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Undulatory Swimming in Viscoelastic Fluids
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The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are
experimentally investigated by tracking the nematode’s motion and measuring the corresponding velocity
fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid
elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses
grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the
stretching of flexible molecules near hyperbolic points in the flow.
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Many microorganisms have evolved within complex
fluids, including soil, intestinal fluid, and human mucus
[1-5]. The material properties or rheology of such fluids
can strongly affect an organism’s swimming behavior. For
example, in the case of freely swimming spermatozoa, the
flagellum shows a regular sinusoidal beating pattern. Once
the organism encounters a viscoelastic medium, this regu-
lar beating pattern is replaced by high-amplitude, asym-
metric bending of the flagellum. The motility behavior of
the sperm cell is affected by its fluidic environment [6,7],
which in turn can affect human fertility [1]. A major
challenge is to understand the mechanism of propulsion
in media that displays both solid- and fluidlike behavior,
such as viscoelastic fluids.

Our current understanding of swimming at low
Reynolds (Re) numbers is derived mainly from investiga-
tions in Newtonian fluids [8-12]. Here Re = pUL/pu,
where p and w are the fluid density and viscosity, and U
and L are the organism’s speed and characteristic length
scale. At low Re, locomotion results from nonreciprocal
deformations in order to break time-reversal symmetry;
this is the ‘“‘scallop theorem™ [13]. It has been recently
shown [2,3] that the scallop theorem may break down for
viscoelastic fluids due to the fluid’s history-dependent
stresses that grow nonlinearly with strain rate. These elas-
tic stresses can dramatically change the flow behavior even
at low Re [14].

The effects of fluid elasticity on swimming at low Re
have been considered in theory and numerical simulation.
For an infinite waving sheet immersed in a second-order
fluid [15], it was shown that elasticity augments propulsion
speed. Recently, it was shown that for the case of an infinite
undulating sheet [3] and cylinder [2], viscoelasticity
decreases swimming speed compared to Stokesian
Newtonian cases. By contrast, a two-dimensional numeri-
cal simulation for a finite undulating sheet using the
Oldroyd-B model [16] showed that fluid elasticity could
in fact augment swimming speed when the beating fre-
quency f is equal to the inverse of the fluid relaxation time
A; that is, the Deborah number De = fA = 1. Despite
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these recent efforts, there is a dearth of experimental
investigations of swimming in viscoelastic fluids, and the
effects of fluid elasticity on swimming are still not clear.

In this Letter, the effects of fluid elasticity on an undu-
latory swimmer are experimentally investigated at low Re
by tracking the swimmer and tracer particles in the flow
(Fig. 1). The organism is the nematode Caenorhabditis
elegans, a roundworm widely used for biological research
[17] that swims by generating traveling waves [12,18].
Overall, we find that fluid elasticity hinders propulsion
compared Newtonian fluids (Fig. 2) due to the enhanced
resistance to flow near hyperbolic points for viscoelastic
fluids.
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FIG. 1 (color online). (a) Sample snapshot of the nematode C.
elegans swimming in buffer solution (u = 1.0 mPa - s). Lines
represent nematode’s “‘skeleton” and its centroid path.
(b) Corresponding contour plots of the nematode’s bending
curvature k(s, f) over 3 swimming cycles. (c) Streamlines com-
puted from instantaneous velocity fields of Newtonian (Re <
1073) and (d) polymeric (Re < 1073; De = 3.0) fluids. Arrows
in (c),(d) indicate flow direction and the box in (d) shows a
hyperbolic point in the flow.
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FIG. 2 (color online). (a) Swimming speed, (b) bending wave
speed, and (c) kinematic efficiency of C. elegans in Newtonian
(red circle) and viscoelastic (blue square) fluids as a function of
fluid viscosity. Triangle symbol represents the nonelastic xan-
than gum solution. The data show that fluid elasticity decreases
the nematode’s swimming speed and efficiency when compared
to a Newtonian fluid of same viscosity. For u > 30 mPa - s, the
nematode’s swimming speed decreases indicating a limit in
power for this type of organism.

Experiments are performed in fluid-filled channels that
are 15 mm wide and 600 pwm deep. The swimming motion
of C. elegans is imaged using bright-field microscopy and a
CMOS camera at 125 frames per second. The nematode is
approximately 1 mm long and 80 um in diameter. The
objective focal plane is set on the longitudinal axis of the
nematode body. All data presented here pertain to nemat-
odes swimming at the center plane of the fluidic channel.
Out-of-plane recordings are discarded. An average of 15
nematodes is recorded for each experiment. More detailed
information on experimental methods can be found in
[19,20]. Figure 1(a) shows a sample snapshot of a
nematode swimming in a waterlike solution at Re = 0.2
as well as the nematode’s shape line or “skeleton” and
its centroid path. Here, swimming speed U is calculated
by differentiating the nematode centroid position over
time.

Newtonian fluids of different shear viscosities w are
prepared by mixing two low molecular weight oils
(Halocarbon oil, Sigma-Aldrich). Viscoelastic fluids are
prepared by adding small amounts of carboxymethyl cel-
lulose (CMC, 7 X 10° MW) into water [19]. CMC is a
long, flexible polymer with an overlap concentration of
approximately 10* ppm. The polymer concentration in
solution ranges from 1000 to 6000 ppm resulting in fluid
relaxation times A that range from 0.4 to 5.6 s, respectively.

These solutions are dilute and do not show significant
shear-thinning viscosity [19], particularly in the range of
typical swimming shear rates of 1 to 20 s~!. Nevertheless,
in order to rule out the effects of shear-rate dependent
viscosity, an aqueous solution of the stiff polymer xanthan
gum (XG) that is shear thinning but possesses negligible
elasticity is also used in experiments.

An important quantity that is used to characterize the
swimming behavior of undulatory swimmers, such as C.
elegans, is the bending curvature defined as «(s, 1) =
d¢/ds. Here, ¢ is the angle made by the tangent to the
x axis in the laboratory frame at each point along the body
centerline, and s is the arc length coordinate spanning
the head of the nematode (s = 0) to its tail (s = L).
Figure 1(b) shows the spatiotemporal evolution of the
nematode’s body curvature (s, ) for 37, or 3 swimming
cycles. The contour plots show the existence of periodic,
well-defined diagonally oriented lines characteristic of
bending waves, which propagate in time along the nem-
atode body length. From such contour plots, we can extract
kinematic quantities such as the nematode’s swimming
frequency f and wavelength A,, as well as the wave speed
¢ = A, f. For the nematode shown in Fig. 1(b), f = 2 Hz,
A, = 2.5 mm, and ¢ = 5 mm/s.

The flow fields produced by the swimming nematode
are investigated using particle tracking velocimetry [20].
Examples of streamlines computed from instantaneous
velocity fields are shown in Figs. 1(c) and 1(d) for the
Newtonian and viscoelastic cases, respectively. Here,
Re < 1073 for both fluids, and De = 3.0 for the viscoelas-
tic fluid. Overall, the streamlines display large recircula-
tion flow structures, or vortices, that are attached to the
nematode’s body. Such patterns are similar to the flow
visualizations of Gray and Lissmann [21] who associated
such recirculation zones with regions of maximum trans-
verse (nematode) body displacement. The streamlines for
the Newtonian and viscoelastic cases are qualitatively
different, with the appearance of a distinct hyperbolic point
near the nematode for the latter case.

We now address the question of whether fluid elasticity
hampers or enhances swimming speed. The nematode’s
swimming speed as a function of fluid viscosity for both
Newtonian and polymeric fluids is shown in Fig. 2(a). For
relatively low viscosity values, the swimming speed is
independent of fluid viscosity, and the values of U are
nearly identical for both cases. For u > 30 mPa - s, the
swimming speed decreases with increasing u even for
Newtonian fluids. The decrease in U with increasing u at
low Re is most likely due to the nematode’s finite power.
We note that, for a nematode swimming with constant
power at low Re, P ~ Fy,, U ~ uU? where P is power
and Fy,, is the drag force the fluid is exerting on the
nematode. Results show that, over the limited range of
U, the C. elegans’ propulsion speed shows a decay that is
slower than x~'/2, which strongly suggests that the nem-
atode does not swim with constant power. The maximum
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power generated by the organism is approximately 200 pW
(u = 30 mPa - s) [20].

Nevertheless, we find that the values of U for viscoelas-
tic fluids can be 35% lower than the Newtonian fluid of
same shear viscosity. For example, the nematode’s swim-
ming speeds for the viscoelastic and Newtonian cases are
0.18 mm/s and 0.25 mm/s, respectively, even though
the viscosity for both fluids is 300 mPa - s [Fig. 2(a)].
The decrease in swimming speed in CMC (polymeric)
solutions is not due to shear-thinning effects since nema-
tode swimming in the nonelastic, shear-thinning fluid (XG)
showed no apparent decrease in propulsion speed
[Fig. 2(a), triangle symbol] compared to the Newtonian
case.

The nematode’s swimming behavior is further investi-
gated by measuring the bending curvature « along the
nematode’s body centerline [12,18]. In Fig. 2(b), we
show the bending wave speed ¢ as a function of viscosity.
Results show that viscoelasticity has negligible effect on
the nematode’s swimming kinematics. That is, the changes
in kinematics including the decrease in beating frequency
and wave speed are due to viscous effects only. In addition,
there is no evidence of change in motility gait (e.g., swim-
ming to crawling) as w increases since the beating ampli-
tudes remain constant (A = 0.26 mm) even for the most
viscous fluid (u = 400 mPa - s).

Figure 2(c) shows the nematode’s swimming efficiency
as a function of fluid viscosity for both the Newtonian and
polymeric fluids. Here, swimming efficiency is defined as
the ratio of the swimming speed U to the bending wave
speed ¢ [21]. For the Newtonian case, the swimming
efficiency increases with u until a finite asymptotic value
is eventually approached. For CMC (polymeric) fluids, the
efficiency initially follows the trend of Newtonian fluids
because the fluid elastic stresses are very small (De = 0).
At p = 30 mPa -s, we observe a new branch in which
efficiency decreases with fluid viscosity. This viscoelastic
branch is observed at De = 1, where the undulation fre-
quency of the swimmer might couple to the fluid relaxation
time. Overall, the kinematic swimming data show that fluid
elasticity hinders both the organism’s swimming speed and
swimming efficiency at low Re.

The effects of fluid elasticity on the nematode’s swim-
ming behavior are best illustrated by plotting the normal-
ized swimming speed U/Uy as a function of the Deborah
number (De = fA), where Uy is the Newtonian speed.
Figure 3 shows that the normalized swimming speed de-
creases monotonically with De, and reaches an asymptotic
value of = 0.4 as De is further increased. In other words, as
the elastic stresses increase in magnitude in the fluid, it
introduces a larger resistance to propulsion, therefore
decreasing the nematode’s swimming speed. A similar
trend is observed in gels using a “‘two-fluid” model [22].

Next, the experimental results on swimming speed are
compared to recent theoretical predictions [3,23]. We note
that for all the experiments presented here, the ratio of
the solvent viscosity to the total solution viscosity
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FIG. 3 (color online). Swimming speed normalized by
Newtonian speed (Uy) as a function of Deborah number. The
data (squares) show that propulsion speed decreases as elasticity
in the fluid increases. The solid line shows the general trend from
[3,23] where 6 = 0.05 (see text). The dashed line corresponds to
predictions of [3,23] using kinematic data from this work. The
dotted line corresponds to numerical simulations of [16].

8 = Weopv/ Msop 18 below 0.05, where g, = 1.0 mPa - s
is the solvent (buffer) viscosity and u, is the solution
viscosity. For the case of an infinitely long, two-
dimensional waving sheet [3] and cylinder [23] with pre-
scribed beating pattern, it is predicted that the swimming
speed decreases with increasing De. While the experimen-
tal data support the predicted trend, there are still quanti-
tative discrepancies between the experimental and
theoretical results as shown in Fig. 3. Some of the possible
reasons for the observed discrepancies may be the finite
length of the swimmer and the assumption of small beating
amplitude in the theoretical works. That is, only small
deflections are considered for both the waving sheet and
cylinder while the nematode shows significant bending.

We also compared the experimental results to a recent
two-dimensional numerical simulation of a finite, large-
amplitude waving sheet using the Stokes-Oldroyd-B model
[16]. The simulation predicts an interesting enhancement
of the sheet swimming speed at De = 1 (Fig. 3). The
experimental results do not reveal such swimming speed
enhancement (Fig. 3) in viscoelastic fluids. For De > 1, the
simulation predicts a gradual decrease in U. The discrep-
ancies between the experiment and the simulations are
most likely due to the difference in the swimming beating
patterns. While simulations used a left-moving traveling
wave with an amplitude that increased from head to tail,
our experiments with C. elegans reveal a traveling wave
with an exponential decay from head to tail [18].

In order to gain further insight into the effects of fluid
elasticity on swimming, we investigate the flow fields
generated by C. elegans at Re <1073 for both
Newtonian and viscoelastic fluids [Figs. 1(c) and 1(d)];
De = 3.0 for the viscoelastic case. In particular, we are
interested in the velocity decay normal to the nematode’s
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FIG. 4 (color online). (a) Velocity decay normal to the C.
elegans swimming direction (inset) for Newtonian and visco-
elastic cases (De = 3.0) at Re < 1073, The fluid viscosity is
pm =200 mPa - s. Lines corresponds to exponential fits (see
text). (b) Mean square displacements of the Newtonian and
viscoelastic fluids after 20 beating cycles 7.

swimming direction because of its relevance to, for
example, hydrodynamic interactions and collective
swimming. The effective viscosity of both fluids is u =
200 mPa - s [cf. Fig. 2(a)]. Figure 4(a) shows the normal-
ized velocity magnitude of the fluid flow |V|/|V|,.x as a
function of the normalized distance r/L away from the
nematode in the normal direction, as shown in the inset.
Here, r is the distance normal to the nematode with origin
at the fluid-body interface and L is the nematode body
length (1 mm). The velocity decays quite rapidly in less
than a half-body length [20], and it follows a seemingly
exponential decay of the form |V|/|V|,.x = exp(— %’f
previously obtained by Lighthill for an undulating sheet
[8]. By comparison, the viscoelastic case shows a velocity
decay rate that is initially faster (& = 0.56 = 0.03) than the
Newtonian case (¢ = 0.74 £ 0.04), indicating that elastic-
ity hinders fluid transport around the nematode.

The flow transport properties are further investigated by
computing the mean square displacement (MSD) (Ar?) of
fluid particles advected in the flow for up to 20 swimming
cycles [Fig. 4(b)]. The slope of the MSD as a function of
time is a relative measure of particle transport due to flow.
Since the Péclet number is large, O(10°), both Newtonian
and viscoelastic fluids have a slope k that is well above
unity. That is, the fluid transport induced by the nematode
swimming is nondiffusive. Elasticity, however, hinders
fluid transport as shown by the lower value of k in
Fig. 4(b). This is mostly likely due to the sudden increase
of elastic stresses near regions of high velocity gradients
such as hyperbolic points. Near such regions, the exten-
sional viscosity of a solution of flexible polymers can be
orders of magnitude larger than a Newtonian fluid [24].
Polymer molecules can be easily aligned and stretched,
which results in an increase in hydrodynamic drag along
the molecules and poses an additional resistance to fluid
transport and swimming.

In conclusion, we have experimentally investigated the
effects of fluid elasticity of the swimming dynamics of

undulatory swimmers at low Re. We find that fluid elastic-
ity hinders the propulsion of the nematode C. elegans at
low Re. The swimming speed decreases as fluid elasticity
is increased. This trend is qualitatively similar to theoreti-
cal and numerical results [2,3,16]. Furthermore, elastic
stresses in the fluid can alter the flow field generated by
nematodes, and the presence of hyperbolic points in vis-
coelastic flows can result in large extensional viscosities
and resistance to flow. This implies that foraging, feeding,
and mixing may become difficult in strongly viscoelastic
media. We note that generally, elastic response is not
limited to extensional viscosity effects; they could also
take the form of the hoop stresses that are associated
with circulating flows. We therefore expect the dynamics
of swimming in viscoelastic media to depend very much on
the type and strength of the swimming stroke.
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