
An Embedded Boundary Integral Solver for the
Stokes Equations 1

George Biros∗, Lexing Ying∗, and Denis Zorin∗
∗ Courant Institute of Mathematical Sciences, New York University, New York 10012

Email: {biros,lexing,dzorin}@cs.nyu.edu

Version: June 2002

We present a new method for the solution of the Stokes equations. Our goal is to develop a robust
and scalable methodology for two and three dimensional, moving-boundary, flow simulations. Our
method is based on Anita Mayo’s method for the Poisson’s equation: “The Fast Solution of Poisson’s
and the Biharmonic Equations on Irregular Regions”, SIAM J. Num. Anal., 21 (1984), pp. 285–
299. We embed the domain in a rectangular domain, for which fast solvers are available, and we
impose the boundary conditions as interface (jump) conditions on the velocities and tractions. We
use an indirect boundary integral formulation for the homogeneous Stokes equations to compute
the jumps. The resulting integral equations are discretized by Nyström’s method. The rectangular
domain problem is discretized by finite elements for a velocity-pressure formulation with equal order
interpolation bilinear elements (Q1-Q1). Stabilization is used to circumvent the inf − sup condition
for the pressure space. For the integral equations, fast matrix vector multiplications are achieved via a
N log N algorithm based on a block representation of the discrete integral operator, combined with
(kernel independent) singular value decomposition to sparsify low-rank blocks. Our code is built
on top of PETSc, an MPI based parallel linear algebra library. The regular grid solver is a Krylov
method (Conjugate Residuals) combined with an optimal two-level Schwartz-preconditioner. For the
integral equation we use GMRES. We have tested our algorithm on several numerical examples and
we have observed optimal convergence rates.
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1. INTRODUCTION

In this paper we propose a boundary integral method for the steady two-dimensional
Stokes equations in irregular domains. We have developed this method as a building block
for a Navier-Stokes solver for problems with moving boundaries. Most state-of-the-art
methods for such problems, with the notable exception of the immersed boundary method,
require unstructured meshes for local discretizations. For irregular domains, mesh gen-
eration is still a bottleneck—especially for three-dimensional problems, problems with
moving boundaries and when parallel implementations are used [2]. This makes methods
based on fixed Cartesian grids attractive for such problems.

For certain types of PDEs there is an alternative formulation which is based on inte-
gral equations. For example, a constant coefficient elliptic problem can be solved using

1This work is supported by the National Science Foundation’s Knowledge and Distributed Intelligence (KDI)
program through grant DMS-9980069.

1



a boundary integral formulation. This approach is ideal for exterior problems, it allevi-
ates the need for unstructured meshes, and it dramatically reduces the size of the discrete
problem (reduction of dimensionality).

Several researchers have used boundary integral formulations to solve the homoge-
neous Stokes problem. The basic formulation can be found in [21, 35, 36]. In [12, 27, 34],
the homogeneous Stokes problem is solved using boundary integral representation com-
bined with multipole-like far-field expansions to accelerate the matrix-vector multiplica-
tions. In [33, 37, 41] boundary integral equations have been used for problems with moving
and deforming boundaries. In [14] the Stokes problem is posed as a biharmonic equation
and it is solved for both interior and exterior problems.

Despite its effectiveness, a boundary integral formulation becomes less attractive for
problems with distributed forces. If a boundary formulation is used then it is necessary to
compute domain convolutions of the forcing term with the fundamental solution. These
integrals are also known as Newton potentials. While fast multipole methods (FMM),
[15], can be used to accelerate the integration, the integrals are quite difficult to evaluate
accurately for points close to the boundary, as the kernels become nearly singular.

An alternative method which originally appeared in Anita Mayo’s work [28], for the
Laplace and biharmonic operators, uses finite differences on regular grids to efficiently
evaluate the contribution from the distributed forces. This approach was also used in [29]
in combination with fast multipole methods for the boundary integral equation. In this
paper we term this method as the Embedded Boundary Integral method (EBI). With the
EBI method we embed the flow domain inside a larger simple domain, typically a regu-
lar domain for which fast and scalable solvers are available. The velocity and pressure are
suitably extended to the regular domain; the original boundary becomes an interface across
which, depending on the extension, the velocities and tractions are in general discontinu-
ous. An integral formulation is used to compute a suitable extension and the inteface jumps
of the velocity and its derivatives. Once this is done, Taylor expansions are used to express
these jumps as a body force at regular grid points which are close to the interface. This
body force, which appears in the right hand side of a the regular grid problem, we term
Taylor Expansion Stencil Correction (TESC). Depending on the details of the implemen-
tation the method can be first, second, or higher order accurate. In this paper we extend
this approach to the Stokes equation and present fast numerical methods for solving the
boundary integral equations and the corrected equations on the regular grid. We have also
extended the method to the elastodynamics and to the unsteady Navier-Stokes equations.
For the latter preliminary results can be found in [5].

There is a great amount of work on fast solvers for PDE’s in irregular geometries.
Research on this topic dates back to the seventies [6]. In this paper we focus our attention
to methods which are closely related to EBI.

Most of the fundamental ideas that we will discuss below, the connection between
immersed interfaces potential theory and integral equations, the interpolation based ap-
proximations of jumps, the stencil modification around the boundary, and the utilization
of regular grids, go back to the capacitance matrix method [38]. Neumann and Dirichlet
problems are solved for the Laplace and Helmholtz problems using domain embedding and
finite differences. The stencils that cross the interface are modified and the resulting matrix
is written as a sum of the standard five-point Laplace operator and of a low rank modifi-
cation. This matrix can be inverted by the Sherman-Morrison-Woodbury formula. Instead
the authors solve for the jump conditions first (the discrete potential). For the Neumann
problem the two approaches are equivalent but for the Dirichlet problem are different since
the double-layer approximation results in well conditioned problems for the unknown in-
terface jumps. One shortcoming of the method is the requirement of several regular grid
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solves.
One of the most successful techniques is the Immersed Boundary Method [31, 32]

which was designed for a Poisson problem for a solve for the pressure within a projection
algorithm for the unsteady Navier-Stokes equations. The interface is modeled as a set of
one-dimensional delta functions whose discretization gives a forcing term. The method is
first-order accurate due to smearing of the boundary layers by the discrete delta functions.

The Immersed Interface Method [23] is an extension of the immersed boundary method
which is second-order accurate. It is designed for problems with discontinuous coeffi-
cients and singular forces. It has been successfully applied to moving boundary problems,
for example for the Stokes problem with elastic interfaces [24] and for the Navier-Stokes
problem [26]. If the singular forces are known then the jumps are known and TESCs can
be computed explicitly. For discontinuous coefficients IIM modifies the stencils for points
close to the boundary in order to account for the jump conditions. The method results in
non-standard matrices and fast methods are not straightforward to apply. The immersed
interface method as presented in [23] was not used on Dirichlet on Neumann problems in
general irregular regions, since it requires known jump conditions. In [9], IIM is extended
to Neumann problems by modifying interface stencils to account for the unknown jumps.
Later versions of IIM, (Explicit Immersed Interface Method) [40], (Fast Immersed Inter-
face Method) [25], addressed non-standard matrices by adding additional equations for the
jumps and extended IIM to Dirichlet problems; this approach however appears to result
in considerable additional computational cost since it requires tens to hundreds of regular
grid solves.

Several other methods produce discretizations based on regular grids, with modified
stencils and/or right-hand sides to account for the embedded interfaces. Cheng and Fed-
kiw [7] describe a second order method for the Dirichlet boundary problem. This method
results in symmetric positive definite matrices with diagonally-modified stencils and with
additional terms on the right hand side. In another class of methods, Cartesian-finite vol-
ume methods, the stencils modifications stem from appropriate modification of finite vol-
ume cells to account for the intersections of the Cartesian grids with the interface [1], [18].

Another algorithm, similar to the IIM and capacitance matrix methods but which first
appeared within the finite element community, is the fictitious domain method [8, 11].
Based on a finite element variational formulation, Dirichlet boundary conditions are im-
posed weakly as side constraints. This approach results in a saddle-point problem that
includes the primitive variables plus Lagrange multipliers. In fact certain fictitious do-
main methods are intimately related to the IIM and EBI methods. It can be shown that the
Lagrange multipliers correspond to Neumann condition jumps.

The above methods share some common features. Here we restrict our attention to
problems with constant coefficients and force singularities which cause interface jumps.
When these jumps are a priori known, the stencil modifications can be transferred to the
right hand side using TESC. However this is almost never the case. In general, inteface
discontinuities have to be solved for. One approach is to modify the stencils of the dis-
cretization close to the interface (Cartesian grids, immersed interface method, Cheng and
Fedkiw method), or to introduce additional equations (fictitious domain, immersed bound-
ary, fast immersed interface, explicit immersed interface). Modified stencils make it more
difficult to apply fast solvers, especially if the boundaries are moving. If additional un-
knowns are used, a common approach is to invert the Schur complement corresponding
to these unknowns. These Schur complement matrices correspond to discretizations of in-
tegral equations [38]. A matrix-vector multiplication with such matrix will be expensive
since it involves a regular grid solve.

Computing the jumps directly via boundary integrals, which is the foundation of the
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EBI method, circumvents such costly operations by decoupling the inteface with the back-
ground grid. Only one integral solve and two regular grid solves are required independently
of the complexity of the immersed interface.

In addition, transferring the equations on the interface results in a natural formulation
for coupled problems. For example in fluid-solid interaction problems, the interface condi-
tions are the continuity of the tractions and of the velocities; these conditions can augment
boundary integral formulations for the solid and fluid. If an implicit method is used to
solve the equations, in this formulation the nonlinear iterations can be restricted on the
interface. While time dependent problems require volume computations, a fast solver on
a structured grid helps to minimize the computational cost of the volume discretization.
These considerations indicate that the EBI-based methods may have advantages for such
problems which we plan to explore in the future.

One shortcoming of the EBI method is that it can be used only for problems with a
domain that can be partitioned to subdomains in which the fundamental solution is known.
The latter, however, does include problems with piecewise constant coefficients, and thus
EBI is suitable for a quite large class of problems. Another problem is that EBI is relatively
complicated to implemented because, for scalable and efficient implementations, a fast
matrix multiplication algorithm for the integral equation must be used. The details of such
an implementation (for example FMM) tend to depend on the underlying kernel. In this
paper we discuss an efficient N log N algorithm that can be used with any kernel with
rapid decay properties, and only requires kernel evaluations.

In the next section we present the overview of the method. Subsequent sections address
the details of the boundary integral formulation (Section 3); discretizations of the bound-
ary integral equations (Section 4.1), regular domain equations (Section 4.2) and Taylor
expansion stencil corrections (Section 4.3). Section 5 discusses the implementation of the
method, a fast SVD-based solver for the boundary integral equation in particular.

Notation. Scalars will be denoted with lowercase italics, vectors with lowercase
boldface letters; tensors and matrices will be denoted with uppercase boldface letters. In-
finitely dimensional quantities will be in italics, whereas finite dimensional ones (usually
discretizations) will be non-italic fonts. We use [[·]] to denote the jump of a function across
an interface (exterior − interior).

2. HIGH LEVEL DESCRIPTION OF THE EBI METHOD

We seek solutions for the interior, possibly multiply-connected, Stokes problem with
Dirichlet boundary conditions. We choose a primitive variable formulation (velocities and
pressures), for which the momentum and mass conservation laws are given by

−ν∆u+ ∇p = b in ω, divu = 0 in ω, u = g on γ. (1)

Here u is the velocity field, p is the pressure, b is a known forcing term, and g is a given
Dirichlet boundary condition for the velocity. The stress tensor S associated with the
velocity and pressure is given by

S = −pI + ν(∇u + ∇uT ). (2)

We split the solution of the problem into several steps as follows. We first embed ω
in an easy-to-discretize domain Ω, typically a rectangle. By linearity we decompose (1)
into two problems: one problem that has an inhomogeneous body force and zero boundary
conditions for Ω; the other has no body force, but nontrivial boundary conditions:
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−ν∆u1 + ∇p1 = b in Ω, divu1 = 0 in Ω, u1 = 0 on Γ; (3)
−ν∆u2 + ∇p2 = 0 in ω, divu2 = 0 in ω, u2 = g − u1 on γ. (4)

Domain Ω is chosen to make the fast solution of (3) possible (Section 4.2). For (4)
we use a double layer boundary integral formulation (Section 3) to obtain the velocity
potential, µ, on the boundary γ. Solution u2 for an arbitrary point in the interior of ω is
the convolution of the double layer kernels with the velocity potential. The solution of the
original problem (1) is u = u1 + u2, p = p1 + p2.

In practice however, evaluating u2 using convolution presents the same difficulties as
the evaluation of a forcing term by convolution. A different approach proposed by Mayo
[28], is to use the fact that once problems (3) and (4) are solved, the jumps of the solution
u can be very accurately computed on γ. Conceptually, there is a discontinuous extension
u3 of u2 on Ω that satisfies

−ν∆u3 + ∇p3 = 0 in Ω, divu3 = 0, in Ω, u3 = u2, on Γ, (5)
[[u3]]γ = µ, [[S3n]]γ = [[−p3n+ ν(∇u3 + ∇uT

3 )n]]γ = 0. (6)

Numerically, this problem is solved using the same solver used for problem (3), but with
a right-hand side that takes into account the interface jumps computed from the velocity
potential (Section 4.3).

In summary, the EBI approach uses the following steps:

1. solve the problem (3) on the simpler domain Ω;

2. solve the boundary integral problem derived from (4) on γ to obtain the velocity
potential;

3. compute the right-hand side corrections from the velocity potential;

4. solve the second regular problem on Ω with the computed right-hand side;

5. add the solutions obtained at steps 1 and 4 to obtain the complete solution on ω.

3. THE DOUBLE LAYER FORMULATION FOR THE STOKES EQUATIONS

In this section we describe the double layer intergral formulation of a problem of the
form (4). We assume that the boundary curve γ is curvature-continuous, and the domain ω
is bounded. We use the notation

C[w](x) :=

∫

γ

C(x,y)w(y) dγ(y),

to denote the convolution for a kernel C; C(x,y)w is a dot product for vector kernels and
matrix-vector product for matrix kernels.

The fundamental solution for the Stokes operator in two dimensions it is given by:

U(x,y) = U(r) :=
1

4π

(

ln
1

ρ
+

r⊗ r

ρ2

)

, (7)

x is the observation point, y is the source point, r := x−y, ρ := ‖r‖2, and ⊗ is the tensor
product of two vectors. This kernel is also known as the Stokeslet.
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Similar to the potential theory for the Laplace equation we can introduce single and
double surface potentials for the velocity and the pressure. We use only the double layer
potential D for velocity and the double layer potential for pressure K:

D(x,y) :=
1

π

r · n(y)

ρ2

r ⊗ r

ρ2
; K(x,y) := −ν

1

π

1

ρ2

(

I − 2
r⊗ r

ρ2

)

n(y) (8)

where n(y) is the outward surface normal at a boundary point y. For a derivation of [35]
and [36].

Green’s second identity can be employed to express the solution of the Stokes problem
in terms of boundary integrals and thus reduce the problem to a boundary integral equation.
While being most general, this approach results in ill-conditioned systems. We use an
indirect formulation which yields systems with bounded condition number.

We limit our discussion to the interior Dirichlet problem. The extension to exterior and
Neumann problems is straightforward. We represent the velocities and pressures as surface
potentials convoluted by the double layer kernel:

u(x) = D[µ](x), p(x) = K[µ](x), x in ω. (9)

Here µ is the hydrodynamic potential. Taking limits to the boundary from the interior and
exterior regions we obtain

u(x) = −
1

2
µ(x) + D[µ](x), x on γ. (10)

The velocity u has to satisfy
∫

γ u · n dγ = 0, a direct consequence of the conservation of
mass. This constraint is an indication that for the simply-connected interior problem the
double layer operator has a null space of dimension at least one. In fact, it can be shown
([35], p. 159) that the dimension of the null space is exactly one. The null space can be
removed by a rank-one modification ([35], p. 615). Let N (x,y) = n(x) ⊗ n(y). We
represent u as

u(x) = −
1

2
µ(x) + D[µ](x) + N [µ](x), x on γ. (11)

More generally, for the multiply connected interior problem, a direct calculation can
verify that the double layer kernel has a larger null space: it is spanned by potentials that
correspond to restrictions of rigid body motion velocity fields on the boundary. These
fields generate zero boundary tractions and thus belong to the null space of the double
layer kernel. Suppose that the boundary γ consists of n + 1 components γ0, γ1, · · · , γn,
where γ0 encloses all other components, and let cp, p = 1, · · · , n be an interior point of
γp. Following [35], we represent u as

u(x) = −
1

2
µ(x) + D[µ](x) + N [µ](x) +

n
∑

p=1

U(rp)αp[µ] +

n
∑

p=1

R(rp)βp[µ] (12)

where rp = x − cp, R(r) = r⊥/4πρ2, and if r = (r1, r2), r⊥ = (r2,−r1).
The coefficients αp and βp are computed by augmenting (12) with

∫

γ

ψj
p(y) · µ(y) dγ(y) = αp, j = 1, 2,

∫

γ

ψ3
p(y) · µ(y) dγ(y) = βp, (13)
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whereψi
p, p = 1, · · · , n, i = 1, 2, 3 are 3n functions spanning the null space of the double

layer potential. These functions are explicitly known ψi
p(y) = (δ1i, δ2i) for i = 1, 2

ψ3
p(y) = (y2,−y1) on γp—they are fluid rigid-body motions, restricted on γp. In [35] is

shown that equations (12) and (13) guarantee a unique solution of µ,α and β for general
admissible boundary condition u.

Jump computation. Once the potenital µ is known, we need to compute the jumps
at the interface and the velocity to use in equation (5) Equation (9) is defined for points
inside ω. We can use exactly the same relation to extend u in R

2/ω̄. The resulting field is
discontinuous across the interface.

From the properties of the double layer kernel for an interior problem we have the
following jump relations for velocity and stress:

[[u]] = µ, [[Sn]] = 0. (14)

The jump on the pressure can be deduced if we notice that the double layer kernel
K(x,y) can be also written as −2ν∇x(L(x,y)), where L(x,y) = (r · n(y))/ρ2 is the
double layer kernel for the Laplace equation.

From (14) we can derive a condition for the pressure:

[[p]] = −2µ · t, (15)

where t is the curve tangent.
In addition to jumps in velocity and pressure, we also need the jumps for derivatives

of velocity and pressure as well as the jumps in second derivatives of the velocity; these
jumps are used to compute corrections to ensure second-order accuracy of the solution of
the problem on the domain Ω. The derivation is presented in the appendix.

4. DISCRETIZATION

4.1. Boundary Integral Equation

We discretize (11) by the Nyström method combined the composite trapezoidal rule
which achieve superalgebraic convergence for smooth data. Without loss of generality we
assume ω to be simply connected. Note that the double layer kernel has no singularities
for points on the boundary. Indeed,

lim
y→x

D(x,y) = −
1

π
(t⊗ t)

k

2
, x, y on γ,

where t and k are the tangent vector and the curvature at x.
Let [0, 2π] be the curve parameterization space and n the number of discretization

points with h = 2π/n. We discretize by:

u(y(ih)) = −0.5µ(ih) +
1

h

n
∑

j=1

D(y(ih),y(jh))µ(y(jh)) ‖∇y(jh)‖2

+ n(y(ih))

n
∑

j=1

µ(y(jh)) · n(y(jh) ‖∇y(jh)‖2, i = 1, . . . , n,
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or

ui = −0.5µi +
1

h

n
∑

j=1

Dijµj ‖∇yj‖2 + ni

n
∑

j=1

µj · nj ‖∇yj‖2, i = 1, . . . , n (16)

which results in a dense 2n × 2n linear system. Here y(·) is the parameterization of γ.
While resulting system has a bounded condition number, it is dense. Fortunately, one

can take advantage of the fast decay of the Green’s function with distance and use a fast
method to solve the system. A number of such methods exist; we use an SVD-based
method described in detail in Section 5.1.

4.2. Finite element formulation of the regular region

To solve the equations in the regular domain Ω we use a finite-element discretization of
the Stokes operator. It should be noted that we use the finite-element formulation primarily
as a convenient mechanism to derive the discretization of the problem. For the regular grid
the discrete system obtained by using finite elements is identical to a system obtained by
a specific choice of finite difference stencils to which we can apply the right-hand side
corrections described in Section 4.3.

We have chosen to solve for the velocity and pressure simultaneously rather than use an
Uzawa or pressure correction algorithm using a finite element method with Q1-Q1 bilinear
elements.The advantage of the Q1-Q1 elements is that they probably result in one of the
simplest implementations for the Stokes system since they allow equal order interpolation
for the velocity and the pressure on a unstaggered grid 2. A survey and related references
on finite element methods for the Navier-Stokes equations can be found in [16], and [17].

With L2(Ω) we denote the space of scalar functions (in Ω) which are square-integrable
and withH1(Ω) we denote vector functions whose first derivatives are in L2(Ω).

We also define

V :=
{

v ∈H1(Ω) : v|Γ = 0
}

,

Q :=

{

φ ∈ L2(Ω) :

∫

Ω

φ dΩ = 0

}

.

The domain integral constraint in Q is necessary for pressure uniqueness (for Dirichlet
problems pressure is defined up to a constant). It can be implemented by a null space cor-
rection within Krylov iterations or by setting the pressure datum at a boundary discretiza-
tion node. We choose the former since it results in better conditioned linear systems.

In the weak formulation of (1) we seek u ∈H1(Ω) and p ∈ Q such that:
∫

Ω

ν∇u · ∇v dΩ −

∫

Ω

p divv dΩ −

∫

Ω

b · v dΩ = 0 ∀v ∈ V , (17)

−

∫

Ω

q divu dΩ − β h2

∫

Ω

∇p · ∇q dΩ = 0 ∀q ∈ Q. (18)

In unconstrained elliptic systems like the Laplace and elasticity equations mere inclu-
sion of the finite element spaces within the continuum spaces suffices for convergence.
However, this is not the case for the Stokes equations and the choice of the pressure ap-
proximation function space cannot be independent of the choice for the velocities [16].

2
P1−P1 could also have been used, but the implementation is somewhat more sensitive on the stabilization

parameter [30].
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To ensure convergence, the well-known (inf-sup condition) needs to be satisfied, which is
not satisfied by he Q1-Q1 element. The weighted diffusive term in (18) is introduced to
circumvent the inf-sup condition [16]; parameter β controls the amount of stabilization.
In [30] it is shown how to choose an optimal value for β; for regular domains and periodic
boundary conditions β = 1/24. The resulting approximation is second-order accurate for
the velocities and first order accurate for the pressures in the L2 norm.

The resulting discrete system is where U is the Laplacian with Dirichlet boundary
conditions, V is the Laplacian with homogeneous Neumann boundary conditions (since
the pressure is unknown on the boundary).





U 0 B1p

0 U BT
2p

Bp1 Bp2 −βh2V











u1

u2

p







=







b1

b2

0







. (19)

The corresponding finite difference stencils are provided in the appendix.
We use this discretization to solve all equations on the rectangular domain Ω.When

solving the system (5) we apply corrections computed as described in Section 4.3 to the
right-hand side of the system, which ensures second-order convergence. The derivation
of these corrections is based on the standard finite difference analysis, assuming sufficient
smoothness of the solution. Although the discretization we use is derived using finite
elements, truncation error can be easily shown to be second order accurate for (3). However
standard maximum principle techniques cannot be used for the Stokes equations, because
they correspond to an indefinite and thus not coercive operator. For this reason we use
FEM theory to obtain an error estimate in the L2 norm.

Given f in H−1(Ω), and g in L2(Ω) for the stabilized Q1-Q1 formulation we know
that the following problem has a unique solution. Find uh ∈ Vh, p ∈ Qh such that:

∫

Ω

ν∇uh · ∇vh dΩ −

∫

Ω

ph divvh dΩ =

∫

Ω

fh · vh dΩ ∀vh ∈ Vh, (20)

−

∫

Ω

qh divuh dΩ − β h2

∫

Ω

∇ph · ∇qh dΩ =

∫

Ω

gh qh dΩ ∀qh ∈ Qh. (21)

If we denote ‖ · ‖m the usual norm inHm(Ω), standard regularity results [10] give

‖uh‖1 + ‖ph‖0 ≤ c(‖fh‖−1 + ‖gh‖0),

or (since ‖ · ‖−1 ≤ ‖ · ‖0 ≤ ‖ · ‖1)

‖uh‖0 + ‖ph‖0 ≤ c(‖fh‖0 + ‖gh‖0). (22)

Now let wh = {uh, ph} and bh = {fh, gh}. We can associate a linear operator
Ah to (20), mapping wh to bh; since (20) has a unique solution for all bh, we can also
write wh = A−1

h bh. The regularity condition (22) implies that ‖wh‖0 ≤ ‖bh‖0 and thus
‖A−1

h ‖0 ≤ ∞. Then if eh is the approximation error and τh the truncation error, we get
eh = A−1

h τh, or ‖eh‖0 ≤ ‖A−1

h ‖0‖τh‖0. If we assume that ‖τh‖0 is O(h2) we obtain
‖eh‖0 = O(h2). In our numerical experiments we have observed a similar convergence
rate in the infinity norm.

4.3. Taylor Expansion Stencil Corrections

In this section we show how discontinuities across the interface (jumps) can be used
as a correction term for a discretization obtained using a simpler domain in which the
interface is embedded.
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The derivation of the basic formulas for the corrections does not depend on the prob-
lem, as long as the jumps of the variables across the interface can be computed.

To illustrate the basic idea, suppose we solve Poisson’s equation ∆u = b, in ω with
given Dirichlet boundary conditions on γ (Fig. 4.3). Assume further that we use a dis-
continuous extension of u in Ω which satisfies the same equation outside ω. We assume
that the discontinuities are known up to second derivatives. Typical discretizations of el-
liptic PDE’s (finite elements, finite differences or finite volumes) produce a linear system
with i-th equation of the form αui +

∑

j βjuj = ζbi, where j runs through the neigh-
bors of ui. The coefficients of the equations for regular grids are the same for all in-
terior points, and depend only on the relative position of ui and uj . These coefficients
together with corresponding relative displacements are usually referred to as stencils. For
the standard 2D five-point discrete Laplacian (Fig. 4.3(a)) the equations have the form
(1/4)ui −

∑4

j=1
uj = h2bi, where h is the mesh size. In the absence of an interface

ωð
 γð
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FIG. 1 Stencil corrections. (a) The irregular domain ω is embedded in a simpler domain Ω.
For the depicted stencil the truncation error is constant as the discretization step decreases.
Figure (b) shows the notation for computing the correction terms.

this stencil is well-defined and second order accurate. For stencils that intersect with the
interface, however, this is not true, as the solution is discontinuous across the interface.
In Fig. 4.3(b), we show an example for which two unknowns ui and ue are related in a
discretization stencil that “crosses” the interface at point X . The limit of the solution from
the interior is denoted as u∗

i and the limit from the exterior is denoted as u∗

e . The key idea
is that the truncation error of the stencil can be corrected to be second (or higher-order)
accurate if we know the difference between the interface limits, and not their exact values.
Define n = p/h to be the unit-length direction vector oriented from ui to ue, pe = hen

and pi = hin, Fig. 4.3(d). By using Taylor expansions we can write

ue = u∗

e + heDu∗

e · n+
h2

e

2
n · (D2u∗

e)n+ O(h3)

= ([[u]] + u∗

i ) + he([[Du]] +Du∗

i ) · n+
h2

e

2
n · ([[D2u]] +D2u∗

i )n+ O(h3).

(23)

Defining

si = [[u]] + he[[Du]] · n+
h2

e

2
n · [[D2u]]n (24)
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and expanding u∗

i using Taylor series at ui we obtain

ue = ui + hDui · p+
h

2
p · (D2ui)p+ si + O(h3).

Similarly we can write

ui = ue − hDue · p+
h2

2
p · (D2ue)p+ se + O(h3),

where se is given by:

se = −([[u]] − hi[[Du]] · n+
h2

i

2
n · [[D2u]]n). (25)

For the stencil centered at ue we use (25) and for the stencil centered at ui we use (24).
More specifically, in the equation αui + βeue + · · · = ζbi, we replace ue with ue − si,
which results in the correction to the right-hand side βesi, and yields the desired accuracy.

By using the correction term we achieve O(h3/2) truncation error for a second order
discretization of the Laplacian for the points immediate to the boundary and O(h2) for the
remaining set of points. This results to an O(h2) discretization error for all points [23, 28].
It also implies a second order truncation error in the L2 norm. Therefore second order
convergence can be achieved using jump information up to second derivatives.

5. THE IMPLEMENTATION OF THE EBI METHOD

In this section we summarize the algorithmic components of the EBI method and we
provide some implementation details.

The input data is the boundary geometry γ, the body force, and the boundary con-
ditions. The boundary is represented as a collection of cubic B-spline curves. Solution
includes the following steps.

1. Define the regular domain Ω. Its boundary Γ (Fig. 4.3) should not be too close to the
boundary of the target domain, since we use (9) to evaluate the velocity; the integrals
are nearly singular as we approach γ.

2. Solve the problem (3) on the rectangular domain Ω. We use standard numerical
methods to solve the discretized system as discussed in Section 6. tests the forcing
term is analytically known everywhere; in the general case it will be known only in
the domain. We have used Shepard cubic extrapolation ([39]) to compute a smooth
extension of the body force.

3. Solve of the boundary integral equation corresponding to (4) using SVD accelera-
tion discussed in Section 5.1. This step requires the trace of a particular solution to
correct the boundary conditions for u2 by setting u2|γ = g − u1|γ . We use cubic
Lagrange interpolation to compute u1 on γ. Provided that the trace is interpolated
consistently to the accuracy of the FEM solution, and provided the potential calcula-
tion is higher-order accurate, the error in the boundary integral equation data (u2|γ
includes the approximation error from u1) does not decrease the overall accuracy of
the method.

4. Compute corrections using the potential. First we compute the intersections of γ
with the regular grid, using a standard Bezier-clipping algorithm. Then, using the
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velocity potential we evaluate the correction terms for the regular grid neighbors of
every intersection point. Furthermore in order to compute the jumps we need to
compute first and second derivatives of the double layer potential. For this purpose
we use cubic spline interpolation for every curve on the boundary.

5. Solve (5) to evaluate the homogeneous solution. For this step we need to set appro-
priate boundary conditions on Γ. We use (9) to evaluate the boundary condition. For
this step we use a dense evaluation of the boundary integral. This approach is not
scalable but the constant is very small. SVD acceleration can be used.

The overall solution is given by the restriction in ω of the sum of the particular and the
homogeneous solutions.

To compute the solution we need two numerical methods: one to solve the boundary
integral equations and the other to solve the linear systems obtained by discretization of
the Stokes equation on Ω.

5.1. Fast BIE solver using SVD

The linear systems resulting from the Nyström discretization of a double layer potential
have bounded condition number. The double layer kernel is weakly singular, and thus com-
pact for domains with C1-boundary. Compact perturbations of the identity have bounded
condition number; for such system the expected number of iterations for a Krylov method
(like GMRES) will be independent of the mesh size. For example, for the unit circle the
condition number is exactly 2, and it is independent of the number of discretization points.
In addition, for the interior problem, there are only two eigenvalues—therefore GMRES
converges in two iterations. For multiply-connected domains the condition number scales
with the number of simply-connected components. In [13] an effective preconditioner is
proposed; our implementation includes this preconditioner. However, as the matrix of the
system is dense, each iteration is expensive and further acceleration is required for large
problems.

The discretized equation(16) can be written in the vector form as:

u = −
1

2
Iµ+ DJWµ+ nnT (JWµ). (26)

u,µ,n are the vectors of boundary velocity, density and normal respectively; D is the
matrix of the double layer kernel; J is the diagonal Jacobian matrix of the curve parame-
terization; and W is the diagonal matrix of quadrature weights. The essential step of the
iterative solver is the multiplication of matrix − 1

2
I + DJW + nnT JW. Since J and W

are all diagonal matrices, the only expensive step is the multiplication with D.
This matrix-vector multiplication operation costs O(N 2) where N is the number of

Nyström points. To accelerate the method we should take advantage of the fact that the
Green’s function rapidly decays with distance, and thus the double and single layer kernels
become nearly degenerate. Several techniques exist to accelerate this matrix-vector multi-
plication, for example the Barnes-Hut algorithm ( to O(N log N) ) and the Fast Multipole
Method (to O(N)).

We use a fast matrix-vector multiplication algorithm, which was first proposed in [20]
and [19] for the single layer formulation of the Laplace equations in triangulated domains.
This method uses singular value decomposition (SVD) to sparsify large low-rank blocks
of the discretized double layer operator. The basic ideas of the Fast Multipole and the
SVD-based method are illustrated in Figure 2.
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FIG. 2 Low rank approximations of discrete interaction. (a) The dense interaction. (b)
Fast Multipole method. (c) SVD based method. Arrows represent linear transformations.

The dense linear map D represents the hydrodynamic forces of n source points to m
target points. If we assume that these two groups are geometrically well separated the D

is expected to be numerically low rank, i.e. the ratio s/s1 < ε for all but r � m singular
values s, where s1 is the largest singular value and ε is a constant determining the accu-
racy of the computations. Fast multipole methods use truncated analytic expansions and
translation operators to sparsify D. Singular value decomposition computes a coordinate
transformation, for which D is diagonal, and eliminates the vectors corresponding to the
small singular values. Compared with Fast Multipole Method, SVD-based compression is
kernel independent and easy to implement. However, its main disadvantage is the higher
algorithmic complexity, O(N log N) instead of O(N). In [19] an orthogonal recursive bi-
section to create the partition into low-rank blocks. Here we give a version of the algorithm
using a hierarchical structure based on curve subdivision. There are two algorithms: the al-
gorithm that sets up the hierarchical matrix representation and the algorithm implementing
matrix-vector multiplication.

The setup algorithm. The input to the algorithm is the collection of boundary curves
and quadrature points, and three parameters: p, α and ε. Parameters p and ε are used
in the computation of the low-rank representation for blocks and α is used to determine
when sets of quadrature points are well-separated. The precise meaning of the parameters
is described below. The output is a hierarchical representation of the matrix. To define
the matrix representation, we partition quadrature points into a geometry-based hierarchy.
First, we partition the boundary curves into several top level segments E0

i , i = 0, · · · , ns−
1, each containing roughly the same number of quadrature points. Second, we subdivide
every E0

i into two segments: E1
2i and E1

2i+1. We repeat this procedure at each level and
we stop when the finest level segment has less than np quadrature points in it. We take L to
be the number of levels with levels numbered 0 . . . L − 1. For each segment at each level,
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Algorithm 1 construction of D

function constructMatrix(top segment list)
matrix trees := ∅
for X ∈ top segment list do

matrix trees := matrix trees ∪ constructSegmentTree(X,top segment list)
end for
return matrix trees

end constructMatrix

function constructSegmentTree(X, segment list)
node.submatrices, node.leftchild, node.rightchild := ∅
node.segment :=X
near list := ∅
for Y ∈ segment list do

if separated(B(X), B(Y ) ) then
node.submatrices := node.submatices ∪ {(Y, SPARSE, constructSparse(X, Y )}

else
near list := near list ∪ Y

end if
end for
if level(X) = L-1 then

for Y ∈ near list do
node.submatrices := node.submatices ∪ {(Y, DENSE, constructDense(X, Y ) )}

end for
else

new list := ∅
for Y ∈ near list do

new list := new list ∪ { left(Y ),right(Y ) }
end for
node.leftchild := constructSegmentTree( left(X), new list)
node.rightchild := constructSegmentTree( right(X), new list)

end if
return node

end constructSegmentTree

we calculate a bounding box of its quadrature points. For a segment X , we use B(X)
to denote its bounding box, I(X) to denote the set of indices of its quadrature points,
c(X) center of B(X), r(X) the radius of B(X), and left(X) and right(X) the left and right
subsegments of X .

D is represented as a collection of blocks organized into a hierarchy; each block cor-
responds to the interaction between two segments. Similarly to FMM methods, we use a
low rank representation if two segments are well-separated; otherwise we compute a dense
block.

Algorithm (1) is the pseudocode for constructing the matrix D. The matrix is repre-
sented as a set of trees, one tree per each top-level segment. Each node of the tree on level l
corresponds to a segment El

j . Each non-leaf node corresponding to a segment X contains
a list of matrices in a low-rank sparce representation described below; each matrix corre-
sponds to a segment on the same level as Y , for which a separation criterion is satisfied. In
addition, a non-leaf node contains pointers to two nodes corresponding to the subsegments

14



of X . The leaf nodes contain only a list of matrices; for segments Y which do not satisfy
the separation criterion a dense matrix is stored.

The main function constructMatrix simply calls constructSegmentTree on each top-
level segment X to compute the interaction between X and all other top-level segments.
Function constructSegmentTree(X,segment list) construct a tree representation of the sub-
matrix of D corresponding to interactions of X with segments from segment list. Func-
tion separated(B1,B2) is used to test whether two bounding boxes B1 and B2 are well-
separated. If the ratio of the distance between centers c(B1) and c(B2) to the sum of their
radii is less than a constant α, they are regarded to be not well-separated and either further
refinement is necessary, or a dense matrix has to be built.

When two segments X and Y are well-separated, constructSparse is called to construct
a low-rank representation of the interaction matrix DX,Y between the sets of quadrature
points of X and Y , i.e. to find a column basis of matrix DX,Y and represent the whole
matrix DX,Y as a linear combination of this basis:

DX,Y ≈ UrVr,

(Figure 2).
Let SX and SY be the set of p sampling points from the sets X and Y respectively.

For the time being, we assume p to be significantly greater than the numerical rank r of
the interaction matrix DX,Y . We explain the estimation of r and p, and the selection of
sampling points along with the numerical experiments.

First we construct DX,SY
and use SVD or modified Gram-Schmidt to get Ur which is

of size n×r, where r is the numerical rank of matrix DX,SY
. The Modified Gram-Schmidt

algorithm is faster, with small loss of compression effectiveness. In our implementation
we use a column pivoted Modified Gram-Schmidt method; the pivoting is used to detect
the maximum 2-norm of the remaining vectors and we stop the process whenever that
maximum is less than the prescribed constant ε.

The matrix Ur is used to compute Vr. First we evaluate DSX ,Y , and then we subsam-
ple Ur by choosing Ũ whose rows are the rows of Ur corresponding to the set of points
SX . We compute Vr from the least square system ŨVr = DSX ,Y .

Complexity analysis. There are three important observations on which the complex-
ity analysis of the construction algorithm are based. First, as we pointed out, the time
complexity of constructSparse(X, Y ) can be bounded by C · n, where n is the number
of points in the larger of X and Y . Second, the complexity of constructDense(X, Y ) is
O(n2). Lastly, except for the segments at the top level, every segment gets an O(1) number
of segments in the segment list from its parent segment, and passes also an O(1) number
of segments in the new list to its children, under the assumption that the boundary curve
is smooth and the distribution of quadrature points is uniform. Consider a segment X ,
the segments in the near list of X have centers in a circle centered at c(X) with radius
(2α + 1)r(X). There are about 2α + 1 segments in this near list due to the assumption
about uniformity. Therefore, the new list contains about 4α + 2 segments because each
segment in the new list is a child of some segment in near list . However, among them,
there would be roughly only half, about 2α + 1, of them falling in the the circle centered
at c(left(X)) with radius (2α + 1)r(left(X)) because r(left (X)) is half the size of r(X),
and same for left(X). We use g to bound this 2α + 1 number.

At the coarsest level, each segment computes its interaction with the remaining max(ns−
g, 0) top level segments using the SVD method. The work can be bounded by ns · ns ·
(Cnp2

L−1). For any other level i, we have O(2ins) segments, each of which computes
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Algorithm 2 Matvec of D

function matVec(matrix trees, x)
b := 0
for tree ∈ matrix trees do

b :=matVecSegment(tree, x, b)
end for
return b

end matVec

function matVecSegment(node, x, bold )
b :=bold
for (type, matrix, src) ∈ node.submatrices do

if type = DENSE then
b(I(node.segment)) := b(I(node.segment)) + matVecDense(mat, x(I(src)))

else
b(I(node.segment)) := b(I(node.segment)) + matVecSparse(mat, x(I(src)))

end if
end for
b :=matVecSegment(leftchild, x, b)
b :=matVecSegment(rightchild, x, b)
return b

end matVecSegment

the interaction with g other segments at the same level. This work is proportional to
2ins · g · (Cnp2

L−1−i). For the finest level each segment also must compute the dense
interaction between itself and its neighbors, at most g of them. This costs 2L−1ns · g · n2

p.
The total cost can be bounded by

ns · ns · (Cnp2
L−1) +

∑L−1

i=1
2ins · g · (Cnp2

L−1−i) + 2L−1ns · g · n2
p

≤ Cns · nsnp2
L−1 + Cg · L · nsnp2

L−1 + gnp · nsnp2
L−1

= (Cns + Cg · L + gnp) · nsnp2
L−1

Cns, Cg and gnp are all constants. nsnp2
L−1 is the total number of quadrature points

N . L is the depth of the hierarchical structure, so it is O(log N). Therefore the total
complexity (Cns + Cg · L + gnp) · nsnp2

L−1 is bounded by O(N log N).

Matrix-vector multiplication. Algorithm (2) is the pseudo code for matrix-vector mul-
tiplication using the SVD-based representation of D. Function matVecDense simply mul-
tiplies the densely stored matrix with a vector. On the other hand, matVecSparse of two
segment X and Y uses the sparse representation: DX,Y = UrVr. Since Ur and Vr are
both of size n × r, assuming n is the size of X and Y , multiplication with Vr and Ur

is much cheaper than multiplication with DX,Y . Figure 3 shows the sparse structure of a
simply-connected boundary.

Numerical Experiments. All experiments in this section were performed on a SUN
Ultra80, 450MHz workstation (single processor). We use three parameters in the matrix
construction algorithm: α for separation detection, ε for modified Gram-Schmidt algorithm
and p for sampling matrix columns and rows. The value of α is usually chosen to be 1.5
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FIG. 4 Test domains. Solid curves represent the boundary of the domain. The dots in the
domains are the points used for error estimation.

to 2. Numerical experiments indicate that increasing the value α reduces unacceptably the
accuracy without significant savings in speed.

The tolerance ε is the most important parameter; it determines the speed and accuracy
of the SVD-approximation and in some sense corresponds to the truncation of the analytic
expansions in the Fast Multipole Method.

The estimation of r and p can be obtained by the following incremental procedure. For
two segments X and Y , we first choose a small number for p, and use these p sampling
points to construct the SVD representation of DX,Y . If the numerical rank r of DX,Y

is close to p, which means that the number of sampling points p is not enough, then we
double p and compute the SVD representation of DX,Y again until r is much smaller than
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TABLE 1
Comparison between the dense matrix matrix-vector multiplication and the SVD-based

matrix-vector multiplication for two different flow fields and geometries. Setup time
includes the construction of the matrix and the preconditioner. Solve time is the time used

by GMRES solver. We see that as the problem scales, the dense approach grows up
quadratically, while SVD based approaches scales almost linearly.

domain,
solution

N matrix setup solve |u|err perr

Fig.4(a) 736 dense 1.79 4.89 2.34×10−06 2.67×10−7

svd 2.11 4.56 7.28×10−06 3.18×10−6

cubicflow 1472 dense 6.37 17.0 8.82×10−08 2.30×10−8

svd 5.25 7.98 8.12×10−06 4.63×10−6

2944 dense 23.9 58.9 1.04×10−08 2.65×10−9

svd 12.2 15.8 5.65×10−07 2.91×10−7

5888 dense 100 224 1.30×10−09 3.10×10−10

svd 22.7 30.9 5.39×10−07 2.31×10−7

Fig.4(b) 384 dense 0.44 0.52 1.80×10−06 1.07×10−6

svd 0.74 0.37 5.08×10−06 3.31×10−6

Stokeslet 768 dense 1.53 2.75 2.47×10−07 1.40×10−7

svd 1.35 1.14 1.95×10−06 2.89×10−6

1536 dense 6.18 10.1 3.44×10−08 1.80×10−8

svd 3.01 2.50 1.07×10−06 9.46×10−7

3072 dense 29.1 39.3 4.63×10−09 2.29×10−9

svd 5.91 5.40 9.85×10−07 4.84×10−7

p. In practice, we stop when r is less than p/3, which ensures that the algorithm can find a
good basis U of matrix DX,Y with very high probability. The position of these p sampling
points are chosen to be evenly spaced on the boundary..

In Table 1 we report wall-clock time and accuracy comparisons between the dense and
the SVD-sparsified double layer operators. We solve two different problems, a cubic flow,
and a flow that corresponds to a Stokeslet. We use pointwise error on a fixed number of
points to evaluate the accuracy. We first solve the integral equation for the hydrodynamic
potential and then we evaluate the velocities and pressures with (9).

The sparsification is divided to setup a phase and an iterative solution phase. As ex-
pected, the setup time for the dense matrix scales with the square of the number of un-
knowns. The fast methods scales almost linearly since the log(N) is quite small. In this
example we have used a fixed tolerance ε = 10−4—that is why there is no improvement in
the error for the larger problem. Table 2 compares running time and accuracy for different
choices of ε, for the geometry depicted in Fig. 4(b) with a Stokeslet flow. As expected the
accuracy improves without significant increase in running time.

Perhaps a more representative example for the scalability of the method is depicted in
Table 3. The geometry is that of Fig. 4(c) for a Stokeslet flow. We solve for two different
values of ε and for a eight-fold increase in the problem size. It is apparent that about
10,000 quadrature points are enough to get single precision accuracy. The running times
are increase almost linearly with the problem size.
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FIG. 5 Plots of the data from Table 1
with linear fit for SVD-based solver and quadratic fit for the dense solver.

TABLE 2
Running times and pointwise errors for the SVD-based sparsification. We report results

for the geometry depicted in Figure 4(b) for a Stokeslet flow. We vary the numerical rank
tolerance ε and we hold the number of quadrature points fixed (768); here max rank

indicates the maximum numerical rank for a SVD-approximated block.
ε setup(s) solve(s) |u|err perr max rank

10−02 3.48 7.13 3.95×10−4 1.84×10−4 8
10−03 4.18 8.09 3.67×10−5 1.43×10−5 10
10−04 5.49 7.95 6.68×10−6 4.63×10−6 12
10−05 6.00 8.59 8.31×10−7 5.82×10−7 14
10−06 6.99 9.71 1.77×10−7 9.49×10−8 16
10−07 7.93 10.8 1.17×10−7 4.65×10−8 18

5.2. Regular grid solver

There exist several methods for the efficient solution of linear systems representing dis-
cretizations of elliptic PDEs. Examples are FFTs, multigrid and two-level domain decom-
position algorithms which are asymptotically optimal. However for medium size problems
it turns out the domain decomposition methods are faster. We have developed our code
on top of the PETSc library [3, 4]. PETSc includes several methods for regular grids such
as domain-decomposition preconditioners and multigrid. In Table 5.2 we report timings
for four different preconditioners: block-Jacobi, single-grid additive Schwarz, two-grid
additive Schwarz, and a V-cycle multigrid. We report isogranular scalability results for
problems up to 10 million unknowns on 16 processors3. Our intention is not a detailed

3Let us note here that only the regular grid solver is parallelized in our implementation. The parallelization of
the boundary integral solver is in progress.
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TABLE 3
Running times and pointwise errors for the SVD-based sparsification. We report results

for the geometry depicted in Figure 4(c) (64 circles) for a Stokeslet flow; for two different
values of the numerical rank tolerance ε and for an eight-fold increase in problem size.

Observe the almost linear scaling in setup and solve running times with the problem size.
For this example about 10,000 Nyström points give single precision machine accuracy.

ε L/N setup(s) solve(s) |u|err perr max rank
10−04 4/4,544 49.6 111 9.02×10−6 1.63×10−5 14

5/9,088 118 226 1.52×10−6 1.59×10−6 14
6/18,176 217 435 1.35×10−6 1.02×10−6 14
7/36,352 487 904 1.07×10−6 9.24×10−7 14

10−06 4/4,544 67.2 137 4.64×10−7 1.11×10−6 19
5/9,088 164 287 1.85×10−7 2.60×10−7 19
6/18,176 294 559 1.09×10−7 1.23×10−7 19
7/36,352 682 1,172 1.23×10−7 1.57×10−7 19

comparison between the different solution techniques, but to give an numerical evidence
of the scalability of the different preconditioners for the Q1 − Q1 discretization.

TABLE 4
In this table we compare iteration count and wall-clock time for 4 different linear solvers

for the discretized Stokes problem. All use the same Krylov solver (Conjugate Residuals).
What differs is the preconditioner. Here grid is the number of grid points (3 degrees of

freedom per grid point); p is the number of processors; BJ denotes a block-Jacobi
domain-decomposition with ILU(1) preconditioning in each subdomain; ASM is an
additive Schwarz preconditioner with fixed overlap; 2L-ASM is a two level additive

Schwarz preconditioner in which the fine grid uses the ASM method described above and
the coarse grid is solved redundantly on every processor using a sparse LU factorization.

The coarse grid is 10 times smaller; MG is a 5-level single V-cycle multigrid
preconditioner with sparse LUs for the coarsest level and the BJ preconditioner for the
rest. For each different preconditioner we report wall-clock time in seconds (sec) and

iteration counts (it) for a relative residual reduction of 1×10−7 . The largest problem has
10 million unknowns and it took 15 seconds to solve. The preconditioners are parts of the
PETSc library. The runs were performed on a 900 MHz Compaq server at the Pittsburgh

Supercomputing Center.

grid p BJ ASM 2L-ASM MG
it sec it sec it sec it sec

1282 2 296 78 161 45 26 3 34 11
2562 4 602 350 330 220 21 6 47 36
5122 8 1,240 1,450 692 950 18 11 56 98
10242 16 2,578 6,100 1,391 3,910 19 24 57 260

As expected the single-grid preconditioners perform quite poorly compared to mul-
tilevel methods. For the latter we can observe mesh size-independence on the number
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of Krylov steps. Notice that we quadruple the problem size and we double the number
of processors. Thus, for an optimal algorithm, wall-clock time should double with the
problem size. Indeed, this is the case for the 2L-ASM preconditioner which outperforms
the other methods. Multigrid is optimal in the number of iterations, but (for the specific
implementation) it is significantly slower, probably due to interprocessor communication
overhead. We have not attempted to fine-tune the multigrid preconditioner and thus we do
not advocate one method over the other. We have chosen the two-level method because
is somewhat simpler to combine with the boundary integral solver. For details on the the
theory of two-level preconditioners for indefinite elliptic systems see [22].

6. NUMERICAL EXPERIMENTS

In this section we test EBI on problems with exact analytic solutions. We assess the
pointwise accuracy of the solver and we investigate the effects of the accuracy of the bound-
ary integral solver on the overall accuracy of the method.

FIG. 6 Domains used in numerical examples

We present results for four different problems. The solutions are restricted to the target
domains (Figure 6), which are embedded in the unit square. We have chosen the following
analytic solutions: a Poiseuille flow

u = {y(1 − y), 0} , p = −2x,

a “cubic flow”
u =

{

y3, x3
}

, p = 6xy,

a “body force flow”

u = 2
{

−x2y, y2x
}

, p = sin(xy), b = 4ν {y(1 + cos(xy),−x(1 + cos(xy)} .

We also use a Stokeslet (7) centered at (0.5, 0.7) and oriented along e = {1, 1}. The
corresponding pressure is given by

p =
1

2π

r

ρ2
· e.

All experiments in this section were performed on a SUN Ultra80, 450MHz workstation
(single processor).

In the first example we use the cubic flow solution for the interior problem in a circle of
radius 0.3. Convergence results are presented in Table 5. We report and compare conver-
gence rates for first-order accurate (dense-1) and second-order accurate TESCs (dense-2);
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for the latter we also report results for the SVD acceleration (svd). The integral equation
has been discretized by 320 quadrature points. Increasing this number did not affect the
accuracy significantly. For the first order TESCs the convergence rate for the velocity is
superlinear and hence suboptimal; with second order TESCs both dense and sparse com-
putations result in optimal convergence rates for the velocities and pressures.

TABLE 5
Convergence results for the cubic flow inside a circle. In (dense-1) TESCs were first order

accurate; in (dense-2) TESCs include second order derivatives. In (svd) we use second
order TESCs combined with the svd acceleration. The rank tolerance ε is 10−7; (u) and

(p) denote error in the infinity norm for the velocities and pressures.

dense-1 dense-2 svd
grid u p u p u p
322 2.43×10−3 1.19×10−1 8.35×10−4 2.31×10−2 8.84×10−4 2.43×10−2

642 8.06×10−4 1.07×10−1 1.81×10−4 1.33×10−2 1.90×10−4 1.37×10−2

1282 3.06×10−4 8.44×10−2 4.95×10−5 1.83×10−3 5.23×10−5 2.16×10−3

2562 1.20×10−4 4.21×10−2 1.12×10−5 4.79×10−4 1.20×10−5 7.54×10−4

In the second example we repeat the same test, but for the geometry depicted in Figure
6(b) and for two different analytic solutions, the Poiseuille and the body-force flow. In this
example the number of quadrature points for the integral equation varies. For dense-1 (first-
order) we used 768 points for the 322 grid, 1546 for the other two grids, and 3,072 points
for the 2562 grid. For the dense-2 (second-order) we used 768 points for all background
grid sizes. In svd we used 1536 points. The increased number of quadrature points did not
improve the convergence rate for the first-order TESCs. Optimal pointwise convergence
rates are observed for the velocities and pressures for both the dense and SVD versions.
The exact solution along with the error distribution for three different grids are shown in
Figure 7 (for the Poiseuille flow).

In our previous examples the approximation tolerance for the SVDs was kept constant
to 10−7. For the following test we have chosen an example for which both the geometry
and the solution vary rapidly close to a specific location. We look at the 2D-heart-shaped
domain, Figure 6(b), for which the exact solution is given by the stokeslet solution from a
pole located at (0.5,0.7). This location is very close to the rapidly changing geometry at
the top of the 2D-heart. As a result we expect that a large number of quadrature points is
required to obtain sufficient accuracy. Table 7 summarizes the results for this experiment
and Figure 8 depicts the exact solution and the error distribution. The number of necessary
quadrature points to obtain optimal pointwise convergence in the background grid was de-
termined experimentally based on dense solves; nearly 800 points are enough to resolve the
problem; in this test we took 1,664 quadrature points; we found that this extra discretiza-
tion does not help as we can see by comparing the columns of Table 7. We use dense-1 as
the reference calculation. In svd-1 the truncation tolerance for the modified Gram-Schmidt
is 10−3; it results in suboptimal convergence rates. By using a tighter tolerance, 10−5,
we recover optimal rates. In Figure 8 we show the exact solution and the pointwise error
distribution.

In the next example we look at an interior flow (body force flow) around 81 circles.
For the 642 grid we use 9,088 Nyström points and for the two finer grids we use 18,176
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TABLE 6
Convergence results for two flows in the domain Figure 6(a). Here (dense-1), (dense-2),

(svd) and (u), (p) are as in Table 5.

dense-1 dense-2 svd
grid u p u p u p

Poiseuille
322 8.84×10−3 1.01×10−1 4.30×10−4 3.70×10−2 4.83×10−4 3.79×10−2

642 2.71×10−4 9.33×10−2 1.31×10−4 9.84×10−3 1.43×10−4 1.09×10−2

1282 1.39×10−4 4.07×10−2 2.76×10−5 3.67×10−3 2.98×10−5 2.86×10−3

2562 2.93×10−5 1.57×10−2 7.45×10−6 2.22×10−3 7.51×10−6 8.14×10−4

Body force
322 3.47×10−2 8.99×10−1 2.25×10−2 6.31×10−2 1.36×10−3 7.28×10−2

642 2.33×10−3 2.68×10−1 5.62×10−4 5.03×10−2 6.67×10−4 4.19×10−2

1282 6.23×10−4 1.45×10−1 1.46×10−4 3.87×10−2 1.47×10−4 2.67×10−2

2562 2.43×10−4 1.15×10−1 3.58×10−5 1.06×10−2 4.31×10−5 1.14×10−2

TABLE 7
Convergence results for a stokeslet flow generated by a pole just outside the domain. Here

the jumps are second-order accurate. All problems use 1,664 quadrature points.In
(dense-1) we evaluated a dense double layer matrix. In (svd-1) and (svd-2) we sparsify

using variable rank tolerance; 10−3 for the former and 10−5 for the latter.

dense-1 svd-1 svd-2
grid u p u p u p
322 7.01×10−3 3.36×10−1 7.05×10−3 2.97×10−1 7.05×10−3 2.46×10−1

642 1.01×10−3 1.55×10−1 1.08×10−3 2.27×10−1 9.96×10−4 1.57×10−1

1282 2.10×10−4 9.70×10−3 4.12×10−4 1.21×10−1 2.13×10−4 1.48×10−2

2562 4.61×10−5 4.16×10−3 9.55×10−5 4.69×10−2 4.80×10−5 1.04×10−2

points. We vary the accuracy of the SVD approximations by truncating at 10−3 (svd-1),
10−5 (svd-2), and 10−7 (svd-3). Table 8 summarizes the convergence study. Optimal rates
are obtained for the most accurate representation of the double layer. Figure 9 depicts the
exact solution and the error distribution. For the last example we do not have an analytic
solution, and we just solution in figure 10. The boundary conditions are {1, 0} on the
enclosing curve, and zero on the internal domains.

7. CONCLUSIONS AND EXTENSIONS

We have presented a second-order accurate solver for the Stokes operator defined on
arbitrary geometry domains. We use a hybrid boundary integral, finite element formu-
lation to circumvent the need for mesh generation. We employ an efficient double layer
formulation for the integral equations. The method requires two regular grid solves and
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FIG. 7 Exact solution (color maps) and error distribution (top to bottom), for 642,1282,
and 2562; the error plot for the 2562 grid is omitted. The solution is a Poiseuille flow.
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FIG. 8 Exact solution and error distribution (top to bottom), for 642,1282, and 2562; the
error plot for the 2562 grid is omitted. The solution is the Stokeslet located at (0.5,0.7).
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FIG. 9 Exact solution and error distribution (top to bottom), for 642,1282, and 2562; the
error plot for the 2562 grid is omitted. The exact solution is a the body force flow.
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FIG. 10 Solution for a problem with Dirichlet conditions corresponding to a unit wind
flow, presented for two different geometries. The two bottom pictures depict the resulting
streamlines.
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TABLE 8
Convergence rates and pointwise accuracy for the 81-circle geometry and for the

“body-force” flow. Here (svd-1) is computed with ε = 10−3, (svd-2) with ε = 10−5, and
(svd-3) with ε = 10−7. Optimal convergence rates can be verified for svd-3.

svd-1 svd-2 svd-3
grid u p u p u p
642 5.89×10−2 7.72×10−0 5.65×10−3 4.76×10−1 5.79×10−3 4.89×10−1

1282 2.65×10−2 5.53×10−0 2.38×10−4 5.54×10−2 1.68×10−4 1.57×10−2

2562 6.61×10−3 2.99×10−0 7.75×10−5 2.33×10−2 3.45×10−5 6.95×10−3

one integral solve.
We looked in detail the problem for which the boundary conditions for the velocities

given. The method extends to Neumann and mixed boundary value problems. The latter
case however, the integral equations require preconditioning.

We also presented scalability and convergence studies for both the regular and bound-
ary solvers. We have implemented an easy way to to accelerate the matrix-vector multipli-
cations required in the solution of the integral equation.

One restriction of the method as we presented it, is the stringent requirements on the
regularity of the boundary geometry. However this can be circumvented by replacing the
jump computation by direct evaluation. For example the jump terms can be computed to
machine accuracy by plugging in the exact solution in the stencils that cross the boundary.
The exact solution can be obtain by direct evaluation of the velocity. This will require
adaptive quadratures—but only for the points close to a corner.

Currently only the background grid computations are parallelized, but we work on
parallelizing the boundary integral solver as well.

Acknowledgments. We thank L. Greengard for valuable discussions leading to the
formulation of the approach.

APPENDIX A: COMPUTATION OF JUMPS FOR THE STOKES OPERATOR

Here we show how the jumps on the velocities and pressures can be computed. We
use [[·]] to denote the jump of a function across the interface (exterior − interior). We
use D to denote Gateaux differentiation. We also assume that the curve parameterization
t 7→ y(t) is smooth enough (at least in C2). We write ẏ and ÿ to denote the first and
second derivative with respect t. In order to derive the jumps for the pressure we first
define a potential q corresponding to a solution of the Laplace operator:

q(x) =

∫

γ

r · n(y)

ρ2
φ(y) dγ(y), x ∈ ω

Then q(x) satisfies −∆q = 0, in R
2/γ with appropriate Dirichlet boundary conditions.

From potential theory we know that the extension of q outside ω is discontinuous. More
precisely the following relations hold true:

[[q]] = φ, (27)
[[Dq · n]] = 0. (28)
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The first equation gives the zeroth order jump. To compute the first order jumps we differ-
entiate the first equation (with respect to t) and by the chain rule we obtain

[[Dq]] · ẏ = φ̇ (29)

for the tangential derivative. Equations (28) and (29) define a system with two equations
and two unknowns, [[∂xq]], [[∂yq]]. Second order derivatives can be computed by taking
tangential derivatives, and the jumps in the Laplacian. Thus we obtain

[[∆q]] = 0, (30)

[[D2q]]ẏ · ẏ + [[Dq]] · ÿ = φ̈, (31)

[[D2q]]ẏ · n+ [[Dq]] · ṅ = 0. (32)

Now we have three equations with three unknowns: [[∂xxq]], [[∂yyq]], [[∂xyq]].
The pressure jumps can be derived from the above relations. Since the discretization is

only first order accurate for the pressure, we only need zero and first order jumps. For the
double layer potential we have

p(x) = K[µ](x) =
1

2π

∫

γ

∇x
r · n(y)

ρ2
· (−2νµ(y)) dγ(y).

Let qi be given by

qi =
1

2π

∫

γ

r · n

ρ2
φi dγ, i = 1, 2,

with
φi = −2νµi.

Then
p =

∑

i=1,2

∂iqi,

and hence
[[p]] =

∑

i=1,2

[[∂iqi]];

that is the zeroth- and first-order jumps in the pressure correspond the sum of the first- and
second-order jumps of qi.

For the double layer formulation of the velocity we use similar relations with (27) and
(28). These relations can be derived by taking appropriate limits across the interface [35].
In fact, if the velocity is given by

u(x) =
1

π

∫

γ

r ⊗ r

ρ2

r · n(y)

ρ2
w(y) dγ(y),

then the following interface conditions hold for the jumps across the interface:

[[u]] = µ, (33)

[[Sn]] = [[−pI + ν(Du+ DuT )n]] = 0. (34)

In order to construct TESCs for the momentum and incompressibility equations we need
to compute [[Du]] and [[D2u]]. (We already have [[p]] and [[Dp]]). If we differentiate (33)
(with respect the curve parameterization t), we obtain:

[[Du]]ẏ = µ̇. (35)

29



Equations (35) and (34) give four equations with four unknowns [[Du]]. If we differ-
entiate once more and use the momentum equation balance we obtain (u = {ux, uy},
n = {nx, ny})

ν[[∆u]] = −[[Dp]],
{

[[D2ux]]ẏ · ẏ
[[D2uy]]ẏ · ẏ

}

= µ̈− [[Du]]ÿ,

{

[[D2ux]]ẏ · n
[[D2uy]]ẏ · n

}

+ [[D2ux]]ẏnx + [[D2uy]]ẏny = [[Dp]] · ẏ − [[ν(Du+ DuT )]]ṅ.

This system has six equations with six unknowns.

APPENDIX B: STENCILS FOR THE FEM DISCRETIZATION OF STOKES
EQUATIONS ON A REGULAR GRID

As discussed in Section 4.2 the finite element discretization on a regular grid is equiv-
alent to a finite difference discretization for a certain choice of stencils.

The stencils are shown explicitly in Figure 11.

FIG. 11 Essentially different stencils of the Q1-Q1 finite element discretization. All other
stencils are obtained by reflections of these stencils about vertical, horizontal and diagonal
directions.
The coefficients stencils in the upper row are computed as

∫

Ω
∇φi∇φj dΩ for a fixed grid

point i and varying j, where φi is the Q1-Q1 node functions centered at i. The stencils
in the lower row result from computing

∫

Ω
∇φiφj dΩ. The omitted scaling factor for the

stencils in the upper row is 1/6h2, and for the lower row 1/12h.

Interior stencils a and d are second-order accurate. Stencils b and c are used only in
discretization of the stabilization term which has an extra scaling factor h2 in front of it.
Although these stencils do not approximate Laplacian, because of the scaling factor the
terms in the equation corresponding to these stencils vanish as O(h). Edge and corner
stencils for first derivatives e,f,g are only first-order accurate; however these stencils are
used only at the boundary in equations for pressure, hence do not affect the L2 norm of the
truncation error.
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