (LU + LL) * cos()

where sin(60) = (Hyou.y — Base.y)/(LL+ LU). Then, the new base positionin the X 7
planeis (Base.y iscomputed using equation 3.35):

Base, = H, — 0.5 dist x B;H, /|| B, H,|| (3.36)

where H, and B, arethe projectionsof H,,,; and Base inthe X 7 plane, respectively, and

By, isthe projection of the current base position in the X' plane.

3.45 Default lower body posture computation

In this section, we address the following problem: given the lower torso position and
orientation, and the requirement that the two feet be on the ground and the balance

constraint is maintained 3, we wish to compute the hip, knee, and ankle joint angles.

Similar to the arm inverse kinematics problem, the lower body posture control problem
can be solved analytically. Given the lower torso position and orientation and an upper
body posture, we may approximate the center of mass position com. If com isinside the
current foot support polygon, and the two feet are on the ground, we keep the current lower
body posture. Otherwise, we compute new foot positions and a new lower body posture

so that the center of massisinside (near the center of) the support polygon.

Let the center of mass projected onto the X 7 plane be a com = (cx,0,¢z) in the
body-fixed (at lower torso) coordinate, where positive / aligns with the forward direction
(seeFig. 3.6). Then, oneway to computethefoot positionsonthe X 7 planeisasfollows

(the Y component of the coordinatesis 0):

3The balance constraint is that the center of mass of the human body, when it is projected on the floor
(X Z plane), must stay inside the support polygon of the two feet.
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Figure 3.6: Foot position computation

LH = com + (0.5 FIW,0,—05+ F'L) (3.37)
LT = com + (0.5 FW,0,05+ F'L) (3.38)
RH = com + (—0.5+ FW,0,—0.5+ F'L) (3.39)
RT = com + (—0.5% FW,0,0.5% F L) (3.40)

where L H is the position of the left heel, LT is the position of the left toe, RH is the
position of theright heel and R7' isthe position of theright toe. /'L isthe foot length and
FW isthe default distance between the two feet.

The heel and the toe positionsfix 5 dofs of therigid body of the foot. The other dof of
the rigid body can be fixed by specifying the surface normal direction of the foot, which
should be the global Y direction so that the foot is flat on the ground.

Given the positions and orientations of the two feet, the joint angles of the lower body
can be determined as follows. Note that the articulated structures of the leg and the arm
are the same. As aresult, the solution to the leg inverse kinematics problem is similar to

that of the arm inverse kinematics problem.

1. Kneejoint angle:
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3.5

This can be determined by the heel position and the hip joint position in the same
way that the elbow angleis determined.

Knee height control:

In most standing postures, the knee joint is straight. In this case, the position of the
knee is amost uniquely determined by the hip and heel joint positions. With other
postures, we can control knee twist similar to the way we control elbow twist.

Hip joint angles:

They can be computed since the knee position is given, as isdone in the case of the
shoulder angles for the arm inverse kinematics problem.

Ankle angles:

They can be computed using the foot orientation and the heel position in the same

way that the wrist angles are computed.

Human body redundancy control

The human body has more degrees of freedom than necessary to perform tasks specified

by the hand position and orientation. These extra dofs (redundancy) can be parameterized

using the following control variables:

1.

2.

3.

Base position (3 dofs) and base orientation (1 dof, rotation around the global Y axis).
Waist joint angles (3 dofs).

Elbow height: 2 dofs, 1 for each arm.

The total number of redundancy dofsis 9 if the base is mobile, and 5if itisnot. Thisis

alarge reduction in complexity from joint space control, which has 40 dofs. Moreover,

the configuration space of these dofs can be further reduced by considering the following

facts:
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1. Each elbow height parameter can only control the posture of the arm it associates

with. Also, it has control over the hand orientation, but not over the wrist position.

2. Waist joint angles only control upper body posture. They have no direct effect on
the lower body posture. However, adjusting the waist joint angles may move the

center of mass. Asaresult, they can affect the lower body posture indirectly.

3. Base position and orientation have control over the whole body posture.

Not only has the dimension of the configuration space has been reduced from 40 to 9, but
the remaining control variables are more intuitive to use than joint space variables. This

makes 3D space position control and geometrical constraints simpler to specify and solve.

Since we are developing a posture control algorithm for task performance, and most
tasks are performed by the hands, in human body redundancy control we focus on the
control of the arm posture. To solve this problem, we need to compute the arm position
as afunction of the control variables. Note that we need to compute both the forward and
theinverse functions. That is, given the control parameters, we should be able to compute
the arm and the body posture. Given the body posture or the positions of some points on
the arm, we should be able to compute the corresponding control parameter values. These

computations are discussed below.

3.5.1 Elbow position control
3511 Forward elbow position control

The problem we are addressing here is. given the upper body (the torso) and the hand
positions, we derive the formulafor the elbow position as a function of the elbow height

control parameter ...

As shown in Fig. 3.7, once the positions of the upper body and the hand are fixed,
the elbow point £ traverses a circle. The center of the circle, 01, can be computed as

follows (also see Tolani and Badler [40]):
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Figure 3.7: Elbow position control
0o SWo W9 — 59
- d d
Ol = S94 LU *cos(f) *n
d?> + LU? — LI?
cos(fl) = 2 LU xd
Thus, we have
d?> + LU? — LI?
— Qg
0O1l=59+ 57 d * N
The radius of the circle traversed by the elbow point ¥ is:
, d?+ LU2— LI?
R—LU*|5m(ﬁ)|—LU*¢1—( > 10 d )

The normal direction of the surface on which the circleliesisn.

(3.41)
(3.42)
(3.43)

(3.45)

The arm posture can be controlled by giving the elbow position on the circle. To

parameterize the elbow position on the circle we place two axes (X and Y') on the circle

surface. Let v be the unit vertical-up direction of the shoulder frame. Then we define the

X and Y vector (from O1) asfollows:

v Xn

01X =

[lv < nl]

01lY = nx 01X
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Asshown in Fig. 3.7, the elbow position £¢ on the circle can be parameterized using the

following equation:

FEY =01+ R+ cos(f..) *« OLX + R* sin(f..) * O1Y (3.48)

where 6. isthe angle between O1F and O1X, rotated around the n.

The hand position as a function of the elbow height control parameter #.. can be

described similarly. First, the center of the circleis (see Fig. 3.7):

02=W + (WH -n)+*n

Theradius of thecircleis

RH = /||WHI||z = (WH -n)2
Again, any point H on the hand circle can be characterized by the following equation:

H =02+ RH * cos(0p41m) ¥ OLX + RH * sin(0p41m) * O1Y

where 0,,,.,,, is the angle between O2H and 01X, rotated around the vector n. 0,,;,, and
f.. are off by a constant 6., if the wrist joint does not move. Given any arm and hand
posture, this constant can be computed as follows: Usethe O2H, O1F, O1X, and O1Y

to compute the corresponding .., and §... Then
econst — eec - epalm

3.5.1.2 Inverseelbow position control

Here the problem we want to solveis: given the goal position £, of the elbow, we want to

compute an arm posture to place the elbow as close to the desired position as possible.

As shown in Fig. 3.8, we first project £, onto the surface of the circle the elbow

traverses, and then project it onto the circleas £,:
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Figure 3.8: Inverse elbow position control

E, 2=01+01E,— (E,-n)*n (3.49)

where n isthe unit surface normal vector, and O1 isthe center of thecircle. To project the
point onto the circle, we only need to make sure that vector O1F, haslength R, the radius

of thecircle. That is,

R
E,=014+01E,; %+ ——— 3.50
’ P 01E,|| (350)

E, isthe true goa position of the elbow. Using this elbow position, we can compute the

shoulder and wrist joint angles as discussed in subsection 3.4.1.

3.5.1.3 Hand position control

Given the goal position of the hand, we project it onto the surface located at O2 (see Fig.
3.7), with the same surface normal n, and then project it onto the circle as described above.

Using the projected hand position H,,, we compute the elbow position as follows:
1. Computethe ). using hand’s current position H..:
010 = atan2(0O2H, - O1Y,02H., - O1X)
2. Compute the 8}, using the projected hand position H,:
01, = atan2(02H, - O1Y, 02H,, - O1X)
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3. Compute current elbow control parameter 6.... using the elbow’s current position £..:
0. = atan2(O1E, - O1Y, O1E, - O1X)
4. Compute the desired elbow height control parameter .. asfollows:

eec - eecc — ehp - ehc

eec — eecc + ehp - ehc

5. Compute the elbow’s goal position F,:

E, =014 Rx*cos(f..) * O1X + R * sin(f..) * O1Y
where R isthe radius of the elbow circle.
Using the elbow goal position, we can compute the shoulder joint angles as discussed in
section 3.4.1.

3.5.2 Arm point position in terms of elbow height control

For a point p on the upper arm #, we first compute the origin O,, of the circle it traverses.

Then we compute the two axes on the circle surfaces as described in section 3.5.1:

O, = S+ (rp*cos(f))*n
rpx (d2 + LU? — LL?)

— g
_ §o 4 ey Ee T #n (3.51)
vV X1n
0,X = (3.52)
g IV x n]
0,Y = nx0,X (3.53)
(3.54)

4We can derive similar equations for points on the lower arm
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Figure 3.9: Inverse arm point position control

where v isthe shoulder vertical axis and n is the unit vector from the shoulder to the wrist
(whichis also the circle surface normal). Then the position of the point on the circle can

be parameterized as follows:

p=0,+ R,*cos(0..)x O, X + R, x sin(0..) x O,Y (3.55)

where R, istheradiusof thecircle. Assume that the point on the upper arm with adistance

to the shoulder r,. Then R, can be computed as follows:

. d2+ LU2 - L[2
R, =r,*|sin(f)| =r, * ¢1— ( v dr LU )? (3.56)

Given 4., we can compute the location of point p on the circle using equation 3.55. Given
the goal position p, of point p, we project it onto the circle surfacewithorigin O, and then
projectit onto thecircleat p, withradius R, as donein equations 3.49 and 3.50. Using this
projected position, we can compute the desired elbow position £¢ and the elbow control

parameter .. as follows (see Fig. 3.8 and Fig. 3.9):

LU
= 894 Sp, (3.57)
1S pol] o

0. = atan2(O,p, - O,Y,0up, - O, X) (3.58)

EY = 594 Sp, *

where Sp, isthe vector from the shoulder joint S¢ to the projected position p,, of the point
p. Using the computed elbow position, we compute the shoulder and the wrist joint angles

as done in section 3.4.1. This works for all points on both the lower arm and the upper
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arm.

3.5.3 Arm posturein termsof torso bending

Bending thetorso movesthe shoulder. Inturn, thischangesthe arm posture so that the hand
stays at the goal position and orientation. In the next section, we discuss the relationship
between the shoulder position and the waist joint angles. Here we derive the relationship

between the shoulder position and the arm posture.

The arm posture depends on two things: (1) the ST vector from the shoulder to the
wrist, and (2) the elbow height control parameter ... The SW vector determinesthecircle
the arm points traverse. In subsection 3.5.1, we discussed how to compute the positions
of arm points given the shoulder position and §... Now we discuss how to compute the
shoulder position given the 6.. and the goal position of a point on the arm. There are two
cases to consider: (1) when the point is on the lower arm, and (2) when the point is on the

upper arm.

3.5.3.1 Point on thelower arm

In this case, we can compute the wrist angles (except the wrist twist angle 6,,.) easily
to place the point at the desired position (or at the position that is closest to the desired
position). Now the shoulder position is controlled by the elbow angle 6. and the wrist
twist 6,,.. These two dofs can be used to select a shoulder position to minimize some
performance criterion function ( e.g., closest to the current shoulder position, minimal
torso bending, etc.). We develop aformulafor the shoulder position in terms of these two

dofs here.

Let 7 be the global rotation axis of the wrist twist dof, and let 6. be the elbow joint
angle. We first compute the center of rotation O of the shoulder (see Fig. 3.10):

O = F' 4 7« (LU % cos(180deg — 0.)) (3.59)
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Figure 3.10: Control the position of a point on the lower arm

Wpx LL

7

Ef = W7t (3.60)

where r is the distance from the wrist to point p. The radius of the circle that the shoulder

traversesis;

rad = LU * sin(180deg — 6.) (3.61)

Let us project the other two axes (X and Y") to the surface of the circle that the shoulder
traverses. Sincethe normal direction of the surfaceis 7, both X and Y axesare parallel to

the surface and X, Y remain the same. The points on the circle can be parameterized as:

S9 =0 +rad* cos(0,,) * X +rad  sin(0,.) * Y (3.62)

where d,,. isthewrist twist angle.

3.5.3.2 Point on theupper arm

Since we know the point’s global position, then the arm posture is controlled by the elbow
twist 4., the same as in the case where the shoulder position is fixed. In this case, the
shoulder position traverses a circle (as shown in Fig. 3.11). We may use this dof to select
a shoulder position to minimize some performance criterion function (e.g., closest to the
current shoulder position, minimal torso bending, etc.). We derive the relationship for the
shoulder position in terms of the elbow height control parameter here. First, the center of

the circle O is computed as follows:
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Figure 3.11: Control the position of a point on the upper arm

Wp
Nn,, = 3.63
P Wl (569
O = p+4ny,* LU * f x cos(0) (3.64)

where cos(6) is computed as follows (assume the distance between p and the shoulder S
isf* LU,0<= f <=1, and the distance from elbow to p is (1 — f) * LU):

cos(ey = WP+ (1= f)« LU — LL? 36

rad = f* LU * |sin(0)] (3.66)

We compute the two axes on the circle surface as follows:

0x V X Iy

IV x|

where v isawrist axis vector which is not parallel ton,,,.

OY =nx 0X

Then the shoulder point can be parameterized as

S =0+ 0X *rad* cos(0..) + OY x rad * sin(..) (3.67)
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Figure 3.12: The spine structure of the Jack human model

3.5.4 Shoulder position control using the waist group joint

Given the waist group joint angles, computing the shoulder position may be easily solved
using forward kinematics algorithms. Here we discuss the inverse problem: given the

shoulder position, compute the waist group joint angles.

Thewaist is an abstract joint that represents the human spine structure. The kinematics
property of the human spineis studied in Badler, et. a. [1] and [25]. Based on the model
developed in [1] and [25] , the human spine structure is represented by 17 spherical joints
with 51 dof (3 x 17) (seeFig. 3.12). The combined mobility of these 51 dofsisrepresented
by the waist, an abstract (group) joint with 3 dof: flexion, side bending, and twist. The
group joint angles are distributed into the real joint angles as described in [1].

Letu € [-1,1],v € [-1,1],and w € [—1, 1] be the flexion, side bending, and twist

group joint angles. The forward kinematics functions for the shoulder position (z,y, =)
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can then be written as follows:

z(u,v,w) = fo(u,v,w)

y(u, v, w) = fy(uv v, w)

z(u,v,w) = f.(u,v,w)

These functions can be computed analytically as any other open chain mechanism. Inthe

following, we discuss the inverse kinematics computation of the torso structure.

Given z, y, and =z, we wish to compute the group joint angles u, v, and w. That is, we

want to compute the inverse of the above mappings:

U = fu(xvyvz)
v = fv(xvyvz)
w = fw(xvyvz)

Apparently, the mapping between the group joint angles and the position of the neck
(shoulder) is not simple. Computing its inverse mapping analytically is not an option.
Instead, we approximate the inverse mapping using piece-wise quadratic functions.

For each given u, v, and w, we can compute the end-effector (e.g., neck or shoul-
der) position «,y, and z. From the data, we can build tables = (u, v, w), y(u, v, w), and
z(u, v, w), wherethew, v, and w vary in regular intervals. Inour case, we need to compute
theinverse mapping, i.e., the mapping from =, y, z to v, v, w. From the same data, we can
build tables u(x, y, z), v(z,y, z), and w(x, y, z). Since z,y, and z do not vary in regular
intervals, these data are called scattered data.
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We tried to approximate the mapping u(x,y, z),v(x,y, z), and w(x, y, z) using tech-
niques described in [16]. In particular, we implemented the multiple quadratic method
(M @) and Shepard method. Both methods failed to provide an acceptable solution for
this 3 dimensional volumefitting problem: when we used thefitted «, v, and w to compute
the forward kinematics for =, i, and =z, the maximum error is more than 5 cm (about 10
percent relative error). Inthe following, we present an alternative approach to solving this

problem.

3.5.4.1 Our approach

Eventhoughthegroupjointisnot aspherical joint, itissimilar so weapproximateit using a
modified spherical joint. Let thejoint anglesof the spherical joint bed, 3, and~. Wewould
expect functions «(6) and v(/3) to be quite simple. So instead of computing the mappings
u(x,y,z),v(x,y,2),andw(z, y, z) directly, we convert the Euclidean coordinates (x, y, =)
into the spherical coordinates (¢, /7, r). Then we use the spherical coordinates to compute

the group joint angles u, v, and w. The details are discussed below.

3.5.4.2 Approximating «(6, 5) and (6, 3) without tor so twist

By holding v and w constant and plotting the function «(#) (see Fig. 3.13), we found out
that «(6) can be reasonably approximated using two quadratic functions, one for v >= 0

and onefor v < 0.

In order to approximate the «(§) function using two quadratic functions, we need 5

data points:

((90 = G(UO = —1), Uo = —1), ((91 == 0(u1 == —0.6), U = —0.6),

((92 == (9(U2 == O),UZ == O), ((93 == (9(U3 == 0.6),U3 == 06), ((94 == (9(U4 == 1),U4 == 1)

Using the 5 data points, we can fit the two quadratic functions as follows:
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Figure 3.13: Function u(6)

1. Foru < 0(orf < 6), weusepoints(dy, uz), (61, u1), and (6o, uo) tofit thefollowing

function:

U1(0)2a1*02+bl*0+01

2. Foru >= 0(orf >= 6,), weusepoints (8, uz), (3, us), (04, us) tofit thefollowing

function:

UZ(G):az*ez—l-bz*(Q—l-Cz.

Then givenapoint (z, y, z), we can compute the corresponding spherical coordinatesd, 3,
and r. Also, using ¢ we can compute « using above formulas: if (¢ < 6,), we use function
u1(6) to compute u; otherwise, we use function u,(#) to compute w.

If the torso flexion and side bending were independent, i.e., 6o = 6(uo = —1) were
independent of v, then the above computation would becorrect. Inredlity, (v = constant)
isafunction of v. Fig. 3.14 showsaplot of u(#) for v = 0 and v = 1. Fromthefigure, it

is easy to see that we have to consider the dependence of # on v in our computation. That
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Figure 3.14: Function u(#) withv = 0and v = 1.

is, we have to compute the functions

O2(v) = O(uz = 0)(v), O3(v) =0(u=0.6)(v), O4(v) =0(u=1)(v)

Even though we can approximate functions fo(v), 61(v), f2(v), 63(v), and 04(v), this does
not help because during the inverse kinematics computation, we do not know v. Our
inputsare §, 3, and r. Since v depends primarily on /3, instead of approximating §(v) we
approximate functions 6;(3):
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Figure 3.15: Function 8o(3) = 6(u = —1, 3)

0a(53) = 0a(v(PB)) = O(u = 1)(B(v))

From the plot of 6(/7) (see Fig. 3.15), we can see that it can also be approximated by a
quadratic function. Using 3 data points

we can approximate the quadratic functions fo( 3) as follows:

00(6) = Qgy * 62+ bé’o * 6 + ¢,
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and compute the fitting coefficients a4, by,, and cq,. Similarly, we can approximate
01(3),02(3),03(3), and 04(3) using quadratic functions.

Given apoint (x,y, z), we can compute 6, 3, and . Using /# and the fitting function
8;(/3), we can compute 6, 1, 65, 03, and 6,. Using these 6;, we can compute the approx-
imate functions u1(#) and u(8). Then, using the input real § and fitting functions w1(6)
and uy(6), we can compute w.

Similarly, we can approximate v using /5 and §. First, we approximate

Polf) = plv==1)(0), pu(0) = B(v =—-0.6)(F),

Pa(0) = Blv = 0)(0), B3(0) = B(v=0.6)(0), Ba(0) = B(v =1)(0)
using quadratic functions. For example, we can use the following 3 points:
(O(u=—-1v=0),u=-10v=0)

(0(u=0,v=0),5(u=0,0=0))
(O(u=1v=0),8u=10v=0)

to approximate the function 3o(6):
ﬂo(@) = ag, * (92 + bﬁo * (9 + Cgo

Then we can approximate function »(3) using two quadratic functions and one for 5 >=

p(u=0,v =0),onefor g < g(u=0,v=0) asfollows:

1. For 3 < B(u = 0,v = 0) = 32, we use points (5z,v = 0), (#1,v = —0.6), and

(5o, v = —1) tofit the following function:
Ul(ﬂ) = a1*62+bl*ﬂ‘|‘cl-
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2. For 3 >= 3, we use points (32, v = 0), (43, v = 0.6), and (34, v = 1) to fit the

following function:

Uz(ﬂ):a2*62+bz*ﬂ+cz

Given 3, we use function v41(/3) to compute v if 5 < [35; otherwise, we use function

v2(B).

3.5.43 Approximating (6, 5)and v(§, 3) with torso twist

In the preceding discussion, we ignored the torso twist component w. While u largely
correspondsto ¢ and v largely correspondsto v, w doesnot identify with asingle component
of 4, 3, and r. Instead of computing w directly aswe did with « and v, we assume w = 0

and compute the real w based on the error caused by this assumption.

For each given w, the end-effector (controlled by « and v) traverses a surface. From
this point of view, w can be seen as a parameter controlling which surface patch the end-
effector ison. For our purpose, we sample the interval of w € [—1, 1] uniformly with 11

points. Let the sample array be
ws ={-1,-0.8,-0.6,-04,-0.2,0,0.2,0.4,0.6,0.8,1}

Now we can organize the data pointsin the following fashion:

where0 <=1: <=4,0<=j <= 2,0 <= k <= 10. Datapoint 3[:][j][%] corresponds to
(B(u = ast],v = azj], w = ws[k]),v[¢]), and data point §[:][j][ k] corresponds to (§(v =
as[i],u = aslj], w = w(k]), u[i]). Hereas = { — 1,—0.6,0,0.6,1} and a3 = { — 1,0,1}

aresampled « and v data arrays.
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Figure 3.16: End-effector error (in cm) as a function of the torso twist parameter w

Using these data points, we can fit the functions (4, ) and v(, 3) as described

previously. Instead of putting w in the function’s parameter list, we have apair of «(9, 3)

and v(6, 3) functions for each w € ws.

For agiven point (x,y, z) with § and /3, we compute the v parameter as follows:

1. Compute §(u = ast], 3),0 <=1 <= 4.

2. Using the input 6, we choose 3 points from the computed 0(u = as[:]) data points

and fit a quadratic function u1(6) or u,(6), as described previously.

3. Usingthefitting functionw () or u,(8) and theinput , we computethe « parameter.

Note that we go through the above procedure for each w € ws. Asaresult, we get one

array of u parameters ua and one array of v parameters va. Each parameter in the array

corresponds to a unique w parameter in the ws array.

To compute the w parameter, we use data points (va(w[k]), va(w[k]), w[k]), 0 <=

k <= 10 and forward kinematics to compute the end-effector position. The error (the
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distance between the computed position and the goal position of the end-effector) is used
to compute the value of the parameter w. One typical error curve is shown in Fig. 3.16
(w = 0.2). We approximate the error curve using a quadratic function (using the 3 points

with smallest errors).
error(w) = a*xwltbxwLe

Using thefitted error function, we computeaw € [—1, 1] that makes error(w) as closeto

zero as possible. This can be computed easily as follows:

1. If the equation error(w) = 0 has real roots, choose onein [—1,1]. If the roots are
outside [—1, 1], project them inside.

2. If there are no real roots, we compute w by minimizing error(w):
error'(w) =0=2a*w+b=0,=>w = —b/2a.

Again, we have to project the solutioninside [—1, 1].
Using the computed w, we can compute the final values of « and v as follows:

1. From the computed w, we find an index k& so that ws|k] is the closest element to w

inthe array ws.
2. Wechoose 3 pointsua[k — 1], ualk],and ua[k+ 1] around index &, and fit aquadratic
function using the following data pairs:
(wsl[k — 1], ua[k — 1)), (ws[k], ualk]), (ws[k + 1], va[k + 1]).
The approximate function
ua(w) = axw?+b*xw+c
and the computed w is used to compute the final «. We compute the final value of

parameter v similarly.
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Table3.1: Average and maximum errorsof the analytical torso inverse kinematics scheme

End-effector Average error (cm) | Maximum error (cm)
Neck 0.047 0.25
Shoulder 0.15 0.94
Neck* (two hands) 0.047 0.33
Shoulder? (two hands) | 0.22 1.35

3544 Results

The scheme outlined above works fairly well in practice. We sampled 10,000 uniformly
distributed random pointsinthe (u, v, w) space and used the end-effector position point =
(xreal,yreal, zreal) to estimatethe (u fit, v fit, w fot) value. Using (v fit, v fit,w fit) as
the groupjoint angles, we computed forward kinematicsfor point fit = (x fut,y fit, z fit).
The distance (in cm) between point and point fit isthe error measurement of our approxi-
mation scheme. The results are summarized in Table 3.1 (with 10,000 random samples) °.
For the simulations of many human tasks, this magnitude of error is within the acceptable

tolerance range.

3.5.4.5 Reachable space projection

If theinput point is not in the reachabl e space of the end-effector, we need to project it into
the reachable space to have accurate computation. For any given point (z,y, z), we can
compute its spherical coordinates (9, 3, r). We project # and /3 into the limits before using
the approximationformula(thereisno need to project » sinceit isnot used in computation).

From forward kinematics data, the lower and upper limitsfor § and /3 are:

For the neck:

—0.555983 <= 0§ <= 1.120201

SWe use a different scheme to compute the waist joint angles when both the neck and the shoulder
positionsare given. First, we use the neck position (4, 3) to compute the first two dofs, « and v. Then, we
use the error in the shoul der positionto find the correct w. Using this scheme, the error for the neck position
and the shoulder position are listed in the table.
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1.094373 <= 3 <= 2.047220

For the left shoulder:

—0.970657 <= 6 <= 1.486352

0.671998 <= 3 <= 1.661777

For the right shoulder:

—0.973950 <= 0 <= 1.493876

1.477935 <= 8 <= 2.471256

3.6 Redundancy space posture representation

Traditionally, human postures are represented using joint angles. We can also use end-
effector positions and orientations, and a set of redundancy parametersto represent human
postures. However, this redundancy space representation RS is not really practical unless
we can compute from it the corresponding joint space representation ./.S. This problem
is solved with the development of an analytic human posture control algorithm in this
chapter. 1t can convert representationsfrom /.5 to RS and from RS to J S very efficiently.

Because of this, the RS representation can be area alternativeto the .J.S' representation.

In this section, first we briefly discuss converting postures between R.S' representation
and J S representation. Then, we discuss the advantages the RS representation has over

the .J .S representation.

3.6.1 Converting postures between joint space and redundancy space

Given a posture represented in joint space, we can convert it into redundancy space as

follows:
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. Figurebase position and orientation: giventheanglesof all jointsinthebody, wecan

compute the base (Ilower torso) position and orientation using forward kinematics.
. Waist group joint parameters. they are identical in both representations.

. Elbow control parameters. given the angles of al jointsin the body, using forward
kinematics we can compute the positions and orientations of the shoulder, the elbow,
and the wrist. Then we can compute the elbow control parameter value using the

method described in section 3.5.2.

. Knee control parameters: they can be computed in the same way the elbow control

parameters are computed.
Given a posture in redundancy space, we can convert it into joint space as follows:

. Figureposition and orientation: giventhebase (lower torso) position and orientation,
and the joint angles computed in steps 2, 3, and 4 below, we can compute figure's

global position and orientation using forward kinematics.
. Waist group joint parameters: they are identical in both representations.

. Shoulder, elbow and wrist joint angles: they are computed using the algorithm

described in section 3.4.1.

. Hip, knee and ankle joint angles. they are computed using the algorithm described

in section 3.4.5.

Note that not only they are simple and straightforward, both conversions can aso be

done very efficiently since we only need forward kinematics computations.

3.6.2 Advantages of redundancy space posture representation

The RS representation has a number of advantages over the JS representation. For

example, it issimpler to specify and manipul ate postures using the R.S representation than
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using the .J .S representation. Using the /.S representation, it is expensive and difficult to
adjust the posture and keep the end-effector constrained at the goal. In the following we
summarize anumber of advantages the RS representation has over the .J .S representation

when it isused in adistributed (networked) environment.

1. Less network traffic:

In the RS representation, we may partially specify the posture by only giving
the end-effector position and orientation. The redundancy parameters take default
valueswhen they are not specified, and we can still compute a posturethat will place
the end-effector at the goal. This cannot be done in joint space representation: the

posture is not properly specified if any one of the joint angles is missing.

2. Higher reliability:
The RS representation is more robust than the J .S representation. A single joint

angle error will cause the end-effector to be misplaced. On the other hand, errorsin

the redundancy parameters will not misplace the end-effector.

3. Looser coupling:

In the RS representation, the posture is specified and manipulated by giving the
end-effector goal and the redundancy parameter values. This specification is not
directly coupled with the geometry of the figure. Asaresult, if link lengths or other
geometric information are modified at the remote site, the modifications do not need

to propagate back to the control site.
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Chapter 4

Numerical Human Posture Control

In Chapter 3, we presented an analytical human posture control algorithm. It has several
important advantages over existing methods: efficiency, no local minima problem, and

convenient and effective redundancy control. But it aso has a number of limitations:

1. It cannot handle over-constrained problems.
2. It cannot compute an approximate solution when there is no solution.

3. It cannot handle general geometrical constraint and performance criterion functions.

We discuss these problemsin more detail s bel ow.

Over-constrained problemsand approximate solutions There are redundanciesin the
human body in performing many tasks. As discussed in the previous chapter, the number
of redundancy dofsranges from 4 to 9. These extra dofs can be used to accomplish other
requirements such as collision avoidance and task-related constraints. There are situations
where we may need more redundancy than is available. For example, if the shoulder
position is fixed, then the arm has only one dof redundancy: the elbow height control
parameter ... If we give the goa positions of more than one point on the arm, this

problem becomes over-constrained. In this case, the analytical posture control algorithm
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will not be able to compute a solution to put all the points at their goal positions. In many
applications when there is no solution, we may wish to compute an approximate solution
which puts the arm points as close to their goals as possible. Our analytical algorithm

cannot compute an approximate sol ution.

General constraint and performance criterion functions Another limitation of the
analytical algorithm is that it can only handle smple geometrical constraints and per-
formance criterion functions. For example, it has no problem handling the geometrical
constraints describing the positions of points on the arm. It can aso handle minimal torso
and minimal knee bending performance criteriaeasily. However, if the constraintsand the
performance criteria are general nonlinear functions of the geometrical parameters of the

body, the analytical algorithm will not be able to handle them. For example, let

c(p)=0
be a geometrical constraint describing the goal position of a point p on the body. Assume
that ¢(p) is a general nonlinear function of the position p. Also assume that we cannot

compute the goal position of p anaytically. Then the analytical human posture control

algorithm will not be able to enforce this constraint.

To overcome these limitations of the analytical agorithm, we develop a numerical
human posture control algorithm in this chapter. It is similar to existing methods in
that we also use an optimization-based approach. Unlike existing methods where the
optimization techniques are applied directly in joint space, here we transform the human
posture control problem from joint space to redundancy parameter space described in the
previous chapter. Through this transformation, the search space has been reduced from
40 to 9 or less. Then, we apply nonlinear optimization techniques to the transformed
problem. Because of the smaller search space of the transformed problem, we can use a
search-based numerical algorithm to solve it, and at the same time avoid the deficiencies
associated with search-based methods as discussed in Chapter 2.
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This chapter isorganized asfollows. Wefirst give abrief description of nonlinear opti-
mization. Then we formulate the human posture control problem in redundancy parameter
gpace. A numerical algorithm based on Newton's method for nonlinear optimization is

proposed to solve the formulated problem.

4.1 Nonlinear optimization and Newton’s method
Nonlinear Optimization (or Nonlinear Programming NLP) solves the following problem:

min, f(x)

subject to congtraints. ¢;(z) = 0,1 <7 < k, ¢(x) >0, k+1 <7 < m,

where f(z) and ¢;(x) arelinear and nonlinear functions.

A local minima solution to the problemis z* such that 2* € F'S = {« | x satisfies al the

congtraints} and f(x*) < f(«) for al « inthe neighborhood of ™ and = € F'S.

L et us assume that theinitial point 2° is close to the goal point =*, alocal minimizer of
the problem. Since =* is alocal minimizer, it satisfies the following necessary condition
[11]:

VL(z,A) =0=[g— A\, —]"

where L(x, A) = f(x)—> Ajei(x), g isthegradient of thefunction f (), A isthe Jacobian
matrix of the constraints, A = [A1, )2, ...]7 isthe vector of Lagrangian multipliers, and

c = [e1(x), ea(w), ...]T isthe vector of the constraint function values.

In order to computethelocal minimizer «*, we solvethe above stationary point equation
using Newton’s method. Assume we already have an initial guess for 2% and \°. The

Taylor seriesaround z* is:

VL(2F 4+ 6, N 6)) = wLF + VL) 6, )T +...=0
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where W is the Hessian matrix of the Lagrange function £ with respect to variable .
W —A 8, —g+ Al
—AT 0 )\ ) c
w  —A Oy —q
AT 0 J\ gt/ \ e

The above algorithm assumes that the Hessian matrix W is available. If it is not, we may

Then we have

Thus,

approximateit using an updating formulalike BFGS. The detail saregivenin Bartholomew-
Biggs[3], Fletcher [11], and Gill, et. a [12].

4.2 Human posture control using nonlinear optimization

In the previous section, we gave a brief introduction to nonlinear optimization. In this
section, we apply nonlinear optimization techniques to solve the human posture control

problem.

4.2.1 Human posture control in joint space

Let ¢ = [q1, 92, .., q,)7 bethejoint variables of the human figure. Let X, be the desired
end-effector position and orientation, and let C'.S' be a set of geometrical constraints which
specifies the restrictions on how the task should be performed. Let PC' be a geometrical
performance criterion function. As discussed in Chapter 2, the human posture control

problem can be stated as. compute a posture ¢ such that
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1. X(q) = X4, where X(¢) is the forward kinematics function of the end-effector.
2. All constraintsc € ('S are setisfied.

3. Performance criterion function PC' is minimized subject to 1 and 2.
We can solve this problem using nonlinear optimization:

min, PC(q)

subject to constraints: X (¢) = Xy, ¢(¢) = 0and ¢(q) <= 0forc e CS.

In theory, thereis no problem in thisformulation. Any NLP (nonlinear programming)
solver can be used to solve it. However, computationally there are many drawbacks
associated with this formulation as discussed in Chapter 2. In the next subsection, we
propose a new formulation of this problem so that computationally it is easier to solve.
The key to this reformulation is based on our analysis of the human body articulated
structure and our analytical posture control algorithm presented in Chapter 3.

4.2.2 Human posture control in redundancy parameter space

To formulate the human posture control problem in redundancy parameter space, we need
to describe the geometrical constraints and the performance criterion functions using the
redundancy parameters discussed in Chapter 3. Since redundancy parameters (e.g., elbow
height) are more intuitive to understand than joint angles, the geometrical constraints and
the performance criterion functions can be model ed more simply in redundancy parameter

space.

As discussed in Chapter 2, in this thesis we are interested in geometrical constraints
and geometrical performance functions. These are functions which can be described
using the position and orientation parameters of the human body segments. To transform
these function from 3D space to redundancy control parameter space (i.e. represent them

using redundancy parameters), we use the equations derived in Chapter 3 which relate
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the position of the body and the redundancy control parameters. These equations are

summarized below:

4.2.2.1 Arm point position

The position of a point on the arm as a function of the elbow height control parameter is

asfollows:

0,X
0,Y

O, + Ry, * cos(0..) x 0, X + R, * sin(0..) * O,Y

2xdx LU ?

d?+ LI2-LU?

{ E+LUP-LE® - if point p is on the upper arm;
2xdxLL

if point p is on the lower arm.
ry % /1 — cos?(f3)
{ S9 +r,xcos(B)*xn, if point p ison the upper arm;

W9 —r, * cos(8) *n, if point p ison thelower arm.

v Xn

|Iv x n]

nx 0,X

SW  We— s

d ~ d
V(SWez)2 + (SWy)2 + (SW.z)2

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
(4.6)
(4.7)
(4.8)
(4.9)

In above equations, the only unknowns are the shoulder position S¢ and orientation

(which determines v), and the elbow control parameter ... The shoulder position and

orientation are controlled by torso bending parameters, as well as the base position and

orientation. Thus, we have described the position of p as a function of the redundancy

control parameters. The unknown functions of the shoulder position and orientation in

terms of the torso bending parameters and the base parameters are discussed bel ow.
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4.2.2.2 Shoulder position and orientation

In Chapter 3, we outlined a scheme to approximate the inverse kinematics mapping of
the shoulder and the neck positions (in terms of the torso bending parameters). In this
numerical posture control algorithm, we do not need theinverse mapping directly. We only
need to compute the forward mapping, which is the straight forward kinematics problem

for the torso joint chain. Thus, we have the analytical functions
Sp = Sp(u,v,w)and S, = S,(u, v, w),
where S5, is the shoulder position, 5, is the shoulder orientation, and u, v, and w are the

torso bending parameters. We can use these functionsto compute their gradients (Jacobian

matrices) as well.

4.2.2.3 Human posture control in redundancy parameter space

Having transformed the geometrical constraint and performance criterion functions from
3D space to redundancy control parameter space, we can reformulate the human posture

control problem as follows:

min,., PC(rcq)

subject to constraints: X (rep) = Xy, ¢(rep) = 00r ¢(rep) <=0forc e CS.

where rcp represents variables in redundancy control parameter space. We assume that
initially the human body isinaposturewhere X (rep) = X,. Thisposture can be computed
using the algorithm developed in Chapter 3. Other constraints (¢ € €'S) may or may not
be satisfied at the initial posture.

In order to make sure that the computed postureis valid, we need to enforce joint limit

constraints for each dof ::

llimit; <= 0;(rep) <= ulimit;
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Because of thejoint limit constraints, we may simplify the hand goa constraint X (rcp) =
Xy to

|59 (rep) — W9 <= LU + LL

where 5S¢ and W are the shoulder and wrist positions, respectively. As a result, the

constraints we are maintaining are:

c(rep) =0 or ¢(rep) <=0 foree CS (4.10)
llimit; <= 0;(rep) <= ulimit; for each dof : (4.11)
|59 (rep) — W9 <= LU + LL (4.12)

4.3 Solving the human posture control problem using an

NL P solver

Asdescribed in section 4.1, nonlinear optimization theory and Newton’s method in solving
NLPproblemsarepretty easy to understand. Ontheother hand, itisdifficult toimplement a
good NL Psolver whichisefficient and stable. There aremany theoretical issues, numerical
analysisissues, and practical implementation issues to consider. For these reasons, instead
of implementing a new NLP solver, we use a publicly available package LBFGSB [5]. In
thefollowing, first we briefly discuss the LBFGSB solver. Then we show how it isused to

solve the human posture control problem.
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4.3.1 ThelLBFGSB solver

The LBFGSB nonlinear optimizationagorithm[5] and solver [47] was devel oped by Ciyou
Zhu, Peihuang Lu, and Jorge Nocedal at Northwestern University and Richard H. Byrd at
University of Colorado at Boulder. It minimizes anonlinear function of » variables

min, f(x)
subject to the simple bounds

[ <=x <=,
where the vectors [ and « represent the lower and upper bounds of the variables. To use
this solver, the user must supply the gradient of f(«). No knowledge of the Hessian matrix
of f(x)isrequired.

Thealgorithmisdiscussed indetail inByrd, et. a. [5]. Ititeratesthroughthefollowing

steps until afeasible minimizer islocated (i.e., the convergence criterion is met):

1. First, it computes a limited memory BFGS approximation to the Hessian matrix.

2. Then it uses this limited memory approximation to define a quadratic model of the

objective function f(x).

3. The search direction is computed next:

() A set of active variables is identified using the gradient projection method.
These variables will be held at their bounds during this iteration. The other

variables are free.

(b) The quadratic model is then minimized with respect to the free variables, and
an approximate minimizer x,,;,, is obtained. The search direction is defined to

be z,,;, — z¢, where z¢ is the current value of z.

4. Findly, aline search is performed aong the search direction to minimize function

f(z) subject to the bound constraints.
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Themain advantage of the LBFGSB solver isitsefficiency, especially for large problems
in which the Hessian matrix is either not sparse or difficult to compute. It isimplemented
in FORTRAN 77, in double precision. *

Since LBFGSB can only handle simple bound constraints, we use the penalty method
to handle more general linear and nonlinear constraints in our system. LBFGSB uses a
guasi-Newton algorithm, which requires the computation of the objective (performance
criterion) and constraint functions and their gradients. We discuss their computations in
sections 4.3.2, 4.3.3, and 4.3.4.

4.3.2 Objectivefunction and its gradient

In this study, we are interested in geometrical performance criterion functions. These
functions can be described using the positions and orientations of points on the body or
in the environment. That is, a geometrical performance criterion function or a constraint

function can be written as

f(pa(rep), pa(rep), ...)

where p; is a point on the human body. To compute the gradient of f, % we need to
compute the Jacobian matrix 72 .

If the point p ison the body and not on the arm, its position computation is the standard
forward kinematics problem, and its Jacobian matrix computation is also straightforward.
Here we only consider the case when point p is on the arm. We discussed its position
evaluation (given rcp) in the previous subsection. Inthe following, we briefly discussits

gradient (Jacobian matrix) computation.
The redundancy parametersrcp include elbow twist 6., waist group joint angles 6,5

and the base position and orientation base,,. Let rep®® be a subset of the rcp including

0.wqist aNd base,,,. From equation 4.1, we have:

The code can be obtained by anonymous ftp to eccs.nwu.edu, in directory /pub/lbfgs.
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dp

= —R,*sin(b..)* O, X + R, * cos(0..) x O,

(4.13)

aeec
dp 00, . oR,
Grep ™ Brepet + [cos(0e) * O, X + sin(f..) * O,Y] Brep
00,X . 00,Y
+ R, * (cos(0..) * Dreptt + sin(f..) * 8rchb) (4.14)
From equation 4.4, we have:
00, 059 050,
- 4.15
Orepw? Orepw? + Orepw? (4.19)
050, r,  Tp*cos(f3) ad on
— (L _Tp*C08P) M4
Jrcpwt (LU d ) * (narcpm) + 1y % cos(f) x Jrcpwt (4.16)
if point p isonthe upper arm. If point p ison thelower arm, we have (notethat 575 = 0):
00,  OW? N owo,
drep®® — Orepwt | Orepwh
Ty Ty cos(3) ad Jn
( 77 7 ) * (narcpwb) r, % cos(3) * eyt (4.17)
From equation 4.3, we have:
oR, _ _rp*cos(B)* (d — LU * cos(B)) § ad (4.18)
drep” LU * d /1 — cos?(B) drep”
if point p ison the upper arm. If point p ison the lower arm, we have:
R, _ _rp*cos(ﬂ)*(d—LL*cos(ﬂ)) § ad (4.19)
Orep*? LL % d*/1— cos?(3) Orep*?

From equations 4.5 and 4.6, we have:

73



dvn Jd(v x n) ov on

= = — 4.20
repd® repd® repd® XX repd® (4.20)
00,X 1 dvn r Ovn vn
_ N . 421
arep® ~ Toall e T G e 2D
00,Y on 00,X
= —— x0,X £ 4.22
repd® repd® X Cpd X repd® (4.22)
where rep?? isthe :-th variable in rcp*®. From equation 4.7, we have:
on 1 059 ad
- _ = 4.23
Orepw? d i (arcpm + narcpm) ( )
From equation 4.8, we have:
0d_ _ v 05 (4.24)

_——1n —
Jrcpwt Jrcpwt

4.3.3 End-effector constraint

The end-effector constraint is described in equation 4.12, where 59 isthe shoulder position
and W9 isthe wrist position specified by the user.

The shoulder position 59 is afunction of the base position and orientation, as well as
the waist group joint angles. The computation of 57 is the standard forward kinematics

problem and its Jacobian matrix computation is a so straightforward.

4.3.4 Joint limit constraints

In human body postures computation, we need to consider joint limits to ensure that
the computed postures are valid. Since we are using redundancy parameters as the
fundamental variables, we need to represent the joint angles as functions of redundancy
space parameters. In Chapter 3, we derived the formulas for these functions. In the

following, we compute their gradients.
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4.3.4.1 Elbow joint angle
From equation 3.2 in Chapter 3, we have

n(0.) + 0. 1 § ad
e drep  LL* LU  Orep

00, d ad

4.25
8rcp LL* LU * sin(6,) 8rcp ( )
4.3.4.2 Shoulder joint angles
From equations 3.3, 3.4, 3.5, and 3.16 in Chapter 3, we have:
00, oF*.y 1
= — 4.26
drep drep CTU+ cos(0sy) (4.26)
OE° .z : 80.s
D0, _ oo + LU * sin(0;) * sin(f,) * St 427
drep LU % cos(0s;) * cos(0sy)
052 05 aWS
grcp = (LL xcos(0.) * cos(0s.) * ;r—cp — cos(f,) * Tcpx
+(W?.x x sin(fs) + W?.2 * cos(8,)) * gf;;
oW?.z 1
) 4.2
Fsin(fay) * drep ) * LL*sin(0.) * sin(fs,) (4.28)
To compute , wenotethat A £* = E9. Thus, we have:
OAY olk® ok’
s [s A9 _
arep; *Orep; Orep;
olk® ok’ OAY
= (A9 — - F° 4.29
arep; (A2) (arcpi arep; ) ( )
where rcp; is the :-th variable in rep. We can compute using forward kinematics,

and 72~ can be computed similar to the way 52 is computed
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4.3.4.3 Wristjoint angles

Using equations 3.18, 3.26, and 3.27 in Chapter 3, we can computethe gradientsof thewrist

joint angles similarly to the gradients of the shoulder joint angles. In their computations,

we need to evaluate 5. Notethat AJIW* = 1. Thus,
OAY ows oW

RSN — —0
arep; Jrep;  Orep;

since W9 isindependent of rcp;.

oWws JOAY
— (A9 1 s s
arep; (A9) arep; W

The computation of % is straightforward using the forward kinematics computation.
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Chapter 5

Experiments

In this chapter, we briefly describe our experiments with a prototype implementation of

the analytical and numerical human posture control agorithms.

5.1 Experimentswiththeanalytical human posturecontrol

algorithm

Computing human postures using the analytical algorithm described in Chapter 3 consists
of two steps. First, we use it to compute a default human body posture to place the end-
effector (hand) at the goal. We then adjust the posture to satisfy additional constraints such
as collision avoidance, and optimize performance criteria such as minimal torso bending.

We describe our experiments with both steps in sections 5.1.1 and 5.1.2.

5.1.1 Default posture computation

We start with the posture shown in the first frame of Fig. 5.1. The hand goals are the
two small cubes. To compute a default posture, we check if the goa is inside the hand's

reachable space. If itis, we only compute an arm posture to place the hand at the goal and
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Figure5.1: Step 1 of the analytical algorithm: default posture computation

the rest of the body does not move. This is shown in the second frame of Fig. 5.1, where

the left hand goal moved to the left, and the right hand goal did not move.

If the goal is outside of the hand’s reachable space, we put it inside by either bending
the torso (frame 3), moving the figure towards the goal, (frame 4), adjusting its orientation

(frame5), or lowering its center of mass (frame 6).

Our experience with the default posture computation algorithm is that it does a good
job at what it is designed to do: computing a default human body posture to place the hand
at the goal. However, the computed default posture often may not be a good (*natural™)
posture. While we can certainly design better heuristicsto compute more* natural” default
postures, it is difficult to come up an algorithm which always produces * natural” postures.

A different approach to solving this problem is to provide tools that allow the user to
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Figure 5.2: Redundancy control 1. adjusting elbow height control of the left arm

conveniently adjust the postures. Thisisaccomplished in the second step of the analytical

algorithm. We describe our experiments with it next.

5.1.2 Adjust posturein redundancy space

Asmentionedin section 5.1.1, thedefault posture computation may not producea* natural”
or adesired posture. We can adjust the computed postures in redundancy space using the
analytical algorithm.

Asdiscussed in section 3.2, given the shoulder and wrist positions, the elbow traverses
acircle. We can control the elbow position on the circle by giving the elbow height control
parameter. This control isshown in Fig. 5.2. Inthefigure, the left elbow moves up while
keeping the hand at the goal.

The other redundancy control parameters are torso bending and base position and
orientation. We can adjust the torso posture as shown in Fig. 5.3, move the figure around
and adjust its orientation as shown in Fig. 5.4.

Notice that while the body posture changes with new redundancy parameter values,
both hands stay at their goals, and both feet stay on the ground. This means that we
can concentrate on achieving the desired posture without worrying about the end-effector
constraints. Thisis an important advantage over joint space manipulations where the user

has to simultaneously manage two conflict goals of achieving the desired posture and
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Figure 5.3: Redundancy control 2: adjusting torso flexion, side bending and twist

Figure 5.4: Redundancy control 3: adjusting base position and orientation
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keeping the end-effectors at the goals.

5.1.3 Performance

At each frame, the analytical algorithm computes a whole body posture to place the end-
effector at the goal. This includes computing the left and right arm postures, the torso
posture, and the left and right leg postures. Arm and leg postures are computed using the
algorithm described in sections 3.4.1 and 3.4.5. Thetorso posture computationisdescribed
in sections 3.4.2 and 3.5.4. In the following, we describe the performance of a prototype
implementation of the analytical algorithm. The performance data, summarized in Table
5.1, is collected on a 200 MHZ SGI INDIGO-2 workstation.

Table 5.1: Performance data of the analytical human posture control algorithm

Average Number of Human Figures
Posture computation time (sec) controlled in real-time
Arm 1.0E-4 330
Leg 1.0E-4 330
Torso
(simplified) 3.0E-3 11
Torso 1.0E-2 3
Two Arms 2.0E-4 165
Whole Body
(nojoint limits) 3.4E-3 10
Whole Body
(with joint limits) 1.1E-2 3

Given the shoulder and wrist positions and orientations, as well as the elbow control
parameter, the arm posture computation takes 1.0E-4 seconds *. The leg posture computa-
tion takes the same amount of time since it uses the same agorithm. To compute arm and
leg postures in real-time at 30 frames/second, during each frame we have 3.3E-2 seconds

computation time. Thus, we can compute 330 arm or leg posturesin real-time. If the task

1This is the average time obtained by running the program in aloop of 10,000 iterations
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isto control one arm or leg movements, then we can control 330 human figures performing
the task in real-time.

Given the base and shoulder (neck) positions and orientations, the torso posture com-
putation takes 3.0E-3 seconds 2. Note that we use a simplified, and less accurate version
of the algorithm described in section 3.5.4. It does an adequate job for default postures
computation where we do not need to position the neck or shoulder very accurately. To
achieve the accuracy described in Table 3.1, the running time for the algorithm is 1.0E-2

seconds.

The human posture computation timevaries from task to task and from frameto frame.
For example, if the task only involves arm movements, then it takes 2.0E-4 seconds to
control ahuman figure (timefor computing two arm postures). That means we can control

165 human figuresin real-timeif the task only involves arm movements.

If the task involves whole body movements, i.e., we need to compute the arm postures,
the torso posture, and the leg postures, then the total posture computation time is 3.0E-3
+ 4*1.0E-4 = 3.4E-3 seconds. Thus, we can control whole body movements of 10 human
figuresin real-time. In this case, most of the time are used to compute the torso posture.
The torso posture computation is expensive because the torso model in Jack has 17 joints
with 51 dof. If we can reduce the torso posture computation time to 1.0E-4 by simplifying
the model, we can reduce the whole body posture computation time to 5.0E-4 seconds. In

this case, we can control whole body movements of 65 human figuresin real-time.

The above performance analysiswould be valid if there areno joint limits. In practice,
the performance analysis is complicated by the presence of joint limits. For example,
given the elbow control parameter, we can compute an arm posture (the shoulder, elbow,
and wrist joint angles). However, the computed joint angles may be outside of the joint
limits. In this case, we need to search for an elbow height control parameter value so that
the computed postureisvalid (withinjoint limits). Currently, we use abrutal force method

to search for a valid elbow control parameter value. As aresult, the arm and leg posture

2Thisisthe average time obtained by running the program in aloop of 3,000 iterations
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computation is about 20 times more expensive. Thus, each limb computation takes about
2.0E-3 seconds, and 4 limb computations take about 8E-3 seconds. If we include torso

computation time, it takes 1.1E-2 seconds to compute a whole body posture.

Note that the prototype implementation is a straightforward one and it is not optimized
for performance. There are a number of places where we can improve the performance
considerably. For example, we can reduce the search timefor avalid elbow (knee) control
parameter value by using a better scheme (e.g., optimization). We can also simplify the
torso model. As aresult, we can reasonably assume that a good implementation of the
analytical agorithm can control the movements of morethan 10 human figuresinreal-time

on today’s workstations.

5.2 Experiments with the numerical human posture con-

trol algorithm

In section 5.1.2, we discussed interactive manipulations in redundancy space to obtain
the desired posture. That is, the user finds the desired posture (i.e, a set of redundancy
parameter values) by interactively adjusting the posture. We can also adjust postures
automatically. The numerical posture control algorithm described in Chapter 4 optimizes
postures in redundancy space to satisfy constraints and minimize performance criterion

functions.

In performing many tasks, in addition to position the hands at given locations, we
also need to control the positions and orientations of other parts of the body to avoid
collisions or satisfy task-specific constraints. For example, in Fig. 5.5, Jack's two hands
are constrained to stay at current positions and orientations. We aso want to position his
left upper arm (the middle point of it) close to the small cube. Assume that the lower body
and the base of the human figure do not move. We can use the numerical algorithm to

automatically compute a posture that minimizes the distance between the left upper arm
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Figure 5.5: Minimizing the distance between the |eft upper arm and the small cube

and the small cube, and at the same time maintain the two hand constraints. Asshownin
Fig. 5.5, the small cube is being moved around, and Jack tries to position the left upper

arm close to cube while maintaining the hand constraints.



Chapter 6

Conclusions

The goal of this thesis is to develop more efficient and more stable kinematic posture
control techniques for human task simulations. To achieve this goa we have developed
an analytical human posture control algorithm and a numerical human posture control
algorithm in redundancy parameter space. The novel idea behind these two agorithmsis
a decoupling approach described in Chapter 3. Through decoupling we are able to greatly
reduce the complexity of the human posture control problem and obtain an analytical
solution. In the following we first summarize the contributions of this thesis. Then
we briefly discuss future extensions to this work. We conclude this thesis with a brief

discussion on the role the two posture control algorithms play in simulating human tasks.

6.1 Contributions

This thesis makes contributions to the areas of human factor analysis, virtual prototype
evaluations, computer animation, and especially human and animal posture control. The

contributions include:

1. A decoupling approach for complexity reduction:
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We have proposed a decoupling approach to reduce the search space of the human
posture control problem. Using this approach we have identified severa decoupling

schemes which make our analytical human posture control algorithm feasible.

. Ananalytical human posture control algorithm:

We have developed an analytical algorithm to control whole human body postures.
The advantages of this algorithm over existing methods are that it eliminates the
local minima problem, it is efficient enough to control whole human body postures
in real-time, and it provides more effective and convenient control over redundant
dofs.

. A numerical human posture control agorithm in redundancy space:

We have developed a numerical algorithm for human posture control. Like existing
methods, it is based on nonlinear optimization theory. However, unlike existing
methods which work in joint space, this algorithm works in redundancy parameter
space. For the human posture control problem, redundancy parameter space is
smaller than joint space. As a result, this numerical algorithm is better suited for

solving the human posture control problem.

. Animal posture control:

While both the analytical and the numerical algorithms are designed for human
posture control, they can also be used to control animal postures because of their
similar articulated structure. The genera idea of decoupling may be useful in

studying the postures and movements of other articulated structures as well.

. Redundancy space posture representation:

We have proposed a new redundancy space representation for human postures. As
discussed in section 3.6.1, we can efficiently convert postures between redundancy
space representation and joint space representation. Asaresult, it can be apractical

alternative to joint space representation. In addition, redundancy space posture
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representation also has a number of advantages over joint space representation as
discussed in section 3.6.2.

6.2 Futurework

In this thesis, we have developed an analytical and a numerical human posture control
algorithm. These two algorithmshave several important advantages over existing methods
as summarized above. There are a'so many important areas in which the two algorithms

can be improved. We briefly discuss these improvements bel ow.

6.2.1 Shoulder joint complex

In the Jack human model, the abstract 3-dof shoulder joint is a group joint encapsulating
two real joints: the real shoulder joint with 3 dof, and the real clavicle joint with 2 dof.
The shoulder group joint definition also specifies the constraints between the real shoulder

and real claviclejoints.

In this thesis, we used a very simple scheme to decouple the two real joints in the
shoulder group joint. First, the position of the elbow is used to compute the clavicle joint
angles. After fixing the claviclejoint angles, thereal shoulder joint angles can be computed
easily sinceit is a standard spherical joint.

The problem with this scheme is that the proposed decoupling may violate the con-
straints that govern the relationship between the real shoulder and the real clavicle joints.
In turn, it may result in unnatural postures in the shoulder joint complex. To overcome
this problem, we can approximate the elbow position in terms of the shoulder group joint

angles, similar to the way we handled the waist group joint.
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6.2.2 Foot placement heuristics

Given the lower torso and the foot positions and orientations, we can compute the lower
body posture analytically as discussed in Chapter 3. We have proposed a simple approach
to compute the foot positions and orientations. It may be desirable to come up with a
better method that takes into account the nature of the task, the upper body posture, the

load distribution and the center of mass of the body.

6.2.3 Automatic decoupling

We have analyzed the articulated structure of the human body and proposed severa de-
coupling schemes which make an analytical human posture control algorithm feasible.
Due to similarities in body structure, these schemes are also useful for animal posture
control. Currently we must identify these decoupling schemes manually for each artic-
ulated structure used. A valuable improvement would be to develop an algorithm that
automatically identifies the decoupling schemes and sets up equations to solve the posture

control problem analytically.

6.2.4 Postureinterpolation in redundancy space

In this study, at each frame we compute the human body posture by considering the current
hand goal and environment restrictions. Thisis sufficient for posture design. However, for
movement generation, it isusually better to consider the coherencein the motion sequence
and use the redundancy in the body to generate smooth motions to perform the task. In
order todo this, we need toinvestigate the rel ationship between the coherence of the human
posture in 3D space and its coherence in redundancy space. Using these relationships we

can compute the redundancy parametersto ensure smooth human movementsin 3D space.

Another possible approach to motion generation is through key framing. Given the

starting and the ending postures, we can generate the in-between motions by interpolating
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between these two postures. Unlikethetraditional key-frame approach, wherethe interpo-
lations occur in joint space or in 3D space, using our approach we can interpolate postures
in redundancy parameter space. The advantage is that the hand position and orientation
constraints are satisfied automatically. Also, since theredundancy parametersareintuitive,

it is easier to come up an interpolation scheme that produces the desired movements.

6.2.5 Natural-looking human movements

In this thesis, we have developed new agorithms to solve the human posture control
problem. The analytical algorithm provides an interface for exploring the redundancy
in human postures while maintaining hand position and orientation constraints. The
numerical algorithm allows the user to specify a performance criterion function to achieve
the desired posture. While all these may help, we need to do much more to generate

natural -looking human movements.

A possible approach istofirst understand the human motor control mechanism [32] [9].
Based on the model of the human motor control mechanism, we can compute the muscle
forcesthe human body generates for task performance. Then we can feed these forcesinto
a dynamics simulator to synthesize natural-looking human movements. Unfortunately,
our current understanding of the human motor control mechanism is not good enough to

enable us to predict the correct muscle forces.

Another possible approach is to use optimal control. Biomechanical studies have
revealed that the performance of human tasks often involves the optimization of some
criteria such as minimization of work, reaction force, or torque. In [4] and [42], Brotman
and Netravali, Witkin and Kass have demonstrated the usefulness of this technique for
generating natural -looking motionsfor simple objects. Pandy et. al. [28] [29] used optimal
control to study human movements. The drawback with this approach is inefficiency.
Because of the complexity of the problem, it is computationally expensive to compute

a solution. In [46], we have proposed a way to improve the efficiency and accuracy of
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the solution procedure for certain types of problem. However, this improvement is small
compared to the computational demand of the problem. A more serious problem is the
local minima problem associated with optimization-based approaches. Until we have
better ways to address these two problems, the optimal control approach can only be used

in alimited domain of applications.

6.3 Conclusions

Human task simulation isimportant to virtual prototype evaluation, human factor analysis,
and virtual environments. A key component of human task simulation is the human
posture control problem. In thisthesis, we have developed an analytical and a numerical
algorithm for human posture control. These two algorithms are efficient and stable. They

also provide convenient and computationally effective redundancy control.

Whilethey are devel oped for controlling human body postures, the two posture control
algorithms do not have any built-in knowledge about the human body other than its
articulated structure. They solve the human posture control problem as a pure geometrical
problem. The domain specific information about the particular task and the human body
is coded in task specification. Thisinformation includes ahand goal location (or series of
goalsyielding agoal tragjectory), a performance criterion minimization function, and a set
of geometrical constraints. Thus, the two human posture control algorithmscan be viewed
as engines that enforce geometrical constraints and minimize geometrical performance

criterion functions.

To build a human task simulation system, we need two higher-level systems that
interface the posture control system. First, we need a system that relates body postures to
human performance criteria such as comfort, fatigue, postural stability, visual perception,
and hand manipulability (including the hand’'s mobility and its ability to exert force and
torque). We call this part the human performance system. We aso need a system which

relates tasks to hand goal location (or hand goal trgjectory), to geometrical restrictions,
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Figure 6.1: Architecture of a human task simulation system

and to human body performance criteria. We call this part the task information system.

Using these systems, we can build a human task simulation system as shown in Fig. 6.1.

The human task simulation process in this system is as follows:

1. Givenahuman task, the task information system determines ahand goal location (or

ahand goal trgjectory), aset of geometrical restrictions on the human body, and a set
of human body performance criteriathat are important to the successful completion
of the task.

. The human performance system takes the set of general performance criteria gen-
erated by the task information system and converts them to functions of the human
body posture. These functions are then assembled into one scalar performance

criterion function.

. The posture control system takes inputs from both the task information system and
the human performance system. It then computes the desired posture (or posture
sequence) that reaches (follows) the given hand goal location (or the hand goal
trajectory), satisfies the geometrical constraints, and minimizes the performance

criterion function.

With the development of an analytical and a numerical human posture control algo-

rithm, thiswork haslaid afoundation for building fast and efficient human task simulation

systems.
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