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ABSTRACT 
 

DISTRIBUTED ACTIVITY PATTERNS FOR OBJECTS AND THEIR FEATURES: 

DECODING PERCEPTUAL AND CONCEPTUAL OBJECT PROCESSING IN INFORMATION 

NETWORKS OF THE HUMAN BRAIN 

 

Marc N. Coutanche 

 

Sharon L. Thompson-Schill 

 

How are object features and knowledge-fragments represented and bound together in the human 

brain?  Distributed patterns of activity within brain regions can encode distinctions between 

perceptual and cognitive phenomena with impressive specificity.  The research reported here 

investigated how the information within regions’ multi-voxel patterns is combined in object-

concept networks. Chapter 2 investigated how memory-driven activity patterns for an object’s 

specific shape, color, and identity become active at different stages of the visual hierarchy. Brain 

activity patterns were recorded with functional magnetic resonance imaging (fMRI) as participants 

searched for specific fruits or vegetables within visual noise.  During time-points in which 

participants were searching for an object, but viewing pure noise, the targeted object’s identity 

could be decoded in the left anterior temporal lobe (ATL).  In contrast, top-down generated 

patterns for the object’s specific shape and color were decoded in early visual regions. The 

emergence of object-identity information in the left ATL was predicted by concurrent shape and 

color information in their respective featural regions. These findings are consistent with theories 

proposing that feature-fragments in sensory cortices converge to higher-level identity 

representations in convergence zones. Chapter 3 investigated whether brain regions share 

fluctuations in multi-voxel information across time. A new analysis method was first developed, to 

measure dynamic changes in distributed pattern information. This method, termed “informational 

connectivity” (IC), was then applied to data collected as participants viewed different types of 
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man-made objects.  IC identified connectivity between object-processing regions that was not 

apparent from existing functional connectivity measures, which track fluctuating univariate 

signals. Collectively, this work suggests that networks of regions support perceptual and 

conceptual object processing through the convergence and synchrony of distributed pattern 

information. 
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CHAPTER 1: GENERAL INTRODUCTION 
 

“When a collection of musical instruments is played in a coordinated manner, the 
aggregate function is the symphony that flows and has a recognizable structure and 
coherence … the aggregate is much richer than a particular element.” 

– McIntosh (2000, p. 863) 
 

When you see or think about a lime, you can recognize or imagine its round shape and 

green color.  You can anticipate how to hold it, and expect a zingy and sour taste from eating 

one.  Each of these individual features is shared with many other objects, but their unique 

combination defines our concept of a lime.  How does the human brain represent and integrate 

perceptual and knowledge fragments of objects?  This dissertation investigates how distributed 

patterns of brain activity encode different components of object-related information, and how 

brain regions carrying these distributed codes interact during object perception and conception. 

A widespread array of brain regions becomes active as we perceive an object or retrieve 

object knowledge from semantic memory (Binder & Desai, 2011).  Some theories propose that 

our object knowledge is supported by the same neural systems that underlie perception and 

action; supported by findings that sensorimotor cortex becomes active when object knowledge is 

retrieved (Binder & Desai, 2011; Martin & Chao, 2001; Martin, 2007).  Alternatively, one or more 

integration areas might bind together an object’s properties, to form its identity elsewhere in 

cortex (Binder & Desai, 2011; Damasio, 1989; Lambon Ralph, Sage, Jones, & Mayberry, 2010).  

Such integration theories differ in the hypothesized location, and number, of integration zones 

(Binder & Desai, 2011; Simmons & Barsalou, 2003).  Some theories propose that different object 

features are brought together in distinct convergence zones, which in turn feed into higher-level 

convergence zones (Binder & Desai, 2011; Damasio, 1989; Meyer & Damasio, 2009), while 

others propose that one central “hub” encodes object-concepts in an amodal format (Patterson, 

Nestor, & Rogers, 2007). A recent version of this theory, the “hub-and-spoke” model, retains a 

role for sensorimotor regions (the spokes) in supporting featural knowledge, while hypothesizing 

integration in a central hub (Lambon Ralph et al., 2010).  While integration theories differ in their 
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details, they all propose the existence of at least one integration site for moving beyond single-

feature processing. 

The neural systems underlying object processing and semantic memory can be 

investigated in healthy humans using functional magnetic resonance imaging (fMRI).  The blood-

oxygenation level dependent (BOLD) signal recorded during an fMRI scan reflects the activity of 

large populations of neurons, providing a valuable window into a brain region’s neural processing.  

Most commonly, the average BOLD response in a voxel or larger region is compared between 

conditions (commonly using the General Linear Model; Friston et al., 1994), where a greater 

average BOLD response is interpreted as reflecting increased neural processing.  This overall 

response, however, is only one way in which information can be contained in a region’s activity, 

and as will be discussed, an alternative form is more closely linked to the fine-grained distinctions 

in features and objects. 

In addition to a region’s overall response, information is now known to exist in the 

patterns of responses that are distributed across multiple voxels (Haxby et al., 2001; Norman, 

Polyn, Detre, & Haxby, 2006).  Distinct percepts and cognitive states can be encoded within 

these unique combinations of voxel responses (“multi-voxel patterns”), allowing a large number of 

potential discriminable patterns within a voxel population, even when the region’s mean response 

is similar (Coutanche, 2013).  Multi-voxel patterns are particularly important to the neural 

underpinnings of object knowledge.  Because distributed patterns are multi-dimensional (i.e., 

each voxel is one dimension), multi-voxel patterns can encode distinctions that are not as easily 

represented by differences in a mean response.  For example, although a greater regional mean 

response to viewing shapes, compared to colors, could reflect shape-related processing, it is less 

straightforward to predict how distinctions between shapes, such as a cube, sphere and pyramid, 

would map onto a univariate mean response.  This level of specificity is, however, central to 

object knowledge.  It is not enough to know that limes have a shape and a color: our knowledge 

is based on their specific shape and particular color.  Investigations have supported the proposal 
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that multi-voxel patterns encode finer distinctions between objects, while univariate responses 

represent broader categorical differences (Brants, Baeck, Wagemans, & Op de Beeck, 2011). 

Multi-voxel patterns in ventral temporal (VT) cortex contain information about a visually 

presented object’s category (e.g., Coutanche, Thompson-Schill, & Schultz, 2011; Coutanche & 

Thompson-Schill, 2012; Haxby et al., 2001; O’Toole, Jiang, Abdi, & Haxby, 2005; Spiridon & 

Kanwisher, 2002) and identity (e.g., Eger, Ashburner, Haynes, Dolan, & Rees, 2008). Imagery for 

items has also been decoded from this area of cortex, although the imagined items typically differ 

greatly in visual appearance (Lee, Kravitz, & Baker, 2012) and/or semantic category (e.g., people 

versus cars: Peelen & Kastner, 2011).  Multi-voxel patterns for perceptual features have been 

decoded in early visual cortex, including for shape (Stokes, Thompson, Cusack, & Duncan, 

2009), orientation (Kamitani & Tong, 2005) and motion-direction (Kamitani & Tong, 2006).  A 

particularly powerful test of whether a hypothesized principle or dimension (e.g., shape) underlies 

a region’s neural processing is to evaluate whether a model trained to distinguish items with a 

hypothesized distinction can successfully decode new items that vary in other dimensions (e.g., 

color).  This type of strict “generalization test” (Tong & Pratte, 2012) is applied in Chapter 2 of this 

dissertation. 

 As discussed above, many regions of human cortex have been implicated in storing and 

retrieving object knowledge (Martin & Chao, 2001; Martin, 2007; Thompson-Schill, 2003).  Multi-

voxel patterns are almost exclusively investigated in isolated regions-of-interest (ROIs) to 

determine the information that is present within their activity patterns.  While studies of multi-voxel 

patterns have examined more than one region (e.g., Kriegeskorte, Goebel, & Bandettini, 2006), 

each voxel population is typically analyzed separately to compare their relative discriminability 

(e.g., Walther, Caddigan, Fei-Fei, & Beck, 2009).  However, brain regions operate within 

coordinated networks (Fox et al., 2005; McIntosh, 2000), and understanding a region’s role within 

a network may be crucial to fully understanding its function and neural operations.  For example, 

a recent review of investigations of the angular gyrus (AG) noted that “the exact role of the AG 

critically depends on the set of regions it is interacting with during a given task/process.  This 
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implies that the role of the AG cannot comprehensibly be identified in isolation but ideally needs 

to be understood in parallel with the influence from other regions” (Seghier, 2013, p. 48).  

Considering the importance of inter-regional networks, and the increasingly apparent role of multi-

voxel information in many perceptual and cognitive functions (Tong & Pratte, 2012), 

understanding how multi-voxel information is operationalized and integrated at the network-level 

has great potential for advancing our understanding of how the brain integrates information 

across systems. 

The work in this dissertation addresses how the multi-voxel patterns that underlie 

features and objects are brought together at the network level.  To address this issue, the work 

here raises the novel question of how feature and object patterns emerge synchronously across 

regions that operate in networks.  Whereas investigations employing MVPA have predominantly 

ignored region-to-region relationships, the studies described here examine synchronous decoding 

through new approaches, which allow questions to be raised that could not otherwise be 

addressed, including: 1) Does the decoding of higher-level objects depend on the synchronous 

decoding of lower-level features?  2) Is the level of an object’s multi-voxel information correlated 

between regions across time?  Such questions cannot be answered with typical MVPA 

approaches, but the approaches in this work allow these ideas, and others, to be tested. 

Chapter 2 reports an investigation of distributed activity patterns underlying our 

knowledge of objects, including their features and identity.  The question of how knowledge of an 

object’s features and identity is instantiated in the human brain remains a key question of modern 

cognitive neuroscience (Meyer & Damasio, 2009).  This study examines object knowledge at 

multiple levels of the visual hierarchy, and investigates links between these levels using a novel 

analysis of dependencies between multi-voxel codes.  Chapter 3 further investigates how object 

processing engages multi-voxel information across the cortex, by identifying networks with similar 

across-time profiles of multi-voxel information.  Functional networks are frequently investigated 

using univariate activation, where synchronous fluctuations in univariate responses are identified 

across voxels or regions (e.g., functional connectivity; Biswal, Zerrin Yetkin, Haughton, & Hyde, 
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1995).  In contrast, there has been little characterization of networks of synchronized multi-voxel 

information.  Chapter 3 first describes the development of a novel analysis method that allows 

this type of investigation.  By using a metric of multi-voxel information that is deployed across a 

timeseries, this method – “informational connectivity” (IC) – can identify relationships between 

regions based on the ebb and flow of multi-voxel information.  The chapter goes on to apply this 

method to brain activity recorded as individuals viewed different types of man-made objects.  The 

method identified object-processing networks on the basis of their synchronized multi-voxel 

information.  Regions are identified that have been hypothesized to play key roles in object 

processing, and the results contribute to current theoretical debates. 

Multi-voxel patterns encode information at a level of specificity that is centrally relevant to 

the convergence of features into objects, and to distinctions between objects, during perceptual 

and conceptual processing.  Crucial to understanding these cognitive systems is discovering how 

brain regions operate within connected information networks.  Together, the chapters here seek 

to address how the neural signatures of these fine-grained perceptual and conceptual items are 

represented within networks of information-rich brain areas. 
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CHAPTER 2: CREATING CONCEPTS FROM CONVERGING FEATURES IN HUMAN 

CORTEX 

 
 

Abstract 

To make sense of the world around us, our brain must remember the overlapping features of 

millions of objects.  Crucially, it must also represent the unique feature-convergence that defines 

every object.  We know very little about how the brain binds feature knowledge fragments into 

identity.  Here we describe a functional magnetic resonance imaging study of neural information 

for features and identity in humans searching for fruits and vegetables within random visual noise.  

A pattern-classification algorithm could decode a (unseen but anticipated) target’s identity within 

the anterior temporal lobe, and its specific shape and color within early visual regions.  A novel 

analysis revealed that converging shape and color codes predict emerging identity information.  

People with stronger dependencies between featural-convergence and identity had memory-

generated activity that more closely resembled visually generated codes.  These results support 

theories proposing that convergence zones bind feature knowledge fragments together to form an 

object’s identity. 
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Introduction 

We encounter millions of objects during our lifetime that we recognize effortlessly.  We 

know that a lime is green, round and tart, whereas a carrot is orange, elongated and sweet, 

helping us to never confuse the wedge on our margarita glass with our rabbit’s favorite treat.  One 

property (or ‘feature’) alone is typically insufficient for identification: celery can also be green and 

tangerines are also orange.  Instead, we draw-on the unique convergence of features that defines 

an object.  How does our brain bind together the many possible sensorimotor features to form a 

unique memory representation? 

Several theories have been proposed to address this challenge.  One theory proposes 

that knowledge of objects resides in the very sensorimotor cortices that process their features 

during perception or use (Kiefer & Pulvermüller, 2012; Martin, 2007).  An alternative set of 

theories suggest that objects become represented in one or more central cortical hubs or 

integration areas (Lambon Ralph, Sage, Jones, & Mayberry, 2010; Patterson, Nestor, & Rogers, 

2007; Pobric, Jefferies, & Lambon Ralph, 2010; Simmons & Barsalou, 2003).  The anterior 

temporal lobe (ATL) – an area well connected to temporal, parietal and frontal cortices – has 

been proposed as a candidate hub, supported by evidence of conceptual impairments that can 

accompany ATL atrophy during semantic dementia (Hodges, Patterson, Oxbury, & Funnell, 1992; 

Rogers, Patterson, & Graham, 2007).  Hub-based theories have proposed that a hub enables 

concepts to be re-representation in a high-dimensional semantic space, enabling concepts that 

have very different features (such as a lime and carrot) to be semantically close and vice versa 

(Lambon Ralph & Patterson, 2008). 

 Damasio’s first proposal for the existence of an integration zone suggested that 

convergence zones hold a binding code, or combinatorial record, for “feature fragments” (coded 

in sensory cortex) that form our knowledge of objects when successfully combined (Damasio, 

1989; Meyer & Damasio, 2009; Simmons & Barsalou, 2003).  Little direct evidence exists for the 

convergence zone hypothesis (Simmons & Barsalou, 2003), not least because a crucial 

information link – between identity in a potential convergence zone and the object’s specific 
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feature fragments – has yet to be found in the human brain.  A putative convergence zone should 

show certain characteristics that are testable using novel fMRI analysis techniques.  Specifically, 

the convergence account leads to these three key predictions: i) Thinking about an object should 

evoke a pattern of brain activity coding its identity in a purported convergence zone (the result of 

convergence).  ii) Early visual regions that specialize in processing the features of a retrieved 

object should activate specific feature fragments (the substrates for convergence).  A given 

feature’s code will be shared among objects that share this feature.  Notably, we currently do not 

know the degree to which a convergence zone would reactivate features (Simmons & Barsalou, 

2003), which could range from general shape processing for all objects, to the specific neural 

activity specifying a sphere rather than a cube.  The strictest form of “feature fragment” would 

predict the latter.  iii) Successful convergence (marked by successful identity decoding) should be 

linked to the simultaneous presence of the convergence substrates.  One of the first theoretical 

proposals of a convergence zone set the specific requirement that activation of “convergence 

zones would produce synchronous activity in separate cortical sites presumed to contain feature-

fragments related to the convergence zone” (Damasio, 1989, p. 56).  In contrast, a rival theory, in 

which object knowledge is contained solely within sensorimotor regions, does not predict this link.  

We developed a novel analysis to test the relationships present between different types of 

distributed information, allowing us, for the first time, to detect a relationship between specific 

feature fragments and the result of their convergence to object identity, in the human brain. 

 In the present study we examined top-down generated activity patterns for fruits and 

vegetables that varied orthogonally by color, shape and identity.  Top-down processes can 

influence neural activity in cortical regions that respond to visual stimulation (Corbetta, Miezin, 

Dobmeyer, Shulman, & Petersen, 1990; Maunsell & Treue, 2006).  We employ a task that 

engages top-down influences with no visual information on-screen, allowing us to investigate 

neural signatures for retrieved object knowledge rather than visual inputs. 
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Method 

Subjects 

Data from eleven participants (3 females, 18-35 years old) are analyzed (a twelfth 

participant’s fMRI data were not analyzed due to abnormal behavioral responses during the task).  

All participants were right-handed with normal or corrected-to-normal vision and reported no 

history of neurological problems.  Participants provided written informed consent and received 

monetary compensation for their participation.  The human subjects review board at the 

University of Pennsylvania approved all experimental procedures. 

 

Magnetic resonance imaging acquisition 

Subjects were scanned with a 3-T Siemens Trio system equipped with an eight-channel 

head coil and foam padding for stabilizing the head.  T1-weighted anatomical images were 

acquired at the beginning of each session (TR = 1,620 ms, TE = 3 ms, TI = 950 ms, voxel size = 

0.977 mm × 0.977 mm × 1.000 mm).  T2*-weighted scans recorded blood oxygenation level–

dependent (BOLD) response using interleaved gradient-echo EPI (TR = 3,000 ms, TE = 30 ms, 

field of view = 19.2 cm × 19.2 cm, voxel size = 3.0 mm × 3.0 mm × 3.0 mm, 42 slices). 

 

Experimental procedure 

Prior to fMRI scanning, participants completed a behavioral staircasing procedure to 

determine the level of visual noise that was later applied to images during the fMRI scan.  This 

ensured the in-scan detection task would be challenging enough to engage each subject.  On 

each trial of this staircasing behavioral task, subjects indicated with a button-press when they 

could identify a fruit (bananas and tomatoes, two fruits not used for the primary task) displayed in 

a field of Gaussian visual noise.  After each behavioral response, the variance of the noise added 

to the next image was increased or decreased, bringing the subject’s final detection level to 75% 

accuracy by the end of the procedure.  The particular noise variance producing this detection-

level for each subject was then applied to that participant’s images during their scan.  
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Participants’ detection accuracies during the scanning session (M = 73%, s.d. = 11%) were very 

similar to the 75% staircasing target, suggesting the procedure was successful. 

At the beginning of the scanning session, participants passively viewed images of 

exemplars of the four types of fruit and vegetables (carrots, celery, limes and tangerines) that 

would later act as targets, centrally placed on a white background.  Six images of each type of 

fruit and vegetable were presented in a random order in each 18 sec block, with each image 

shown for 3 secs.  Blocks were separated by 12 secs of fixation.  In total, twelve exemplars of 

each type of fruit and vegetable (later hidden in the detection task) were presented, split across 

two blocks.   

During the next four scanning runs, participants were instructed to respond with a button-

press when they detected a cued fruit or vegetable within visual noise.  Word cues were 

presented to indicate a type of fruit or vegetable that should be detected (e.g., ‘carrot’).  A 

variable number of images then followed, each with Gaussian white noise based on a mean of 

zero and variance-level determined by the subject’s prior staircasing (see Figure 1).  In every run, 

each of the four fruit and vegetable cues was cumulatively followed by the same total amount of 

visual noise.  Each fruit and vegetable cue (e.g., ‘carrot’) occurred three times in a run (giving 12 

blocks for each fruit and vegetable across the experiment).  Blocks were presented in a pseudo-

randomized order so that the same cue did not immediately repeat.  Within the blocks, pure-noise 

images were each shown for 3 secs.  Following a variable length of time (between 12 and 24 

secs after the initial cue), a fruit or vegetable was presented, hidden within Gaussian noise.  The 

block automatically ended after this trial.  This design afforded us the high signal sensitivity found 

with block designs, combined with unpredictability to keep participants cognitively engaged.  Two 

of the fruit-in-noise images ending the noise blocks contained a fruit or vegetable that did not 

match the preceding cue (i.e., 2 out of 12 were foils), to focus participants on detecting the 

specific target.  The two foils for each kind of cue were other fruits / vegetables with the same 

color but different shape, or same shape but different color (e.g., for carrot: tangerine and celery), 

ensuring that the four objects acted as foils with the same frequency.  To encourage participants 
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to search for the cued target from the very start of every block, the beginning of each run (during 

the four beginning time-points routinely removed in preprocessing) included a short block in which 

a cued fruit or vegetable appeared after only 3 or 6 secs, followed by 12 s of fixation.  The hidden 

fruits and vegetables that ended each short block were not repeated in the main blocks and their 

BOLD signal did not contribute to any analyses. 

 

 

 

Figure 1: Experimental design.  Participants were presented with cues of items to detect, followed 

by blocks of visual noise.  Each block ended with an actual image embedded in noise at a 

threshold determined for each participant prior to their scan (shown here at a low threshold for 

visualization purposes).  Blocks contained an unpredictable amount of pure noise and 

occasionally ended with an incorrect (non-cued) fruit or vegetable to keep participants on-task.  

The objects in the final trial are displayed here in each corner although they could appear in any 
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corner in the actual experiment.  Every block ended with a unique instance of that kind of fruit or 

vegetable (e.g., no particular tangerine appeared more than once).  Data from the last noise time-

point was discarded to ensure the signal-ascent from viewing the image-in-noise did not influence 

the analyzed data. 

 

The 12 images of each hidden fruit / vegetable (10 cued, 2 foils) ending the blocks were 

photographic examples in various orientations on a white background.  The objects were all 

adjusted to have the same height.  The hidden items appeared in four possible locations: top-left, 

top-right, bottom-left and bottom-right (see Figure 1 for an example).  The objects appeared in 

each location 3 times across the experiment, in a randomized order.  The objects appearing in 

each location were preceded by the same cumulative amount of Gaussian noise across the 

experiment (i.e., there was no contingency between the amount of noise and final stimulus 

location). 

 

Magnetic resonance imaging preprocessing 

Imaging data were preprocessed using the Analysis of Functional NeuroImages (AFNI) 

software package (Cox, 1996).  The first four volumes of each functional run were removed to 

allow the signal to reach steady-state magnetization.  All functional images were slice time 

corrected and a motion correction algorithm registered all volumes to a mean functional volume.  

Low frequency trends were removed from all runs using a high-pass filter threshold of 0.01 Hz.  

Voxel activation was scaled to have a mean of 100, with a maximum limit of 200.  The data were 

not smoothed. 

 

Decoding analysis 

Pattern decoding was conducted within the MATLAB environment.  The functional data 

were first z-scored within each run.  Data from repetition times (TRs) corresponding to pure visual 
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noise trials (i.e., the TRs of data collected before the participant encountered a concealed fruit or 

vegetable) were isolated in the following manner: The pure-noise TRs were assigned binarized 

labels of the search target.  They were then convolved with a time-shifted model of the 

hemodynamic response and thresholded at 0.8, to identify the events predominantly affecting 

each time-point.  This gave a vector of activity values n-voxels long for each pure-noise TR, 

which were averaged by block.  To ensure that the block average was not influenced by the 

signal-ascent of the block’s final trial (in which a fruit or vegetable was actually present), we 

removed the last pure-noise TR of each block before averaging. 

We conducted an information brain mapping ‘roaming searchlight’ analysis in each 

participant by centering a sphere (3-voxel radius) on each voxel in turn (Kriegeskorte, Goebel, & 

Bandettini, 2006).  MVPA was conducted with the voxels in each searchlight volume (123 when 

not restricted by the brain’s boundary) and performance was allocated to the central voxel.  For 

each searchlight, 4-fold cross-validation was conducted (training on three runs; testing on the 

fourth) with a Gaussian Naïve Bayes (GNB) classifier (implemented through the MATLAB 

Statistics toolbox) to classify activity to noise trials according to the search target (carrot, celery, 

lime or tangerine).  The classifier was trained and tested on the vectors of BOLD activity values 

that were averaged for each block in the manner described above.  GNB classifiers have been 

shown to have particular success for datasets with small numbers of training samples (Mitchell et 

al., 2004; Ng & Jordan, 2002; Singh, Miyapuram, & Bapi, 2005), such as here where each block 

contributes one datapoint.  It is also fast for searchlight analyses (Pereira, Mitchell, & Botvinick, 

2009). 

Each participant’s map of searchlight accuracies was brought to standardized space (with 

the same resolution as the functional data) and spatially smoothed with a 6 mm FWHM kernel.  

The 11 searchlight maps were submitted to a group analysis to test whether the accuracy at each 

voxel was greater than 0.25 (chance), with familywise error correction for multiple comparisons 

(corrected to p < 0.05, with a 26-voxel cluster threshold estimated with AlphaSim; Cox, 1996). 
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The next analysis tested whether a model trained on the cued visual noise would generalize to 

activity patterns (also block averages) from the separate passive-viewing run.  A classifier was 

trained on all the pure-noise trials labeled by cue, and tested on data from the passive-viewing 

run labeled by the fruit or vegetable on-screen.  This 4-way classification was performed with the 

voxels of each searchlight volume identified in the prior analysis (transformed back into each 

participant’s original space), with the searchlights’ performances averaged.  We could not train on 

the passive-viewing data due to an insufficient amount of training data.  To assess statistical 

significance, we conducted permutation testing.  First, each participant’s classifier testing labels 

were scrambled 1,000 times and the classification was repeated for each new set of labels.  This 

produced 1,000 permutation-generated classification accuracies for each participant.  To obtain a 

group p-value, a null distribution was created by randomly sampling a classification accuracy 

value from every subject’s 1,001 classification scores (1,000 permutations + 1 real order) and 

calculating the group mean.  This was performed 10,000 times, giving 10,000 permuted group 

means.  The real group mean was compared to this null distribution to identify the p-value.   

To conduct color and shape generalization tests, we trained classifiers to distinguish two 

items differing in one dimension (e.g., carrot versus celery for color) and tested the model on the 

unused items that varied in the same way (e.g., tangerine versus lime).  This was performed on 

data from lateral occipital cortex, V4 and the left ATL region identified from the searchlight 

analysis.  A 4-fold leave-one-run-out cross-validation procedure was conducted twice: alternating 

which items were used for training.  Each pair of scores was averaged.  To assess statistical 

significance, we conducted the permutation testing procedure described above, with each set of 

randomized labels held constant for the two combinations of training and testing.  The null 

distribution was generated by sampling 1,000 group means by randomly selecting from each 

participant’s 100 permutations of classification scores.  The p-value was then calculated from this 

distribution.   

The shape and color convergence analyses were conducted by extracting classification 

accuracy vectors (i.e., 1 versus 0 for each block) for color classification in the color region, shape 
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classification in the shape region, and identity classification in the identified temporal lobe 

searchlights.  A logistic model [with quadratic penalty determined by marginal likelihood 

maximization for convergence (Zhao & Lyengar, 2010) and coefficient stability] predicted object 

identity decoding success (48 values; one for each block) for each of the identified temporal lobe 

searchlights, with predicting variables for: block-by-block success in color decoding, block-by-

block success in shape decoding and block-by-block color-shape conjunction (color decoding x 

shape decoding).  Odds ratios were calculated for the models’ coefficients (eB) and averaged 

across the identified searchlights for each subject.   

 

Regions of interest 

The color and shape across-item generalization tests were conducted using voxels in 

regions involved in shape and color processing.  The shape-relevant region was based in lateral 

occipital cortex, an area with location-tolerant shape information (Carlson, Hogendoorn, Hubert 

Fonteijn, & Verstraten, 2011; Eger, Ashburner, Haynes, Dolan, & Rees, 2008).  Previous 

research has shown that this region is modulated by top-down processing (Reddy, Tsuchiya, & 

Serre, 2010; Stokes, Thompson, Nobre, & Duncan, 2009).  We extracted standard space 

coordinates from a highly cited study of shape processing (Grill-Spector et al., 1999).  The lateral 

occipital shape region can be characterized by three vertices (dorsal, posterior and anterior), so 

we placed three spheres (6 mm radius -the reported extent of activation) against the vertex 

coordinates from the object > texture contrast, in both hemispheres (coordinates in Table 1).  This 

successfully encompassed lateral and ventral regions of the LOC. 

The color-processing region was based on a seminal color-processing study (McKeefry & 

Zeki, 1997).  The coordinates for maximum activation in a chromatic versus achromatic contrast 

were extracted from this study and a sphere (radius 6 mm -the listed standard deviation of the 

extent of activation) was placed at the right hemisphere coordinates.  Investigations have 

suggested that right V4 is particularly modulated by top-down control of color processing 

(Bramão, Faísca, Forkstam, Reis, & Petersson, 2010; Kosslyn, Thompson, Costantini-Ferrando, 
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Alpert, & Spiegel, 2000; Morita et al., 2004) and achromatopsia is differentially associated with 

right V4 damage (Bouvier & Engel, 2006), so we focused on the right region (coordinates in Table 

1), although also examined left V4 from the same study. 

 

 

Shape -41, -77, 3 

40, -72, 2 

-36, -71, -13 

37, -69, -10 

-38, -50, -17 

33, -47, -14 

Color 30, -78, -18 

-26, -80, -14 

  

 

Table 1.  Coordinates for feature ROIs.  Talairach coordinates for shape (extracted from Grill-

Spector et al., 1999) and color (extracted from McKeefry & Zeki, 1997) regions.  The shape 

coordinates reference the three vertices in each hemisphere that characterize the lateral occipital 

shape region.  Spheres (6 mm radius) were positioned to border each vertex.  The color 

coordinates reflect the center of right and left placed spheres (6 mm radius). 
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Results 

We presented participants with images of colored random noise and directed subjects to 

detect one of four types of fruits and vegetables – carrot, celery, lime and tangerine – that vary 

systematically by shape and color (Figure 1).  These blocks of pure-noise ended after an 

unpredicable amount of time with the cued fruit or vegetable, or a foil, embedded within noise.  

We analyzed data from time-points before any fruit or vegetable was revealed, in order to 

examine top-down driven activity.  Prior to the main task, participants passively viewed exemplars 

of the four types of fruit and vegetable, giving us examples of visually-generated activity patterns 

for these items. 

 

Decoding object identity from anticipatory visual activity 

 To test the first requirement of a convergence zone – that a brain region contains a 

memory-evoked code for object identity – we asked if the identity (carrot, celery, lime or 

tangerine) of the searched-for object could be decoded as participants viewed visual noise.  The 

location (or even existence) of a convergence zone has not been established, so we used a 

searchlight analysis to analyze sequential clusters of voxels.  The functional data recorded during 

visual noise time-points were labeled by the participant’s current detection target (given to 

participants through a preceding cue) and then submitted to a 4-way machine learning classifier.  

The classifier was able to decode (at p < 0.05 corrected) the identity of the anticipated-but-

unseen targets in a cluster of 64 searchlights in the left ATL (in which the volume includes the left 

fusiform gyrus, interior temporal, middle temporal and superior temporal cortex, verified by 

cortical segmentation and automated labeling through FreeSurfer; Fischl et al., 2002).  The region 

was centered at -41x, -8y, 17z and is shown in Figure 2. 
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Figure 2: Location for searchlights with above-chance decoding of object identity while 

participants viewed visual noise and attempted to detect one of four kinds of fruit and vegetable.  

Left: A 4-way searchlight analysis revealed a region within the left ATL capable of decoding the 

target.  Searchlight centers are shown in red.  Right: The searchlights’ volume displayed in one 

participant’s original space, shown on their T1 anatomical image after automated cortical 

reconstruction and volumetric segmentation using the FreeSurfer image analysis package (Fischl 

et al., 2002). 

 

We verified that this significant decoding was not based purely on a sub-categorical 

distinction between ‘fruits’ and ‘vegetables’ by successfully classifying items that do not cross this 

fruit / vegetable boundary (i.e., carrot vs.  celery and lime vs.  tangerine) at a level significantly 

above chance (permutation testing: p = 0.025).  We also confirmed that time-points from each of 

the four fruits and vegetables had above-chance accuracies (p < 0.05).  Although unlikely that 

motor responses could account for temporal lobe performance, we also confirmed that 

participants’ numbers of motor responses did not differ significantly between the different targets 

(F (3,30) = 1.62, p = 0.23). 

We performed further analyses to test the specificity of the left lateralization of the 

identified region by analyzing an ROI in the right hemisphere at the same y and z coordinates as 

the left ATL region.  Successful decoding was specific to the left ATL: the right ATL’s 

performance was not significant (M = 0.26 where chance = 0.25; p = 0.30), with the left ATL 

having significantly greater performance in a two-tailed paired t-test: t(10) = 3.64, p = 0.005.  
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Because of the known signal issues in the ATL, we measured the temporal signal-to-noise ratio 

(tSNR) of the left and right ATL regions, to assess signal quality, and to ask if tSNR differences 

could account for the lateralization.  The tSNR is calculated by dividing each voxel’s mean signal 

with its standard deviation over the time-course of each run.  The tSNR values of the searchlight 

centers were high for both ATL regions (mean left = 77.4; mean right = 77.5) and well above 

levels that are considered suitable for signal detection (e.g., 20 in Binder et al., 2011).  This 

indicated that the signal was strong in both regions, which additionally did not differ (t10 = 0.01, p 

= 0.99). 

 Are multi-voxel patterns necessary to distinguish object identity? A direct and comparable 

way to examine if univariate differences can distinguish the objects is to re-run the classification, 

but replacing the multi-voxel patterns with the univariate mean of each block (Coutanche, 2013).  

If conditions are separable by any univariate differences, this approach will produce above-

chance classification performance.  We ran this analysis within the left ATL and found that 

univariate activation cannot separate the conditions (mean classification performance = 0.24; 

chance = 0.25; p = 0.70 from permutation testing).  The importance of multi-voxel coding to the 

investigated contrast is expected, given the necessity of multi-voxel patterns in successfully 

decoding information about different objects (Eger et al., 2008; Haxby et al., 2001). 

We next examined the nature of the top-down generated identity code by asking whether 

it would generalize to activity that had been recorded while subjects viewed examples of the fruits 

and vegetables.  We trained a classifier on the noise-only trials in the searchlights identified 

above (transformed back to each participant’s original space), with each trial labeled according to 

the search target.  We tested the trained models on data from a separate run in which 

participants had viewed blocked images of each kind of fruit or vegetable.  The model trained on 

preparatory activity in the ATL was able to successfully classify the type of fruits and vegetables 

viewed in the separate passive-viewing run (M = 0.30, s.d. = 0.08; chance = 0.25; permutation 

testing: p = 0.037), revealing that the memory-generated and visually generated patterns were 

similarly structured (Figure 3). 
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Figure 3: Generalizing from top-down activity to visual perception.  Left: A classifier was trained 

on activity patterns recorded as participants viewed visual noise and sought to detect a cued fruit 

or vegetable.  The classifier model was then tested on activity recorded as participants viewed 

real images of category examples in a separate run.  Center: Activity patterns in this analysis 

were extracted from the left temporal lobe searchlights identified in the prior analysis of noise 

trials alone.  Right: Classification accuracy significantly exceeded chance performance, reflecting 

successful generalization from anticipatory activity to visual perception.  The dashed line reflects 

the level of chance and the error bar shows the standard error of the mean.  The asterisk signifies 

above-chance classification performance (p < 0.05). 

 

Decoding object features 

The four targets in this study differed orthogonally by shape (two elongated, two 

spherical) and color (two orange, two green), allowing us to decode each feature independently, 

and test the second prediction of the convergence zone theory: that specific feature knowledge 

fragments become active in sensory regions (Figure 4).  We examined this by asking whether a 

model trained to distinguish different shapes or colors could generalize to another pair of objects 

with this same distinction, but variation in other dimensions.  We investigated shape and color 
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generalization in: i) a bilateral region of lateral occipital cortex that is associated with shape 

processing, and ii) an occipital area (right V4) associated with color processing (see Method for 

full details). 

 

Figure 4: Feature-based generalization.  Classifiers were trained to distinguish noise trials in 

which participants were searching for fruits and vegetables differing by shape or color.  The 

classifiers were then tested on noise trials with the other pair of targets that differed in the same 

way.  In the first example (left), classifiers are trained and tested based on shape (trained on lime 

versus celery, tested on tangerine versus carrot).  In the second example (right), classifiers are 

trained and tested based on color (trained on lime versus tangerine, tested on celery versus 

carrot).  The items took turns to act as the training data and the results of both comparisons were 

then averaged. 

 

 A classifier model that was trained on data from when participants were searching for two 

fruits and vegetables that differed by shape (e.g., lime vs. celery), could decode the remaining 

fruits and vegetables with similar shapes (tangerine vs. carrot), using activity from the bilateral 

lateral occipital cortex (M = 0.55, s.d. = 0.06; p = 0.01).  Successfully decoding specific shapes 

across different colors (training on green, testing on orange) provides strong evidence that 

feature fragments were specific to the features of each activated object.  The same region could 
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not decode the color of the targets (M = 0.51, s.d. = 0.07; p = 0.43), with higher performance for 

shape (p = 0.05).  The right V4 region contained activity patterns that, using the same approach 

as above, decoded colors (M = 0.56, s.d. = 0.08; p = 0.01), and also shape at a trend-level (M = 

0.54, s.d. = 0.09; p = 0.09, no significant difference: p = 0.17).  This was specific to the right V4 

region: left V4 could decode neither (p > 0.4; lower accuracies than the right region for color: p = 

0.04, although not shape: p = 0.15).  There was a significant interaction for greater shape 

decoding in lateral occipital cortex and greater color decoding in right V4; p = 0.03; Figure 5). 

As expected for regions coding feature fragments, identity decoding was unsuccessful in both 

regions (p > 0.46).  We also returned to the identity-decoding ATL region and applied the feature 

generalization tests to activity from this region.  Consistent with the ATL region containing identity 

information that is transformed away from features, neither shape (M = 0.49, s.d. = 0.04; p = 

0.61) nor color (M = 0.50, s.d. = 0.05; p = 0.46) were decodable (significantly lower decoding than 

in V4 for color: p = 0.01, and lateral occipital cortex for shape at a trend: p = 0.09). 

 

Figure 5: Classification results from the shape and color decoding analyses.  Results are 

displayed from training a classifier on data from noise trials when participants were attempting to 
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detect targets that differed by shape or color, and tested on data with other targets that varied in 

the same way.  The shape results (e.g., training: lime versus celery, testing: tangerine versus 

carrot) are shown in red.  The color results (e.g., training: tangerine versus lime, testing: carrot 

versus celery) are shown in blue.  The dashed lines reflect the level of chance and the error bars 

show the standard error of the mean.  Asterisks signify above-chance classification performance 

(p < 0.05).  The cross signifies trend-level performance (p < 0.1).  The green region displayed in 

the cross-section is the area of the lateral occipital complex.  The red region is based on the 

color-responsive area - right V4 (Methods). 

 

Shape and color conjunction predicts the left ATL’s identity code 

The third and final convergence zone prediction was that the converged (identity) code 

should occur with converging activation of the specific shape and color feature fragments for the 

object.  We employed a novel decoding-dependency analysis to examine this.  We first coded 

each classified block of every participant for whether its neural activity contained decodable 

object identity in the ATL, color in V4 and shape in lateral occipital cortex.  We then created a 

logistic regression model (full details in Method) of identity-decoding success (1 versus 0) in each 

block for the discovered ATL region, with predictors for: i) color decoding success in right V4, ii) 

shape decoding success in lateral occipital cortex, and iii) simultaneous shape and color 

decoding (i.e., i x ii).  The odds ratios of this model reflect dependencies between the feature 

fragments and converged-upon identity. 

The conjunction (i.e., convergence) of V4 color decoding and lateral occipital shape 

decoding was specifically predictive of successful ATL identity decoding in the model (M odds 

ratio = 2.64; odds ratio > 1: t(10) = 4.08, p = 0.002) unlike each feature alone (M odds ratio for 

color: 0.76; M odds ratio for shape: 0.66).  This relationship is also apparent from directly 

comparing the degree of converging shape and color decoding in blocks with, and without, 

correct identity classification in the ATL: blocks with successful identity decoding had higher 

proportions of conjunctive shape and color decoding (M = 0.35, s.d. = 0.10; paired two-tailed t-
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test: t (10) = 11.63, p < 0.001) than blocks that were misclassified (M = 0.15, s.d. = 0.05).  These 

types of blocks did not differ in proportions of successful color (paired two-tailed t-test: t (10) = -

0.14, p = 0.89) or shape (paired two-tailed t-test: t (10) = 1.37, p = 0.20) decoding alone.  How do 

these rates of conjunctive color-and-shape decoding compare to a model of independence (i.e., 

where Pcolor-and-shape = Pcolor x Pshape)? The degree of shape-color conjunction was greater in ATL 

identity-decoded blocks than would be predicted under a model of independence (trend level: 

two-tailed paired t-test: t (10) = 1.93, p = 0.08), and was substantially lower in identity-

misclassified blocks (two-tailed paired t-test: t (10) = -7.74, p < 0.001), showing that the 

concurrent color and shape decoding co-occurs with successful object-identity decoding to a 

greater degree than expected from their baseline occurrences.  The feature decoding results for 

blocks with successful and unsuccessful identity decoding are shown in Figure 6. 
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Figure 6: The properties of blocks with successful ATL object-identity decoding, compared to 

those blocks with unsuccessful identity decoding.  Positive values indicate that greater shape 

and/or color decoding was found in blocks having correct identity decoding. 

 

Finally, if the relationship between color–shape conjunction and ATL identity decoding 

plays an active role in evoking a concept, we might expect subjects with stronger relationships to 

have conceptually driven ATL-codes that more closely match codes evoked from viewing 

exemplars of a concept.  This correspondence between conceptual and perceptual codes reflects 

the extent that top-down processes activate generalizable patterns.  A relationship between the 

strength of the feature-to-identity relationship, and percept / concept generalizability, would 

suggest that this convergence is directly tied to the character of the activated concept.  We 

confirmed this relationship.  Subjects with a stronger link between feature fragments and their 

ATL (indicated by a higher odds ratio for shape-and-color convergence predicting ATL identity in 

the previous logistic regression) had top-down ATL identity codes that more closely resembled 

visually driven activity patterns (r = 0.67, p = 0.02; Figure 7).  This was not simply due to 

differences in the robustness of the noise-related activity: the strength of the features-to-ATL link 

was not related to decoding success when a model was trained and tested on noise only (p = 

0.72), suggesting it was specific to memory-generated patterns being more similar to visually 

generated codes. 
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Figure 7: Across-subject differences in noise-to-visual generalization against the strength of the 

relationship between featural and object-identity decoding.  The y-axis represents each subject’s 

classification performance from training on cued noise and testing on visual presentations of each 

fruit and vegetable in the ATL.  The x-axis reflects each participant’s odds ratio for the conjunction 

of color-and-shape decoding (in relevant feature regions) predicting noise-trial identity 

classifications in the ATL.  A logistic regression model generated these odd ratios (details in 

Method). 
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Discussion 

The results described here provide evidence for theories of memory that posit the 

existence of a region of integration, such a convergence zone (Damasio, 1989; Meyer & 

Damasio, 2009; Simmons & Barsalou, 2003).  Activity patterns representing an object’s identity 

were present in a region of left ATL, and could generalize to activity patterns produced from 

passive viewing.  Posterior featural regions encoded the anticipated objects’ specific shapes and 

colors.  Importantly, these levels of representation were closely linked: ATL-decoding of object 

identity was more likely when both color and shape could be decoded from featural regions.  

Further, the stronger this relationship across subjects, the more that participants’ top-down 

generated patterns matched visually generated patterns. 

 The particular cortical site identified here as encoding object identity information is 

consistent with a variety of patient work that points to the ATL’s role in conceptual knowledge 

(Patterson et al., 2007; Rogers et al., 2007).  The findings also support theories that the ATL 

contains convergence zones between visual components of objects (Damasio, 1989).  The 

results are additionally consistent with proposals that the ATL acts as a central ‘semantic hub’ 

(Patterson et al., 2007).  Unlike convergence zone proposals, hub-based theories suggest just 

one central integration zone (in the ATL).  As well as a role for the ATL, however, we have found 

that visual featural regions: i) evoke specific feature-relevant activity patterns from top-down 

influences, and ii) have a functionally relevant relationship with anterior regions.  Shape and color 

processing are known to be neurally dissociable (e.g., agnosia patients can show impairments in 

one but not the other: Cavina-Pratesi et al., 2010), arguing that distinct feature systems are 

sharing information with the ATL and contributing different types of conceptual information 

(Lambon Ralph et al., 2010).  Of the hub-based models, the findings here are most supportive of 

so-called “hybrid” models, which incorporate important roles for both sensorimotor cortices and a 

central hub.  One such theory, the “hub-and-spoke” model, proposes that modality-specialized 

regions (V4 and lateral occipital cortex in this study) provide sensory and motor substrates that 

are combined into an independent high-dimensional representational space in a central hub 
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(Pobric et al., 2010; Lambon Ralph et al., 2010).  The strong and predictive link found between 

feature and identity-coding regions in these results give weight to a significant role for sensory 

regions, such as that proposed by the hub-and-spoke model. 

 The findings of this study may be helpful in interpreting some recent semantic dementia 

patient findings.  A recent study of semantic dementia reported that processing items rich in 

visual color and form was disproportionately impaired in patients with severe dementia, unlike 

items with other features such as sound/motion and tactile/action (Hoffman, Jones, & Lambon 

Ralph, 2012).  The authors speculated that temporal lobe atrophy may have spread more 

posteriorly to affect basic featural regions in these severe cases.  Our results suggest a new 

possible explanation: the patients may have experienced disruption to a key shape and color 

convergence zone. 

 Our between-subject analyses showed that participants differed in the resemblance 

between their top-down generated, and their visually generated, ATL patterns, according to the 

strength of the ATL’s dependence on color-and-shape decoding synchrony.  This raises several 

fascinating questions for future research: Do individual differences in the link between object 

identity and feature synchrony produce differences in people’s phenomenological experiences 

during processes such as imagery? Are time-points with synchronous color and shape decoding 

more likely to be accompanied by particularly vivid imagery? The relationship between our 

findings and peoples’ inner visual experiences is an exciting topic for future research. 

 There are a number of reasons to be confident that the object-identity decoding reported 

here reflects visual processes, rather than others such as verbal rehearsal.  The link between 

identity and shape-and-color decoding argues strongly for a perceptual basis for the identity 

decoding, rather than other semantic features such as taste.  Further, the ability to generalize 

decoding from top-down to visually presented objects (where no task was required) supports a 

visual account. 

 In our featural analyses, we found shape, but not color, information in the shape region.  

In contrast, the color region had decodable color information and also shape information at a 
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trend level.  Interestingly, this asymmetry was also reported in a recent meta-analysis of modality-

specific imagery, where shape-related activity overlapped with color regions, but not vice versa 

(McNorgan, 2012).  Prior work has also suggested that “V4 neurons are at least as selective for 

shape as they are for color” (Roe et al., 2012, p. 17).  Shape curvature is particularly represented 

in V4 (Roe et al., 2012), which would account for V4 decoding spherical versus elongated shapes 

at a trend level here.  We note that our interpretation of the convergence pattern does not require 

that the two regions are uniquely selective to color or shape; only that they contain different (i.e., 

non-redundant) patterns of information. 

 We employed a novel analysis in this work, enabling us to identify a link between ATL’s 

object-identity code and a conjunction of visual feature decoding in occipital regions.  This type of 

analysis has great potential for future investigations of other configural stimuli, such as multi-

sensory interplay (Driver & Noesselt, 2008), to test whether the synchronous emergence of 

composing features co-occurs with the generation of a higher-level code.  Relating this measure 

to between-subject differences, as we have done here, can help elucidate the behavioral and 

neural consequences of connected lower-level conjunctions and higher-level representations. 

 In summary, this study has demonstrated that top-down retrieval of object knowledge 

leads to activation of shape-specific and color-specific codes in relevant specialized visual areas, 

as well as an object-identity code within left ATL.  Moreover, the presence of identity information 

in left ATL was more likely when shape and color information was simultaneously detectable in 

their respective feature regions.  The strength of this relationship predicted the correspondence 

between top-down and bottom-up generated identity activity patterns.  These findings support 

proposals that convergence zones integrate converging featural information into a less feature-

dependent representation of identity. 
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CHAPTER 3: INFORMATIONAL CONNECTIVITY: IDENTIFYING SYNCHRONIZED 

DISCRIMINABILITY OF MULTI-VOXEL PATTERNS ACROSS THE BRAIN 

 

Abstract 

The fluctuations in a brain region’s activation levels over a functional magnetic resonance 

imaging (fMRI) time-course are used in functional connectivity to identify networks with 

synchronous responses.  It is increasingly recognized that multi-voxel activity patterns contain 

information that cannot be extracted from univariate activation levels.  Here we present a novel 

analysis method that quantifies regions’ synchrony in multi-voxel activity pattern discriminability, 

rather than univariate activation, across a timeseries.  We introduce a measure of multi-voxel 

pattern discriminability at each time-point, which is then used to identify regions that share 

synchronous time-courses of condition-specific multi-voxel information.  This method has the 

sensitivity and access to distributed information that multi-voxel pattern analysis enjoys, allowing 

it to be applied to data from conditions not separable by univariate responses.  We demonstrate 

this by analyzing data collected while people viewed four different types of man-made objects 

(typically not separable by univariate analyses) using both functional connectivity and 

informational connectivity methods.  Informational connectivity reveals networks of object-

processing regions that are not detectable with functional connectivity.  The informational 

connectivity results support prior findings and hypotheses about object processing.  This new 

method allows investigators to ask questions that are not addressable through typical functional 

connectivity, just as MVPA has added new research avenues to those addressable with the 

general linear model. 
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Introduction 

The enormous wealth of data generated by functional magnetic resonance imaging 

(fMRI) has driven the continual development of new analytical methods to understand the brain’s 

functions and processes.  For many years, a predominant analysis approach has applied the 

general linear model (GLM) to compare blood oxygenation level dependent (BOLD) univariate 

activation levels across conditions, regions and subject groups (Friston et al., 1994).  The last ten 

years, however, have seen increased recognition within the fMRI community that information can 

also be encoded in the activity patterns of populations of voxels.  A multitude of studies have now 

successfully employed multi-voxel pattern analysis (MVPA) techniques to decode information 

contained within multi-voxel activity patterns (Haynes and Rees 2006; Norman, Polyn, Detre, & 

Haxby, 2006; O’Toole et al., 2007).  Many such studies have reported that their conditions of 

interest could not be distinguished by the mean voxel-response differences that are assessed in a 

univariate GLM approach (e.g., Haxby et al., 2001). 

In this study, we introduce an analysis method that combines MVPA’s access to 

distributed encoding, with connectivity analyses.  Functional connectivity (FC) techniques 

measure the degree of response-level synchrony between different brain regions or voxels 

(Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995).  The particular measures used to index 

connectivity (during rest or while performing a task) vary with different approaches (e.g., Friston 

et al., 1997), but a frequent goal is to identify regions with response levels that fluctuate in a 

synchronized manner.  Just as univariate analyses have led to numerous findings, GLM’s cousin 

– the analysis of fluctuating univariate responses of voxels or regions (FC) – has led to results in 

a wide spectrum of research fields.  In this paper, we introduce a method – Informational 

Connectivity (IC) – that could analogously be considered a cousin of MVPA. 

As discussed above, multi-voxel pattern investigations have revealed that one voxel’s 

response magnitude is frequently insensitive to information encoded across a pattern of voxels.  

Instead of comparing the magnitude of activation levels, multi-voxel analyses frequently employ a 

machine learning classifier to assess the multivariate discriminability of conditions.  While GLM 
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investigations look to increased or decreased response levels as an indication of relevant neural 

activity, studies using MVPA often consider the successful separation of conditions as being an 

indicator of relevant neural information.  In this paper, we introduce a method that quantifies the 

discriminability of multi-voxel patterns in a seed region and identifies regions of the brain that 

show synchronized discriminability over time. 

Whereas FC is frequently applied to measure connectivity between a seed and individual 

brain voxels, it is (by definition) not possible to measure multi-voxel patterns in single voxels.  

Instead, we quantify how well a condition can be discriminated from other conditions in the multi-

voxel patterns at each time-point in a scanning session.  We measure the time-course of 

discriminability for a seed region and for three-dimensional spheres (‘searchlights’) placed at 

every location in the brain.  We correlate the seed region’s discriminability time-course with the 

equivalent time-course of each searchlight: measuring the simultaneous ebb and flow of multi-

voxel distributed information across regions (compared to FC in Figure 1). 



	
  
33	
  

 

Figure 1: The relationship between Informational Connectivity and other fMRI measures. 

 

Since the conference presentation of an earlier version of this work (Coutanche and 

Thompson-Schill, 2011), Chiu and colleagues (2012) have employed a functional connectivity 

framework to identify voxels that vary in univariate responses for two cognitive states that were 

identified by a multivariate classifier in a region-of-interest (ROI).  Our approach contrasts with 

this by identifying regions that have synchronized discriminability of multi-voxel information (rather 

than changing univariate activation).  This makes our technique available for examining 

conditions that are not accompanied by differing univariate responses.  Multivariate techniques 
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have previously been applied in alternative connectivity approaches (such as the application of 

information-theoretical measures; Chai, Walther, Beck, & Fei-Fei, 2009; Lizier, Heinzle, 

Horstmann, Haynes, & Prokopenko, 2011).  Our approach contrasts with prior work that has 

applied multivariate analyses to functional connectivity results (e.g., Welchew et al., 2005), by 

employing its own metric (instead of analyzing univariate change) to track multi-voxel pattern 

discriminability, building on the success of MVPA at detecting information inaccessible to 

univariate measures.  This distinction is analogous to the difference between using MVPA and 

applying multivariate analyses to a GLM map.  Although both approaches might yield interesting 

results, MVPA is specifically sensitive to the distributed condition-information in populations of 

voxels. 

Here, we describe our method by example, and examine its effectiveness by applying it 

to a classic dataset from Haxby and colleagues (Haxby et al., 2001; later analyzed in: Hanson, 

Matsuka, & Haxby, 2004; O’Toole, Jiang, Abdi, & Haxby, 2005; Raizada and Connolly, 2012).  

For simplicity, and to test our technique’s sensitivity to conditions that are distinguishable by 

potentially subtle differences in activity patterns, we restrict our analyses to time-points 

associated with presentations of four man-made object categories.  We select six seed regions 

and identify brain areas that are informationally connected to each.  We compare these results to 

a conventional FC analysis.  The possible differences between these two methods include IC 

revealing: a subset of FC (selectivity), a superset of FC (sensitivity), a different set of regions, or 

no regions.  We predicted that IC would identify more areas of cortex than FC, based on findings 

that multivariate decoding can detect information that a typical GLM cannot (Haxby et al., 2001) 

and a recent direct comparison of MVPA and GLM showing that MVPA can identify more areas of 

relevant cortex (Jimura and Poldrack, 2012).  IC has MVPA’s sensitivity and access to distributed 

information that is not obtainable from univariate responses.  The larger IC networks might 

include the FC regions (i.e., a superset) or there may be little overlap.  In their comparison of 

MVPA and GLM results, Jimura and Poldrack (2012) noted that a “conjunction of the two 

analyses revealed relatively small commonality in significant results across the brain” (p. 549), 
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leading us to predict that informational and functional networks may be largely distinct.  One 

consequence of this predition is an expectation that some regions will be identified based on 

common univariate synchrony (FC) but not multivariate synchrony (IC).  This hypothesis is 

supported by prior findings that univariate differences can sometimes identify regions that are not 

identified from MVPA (Jimura and Poldrack, 2012; Quamme, Weiss, & Norman, 2010). 
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Method 

Stimuli and experimental design 

Full experimental details are available from the original manuscript employing this data 

(Haxby et al., 2001), but the relevant details are as follows.  Participants were presented with 24-

second blocks (separated by 12 s of rest) of gray-scale photographic images belonging to one of 

eight categories: faces, houses, cats, scrambled images, bottles, chairs, shoes and scissors.  For 

these analyses, we focused on the latter four categories (all man-made objects).  Within blocks, 

stimuli were presented for 500 ms with an interstimulus interval of 1,500 ms.  Participants 

identified object repeats (1-back) with a button-press.  One block of every category appeared in 

each of twelve runs (excepting one participant where eleven runs were available).  Analyses were 

performed on data for all runs from the five participants with anatomical T1-images and functional 

datasets available.  The condition-labels for the time-points were shifted by two TRs for the multi-

voxel pattern and IC analyses to account for the hemodynamic delay, giving nine TRs for each 

block and 108 for each condition across the experiment. 

 

Imaging pre-processing 

Hemodynamic changes were recorded with gradient echo echo-planar imaging with a 3T 

scanner (repetition time (TR) = 2.5 s, forty 3.5 mm thick sagittal slices, TE = 30 ms, flip angle = 

90; Haxby et al., 2001).  The functional data were slice-time corrected, motion-corrected, aligned 

to the subject’s anatomical image and detrended with a second order polynomial.  The 

anatomical image and functional data were transformed into standardized Talairach space with 

unchanged voxel resolution (3.5 x 3.75 x 3.75 mm for functional data).  For the IC analyses, the 

effects of motion and global signal were removed from the data by modeling six motion 

parameters (pitch, roll, yaw, x, y, z) and mean white matter signal, and then using the residuals 

for subsequent analyses.  This is equivalent to including motion and white matter signal as 

covariates in a FC model.  The white matter signal was extracted using SPM8’s segmentation 

procedure, which classifies voxels into gray matter, white matter and cerebrospinal fluid based on 
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image intensity and prior probabilities of the distribution of tissue types.  A threshold of 0.75 was 

employed to select white matter voxels.  The Analysis of Functional NeuroImages (AFNI) 

software package was used for preprocessing and relevant univariate analyses (Cox, 1996).  

Prior to MVPA and IC analyses, each voxel’s task and rest data were z-scored within each run; 

normalizing the run’s timeseries to have a mean of zero and unit variance. 

 

Seed regions 

We examined IC and FC for six empirically determined seed regions: two regions 

identified by both an MVPA searchlight and GLM group map; two regions found from the MVPA 

searchlight but not the GLM; two regions found in the GLM but not the searchlight.  To create the 

relevant group MVPA searchlight map, each individual’s dataset was submitted to a 4-way 

correlation-based classifier (a popular classification approach) to separate activity patterns from 

the four types of man-made objects.  We implemented a roaming searchlight analysis 

(Kriegeskorte, Goebel, & Bandettini, 2006), where a spherical volume (3-voxel radius) is centered 

on each brain voxel in turn and an analysis (in this case, classification) is conducted using data 

from the voxels included within the searchlight volume.  For each searchlight, a leave-one-run-out 

cross-validation procedure trained on eleven runs and tested on the twelfth.  Each testing TR’s 

vector of activity values was correlated with the mean activity pattern for each of the four 

conditions in the training set.  The condition that was most strongly correlated with the testing 

time-point determined the classifier’s prediction for that TR.  Classifier performance was 

calculated as the proportion of correctly predicted time-points (chance = 25%).  The classification 

accuracy from each searchlight was allocated to its central voxel for mapping purposes.  

Individual searchlight maps were smoothed (9 mm Full-Width at Half Maximum; FWHM) and 

subjected to a one-way group t-test for performance above chance.  As this was performed purely 

to identify seeds, we adopted a liberal threshold of p<0.005 and cluster size of at least 5 voxels. 

To create a group GLM map, each individual’s dataset was submitted to a typical 

univariate analysis with six motion parameters as covariates.  As the above searchlight analysis 
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attempted to distinguish the four man-made objects, we ran a similar analysis with the GLM: 

running six pairwise comparisons, smoothing each individual’s pairwise maps (9 mm FWHM) and 

submitting the maps for each comparison to a group analysis.  The six group maps were then 

thresholded at p < 0.005 and a union of the six maps was created.  A 5-voxel cluster threshold 

was then applied.  Relatively few voxels survived even this liberal threshold, as expected from 

prior literature showing that object identity is typically not identifiable from univariate differences 

(Haxby et al., 2001). 

The six seeds were created by selecting the central voxels of the two largest cluster 

volumes found only in the searchlight map, the two largest found only in the GLM map (although 

as discussed above, this was at a sub-significant level), and the two largest found in both maps.  

Selecting the seed locations based on the largest clusters (rather than statistical peaks) gave 

confidence that the majority of voxels in the seeds had the desired characteristic (e.g., condition-

differences in a GLM), and is also consistent with findings of greater reliability from cluster-based 

statistical thresholds (e.g., Thirion et al., 2007).  The seeds were located in the right inferior 

occipital gyrus, left inferior occipital gyrus, left fusiform gyrus, left superior temporal sulcus, right 

supramarginal gyrus and right postcentral sulcus (coordinates in Table 1).  A 3-voxel radius 

sphere (with a volume of 123 voxels) was placed at each central voxel to create each seed. 

 

Informational connectivity 

The metric underlying informational connectivity quantifies how robustly the real class’s 

activity pattern (versus the alternative classes) becomes discriminable at points along the 

timeseries.  During correlation-based MVPA, the activity pattern at a time-point (i.e., a vector of 

voxel activations m-voxels long, recorded at that time) is compared to the mean voxel activity 

pattern corresponding to each condition in the held-out training set (i.e., the mean vector of each 

condition that is calculated by averaging the condition’s time-points).  We quantified multi-voxel 

pattern discriminability for each time-point with the following procedure (also captured in the 

formulae below): 
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1. Calculate the Pearson correlation coefficient between the i) vector of voxel activation 

values for that time-point (i.e., its activity pattern) and ii) vector of mean voxel activation 

values for the time-point’s condition in the training data (i.e., the prototypical activity 

pattern for the condition).  Fisher-transform to z-score. 

2. Calculate the Pearson correlation coefficient between the i) vector of voxel activation 

values for that time-point (i.e., its activity pattern) and ii) vector of mean voxel activation 

values for each alternate condition in the training data (i.e., the prototypical activity 

patterns for the rival conditions). 

3. Identify the highest correlation from step 2 (i.e., the highest similarity to an ‘incorrect’ 

condition).  Fisher-transform to z-score. 

4. Multi-voxel Pattern Discriminability = Step 1 – Step 3 (i.e., Relationship to condition’s 

prototypical pattern minus Relationship to the most similar incorrect condition). 

 

The procedure is formalized in the below formulae, where x  is the normalized 1-by-m 

row vector of m voxel activation values at time-point n, y  is the normalized 1-by-m row training 

data vector of mean m voxel activation values for the correct (c) or incorrect (i) conditions relating 

to time-point n.  In the analyses conducted here, m was 123 (the searchlight volume), and n 

ranged from 1 to 432.  The artanh function normalizes the correlation coefficients through Fisher’s 

transform. 

rc[n]=
x[n].yc!
m−1

 

ri[n]=max
x[n].yi!
m−1

,∀i ≠ c
%

&
'
'

(

)
*
*  

Multi-voxel pattern discriminability = artanh rc[n]( )− artanh ri[n]( )  
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This multi-voxel pattern discriminability metric is calculated for each time-point across the 

timeseries, giving a dynamic series of values across the fMRI session (see Figure 2).  This metric 

can be intuitively related to the typical binary metric used in classification analyses: The 

commonly used correlation-based classifier would successfully predict a time-point’s condition 

when its data give a discriminability value above zero.  This type of classifier makes a prediction 

for each time-point based on which class’s training pattern is most strongly correlated with the 

time-point’s activity pattern.  In our measure, discriminability values are positive when a time-

point’s multi-voxel pattern is most strongly correlated with the training pattern of the correct class 

(i.e., the condition that was shown to participants).  Positive discriminability values therefore 

reflect that a time-point’s condition can be successfully predicted.  A negative value on the other 

hand, reflects that the training pattern for a non-present (rival) class has the highest correlation 

with the current time-point, which would lead to an incorrect prediction. 
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Figure 2: Pattern discriminability over time in real data.  Top: The underlying basis for the pattern 

discriminability metric – shown here for the bottle condition in one seed in one subject.  The blue 

line represents each time-point’s Fisher z-scored correlation with the training pattern for the 

correct class.  The green lines show the correlation values with mean training patterns for the 

three other classes.  Bottom: Pattern discriminability is calculated by taking the correlation with 

the correct class’s mean training pattern and subtracting the correlation strength of the strongest 

incorrect class (see text for details).  When a time-point’s value surpasses zero, it would reflect a 
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classifier successfully predicting that time-point’s condition.  The arrow shows the corresponding 

values between the plots. 

 

To create an IC map, multi-voxel pattern discriminability is calculated for the timeseries of 

the seed region, followed by the timeseries of every searchlight sphere identified in the roaming 

searchlight procedure described above (Kriegeskorte et al., 2006).  The timeseries of pattern 

discriminability from the seed region (i.e., a vector N-trials long) is then correlated with each 

searchlight’s timeseries of discriminability, through a non-parametric Spearman’s rank correlation.  

The resulting rs-value (representing the strength of the relationship between searchlight and 

seed) is placed at the voxel that lies at the center of each searchlight (a typical approach to 

mapping searchlight results; Kriegeskorte et al., 2006).  This produces a brain map of values that 

each reflects how closely the timeseries of multi-voxel pattern discriminability for that (searchlight) 

area matches the equivalent timeseries of the seed region.  The map therefore shows how 

strongly brain regions are correlated in terms of pattern discriminability (i.e., how ‘informationally 

connected’ they are) with the region-of-interest (the seed).  Each participant’s map is then Fisher-

transformed into z-scores, spatially smoothed (8 mm FWHM) and tested for values above zero 

(i.e., asking which searchlights are significantly correlated with the seed) in a one-way group t-

test.  The tools and scripts for running these analyses are freely available in the Informational 

Connectivity Toolbox (http://www.informationalconnectivity.org).  Statistical significance was 

tested using the same procedure (described below) for both IC and FC to enable direct 

comparisons. 

 

Functional connectivity 

The IC results were compared to results from a typical FC analysis.  We assessed FC for 

the same TRs analyzed using IC (TRs associated with the four man-made objects).  The 

timeseries of mean activation values for the TRs was extracted for each seed region.  This 

timeseries was then used as a predictor in a whole-brain GLM analysis, with six motion 
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parameters and mean white matter signal as covariates.  Individuals’ maps of correlation values, 

reflecting the correspondence between voxels’ and each seed’s timeseries, were converted to 

Fisher-transformed z-scores and spatially smoothed (8 mm FWHM).  All subjects’ maps were 

subjected to a one-way group t-test for values greater than zero.  The method for significance 

testing is outlined below. 

 

Significance testing 

We adopted the same significance testing approach for both IC and FC to enable direct 

comparisons.  For each seed region, the group statistical t-maps were first thresholded at p < 

0.001 (and also at p < 0.005 to ensure that the results are not dependent on a particular t-

threshold) for positive t-values in a one-way test to identify regions that were positively correlated 

with the seed.  To correct for multiple-comparisons, we employed permutation testing to 

determine the minimum cluster size required for corrected significance.  The seed’s timeseries of 

values (pattern-discriminability values for IC; univariate activation values for FC) were shuffled by 

randomly swapping blocks of presentations (i.e., moving the sets of nine contiguous TRs that 

were separated by rest).  One thousand group maps were created (constructed by randomly 

sampling from a set of one hundred permuted maps for each subject) and submitted to a group 

test in the same manner as the seed’s real (non-permuted) time-course, including thresholding at 

p < 0.001.  This gave a null distribution of 1,000 group maps.  We used this to determine the 

minimum cluster size needed in the real (non-permuted) group map for a corrected p-value of < 

0.05, by identifying the largest cluster size in each of the 1,000 permuted maps.  The 50th largest 

cluster size from this null distribution is the cluster size that would be expected by chance five 

times out of 100 (i.e., p < 0.05).  Any clusters larger than this in the true (non-permuted) group 

map are significant at p < 0.05 corrected.  This approach has the advantage of correcting in a 

manner that accounts for the dataset’s own level of smoothing, as each permutation undergoes 

the same processing as the true order.  The minimum cluster sizes were calculated separately for 

every seed and the two connectivity approaches. 
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Results 

We analyzed a dataset collected while subjects viewed blocks of images of four types of 

man-made objects, using our novel informational connectivity method to track and compare 

dynamic change in discriminability of multi-voxel patterns across time.  We compared these 

results to a typical functional connectivity analysis that tracks synchronized changes in univariate 

activation.  We employed six seeds, selected from regions showing univariate variation between 

conditions, MVPA decoding, or both. 

The IC and FC analyses identified different networks of regions, with IC revealing larger 

networks than FC in this man-made object dataset (Figure 3; Figure 5; Table 1).  These FC 

results were not specific to the p-value selected: Repeating the FC analysis with a more liberal p-

value (p < 0.005 with a permutation-generated minimum cluster size) generated similar networks 

of regions.  The different seeds varied in how many regions were informationally connected to 

them: for example, the right postcentral sulcus seed was informationally connected with a large 

variety of cortical areas, while the left inferior occipital gyrus seed was not (Figure 3). 

 

Region Informationally 
connected clusters 

Functionally 
connected clusters 

Volume  
(voxels) x y z Volume  

(voxels) x y z 

Univariate Seed 1: Right Postcentral Sulcus [x=39, y=-42, z=45] 

Left Precuneus 3871* -11 -43 36     

Left Fusiform Gyrus 3871* -30 -43 -10     

Left Fusiform Gyrus 3871* -37 -58 -7 19 -33 -56 -18 

Left Middle Temporal Gyrus 3871* -45 -58 19     

Left Superior Temporal Gyrus 318* -54 0 -6     

Left Superior Temporal Gyrus 112 -54 -30 12     

Left Parahippocampal Gyrus 83* -22 -12 -22     

Left Temporal Pole 83* -19 8 -26     
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Left Anterior Cingulate 78 -16 45 1     

Left Inferior Parietal Lobe 3871* -47 -43 47 31 -37 -38 53 

Left Orbital Gyrus 318* -35 27 -12     

Left Inferior Frontal Gyrus 318* -51 11 1     

Left Middle Frontal Gyrus 87 -40 19 34     

Left Superior Frontal Gyrus 3871* -11 0 53     

Left Superior Frontal Gyrus 3871* -7 17 57     

Left Caudate 170 -5 19 4     

Right Inferior Occipital Gyrus 3871* 37 -67 -7     

Right Fusiform Gyrus 3871* 25 -78 -13     

Right Fusiform Gyrus 3871* 40 -36 -14     

Right Superior Temporal Gyrus 3871* 39 -26 9     

Right Precentral Gyrus 3871* 55 2 22     

Right Supplementary Motor Area 3871* 5 -19 54     

Right Inferior Frontal Gyrus 3871* 46 33 6     

Right Inferior Frontal Gyrus 3871* 34 7 31     

Right Middle Frontal Gyrus 3871* 32 33 19 21 37 26 34 

Right Superior Frontal Gyrus 48 19 8 53     

Right Cerebellum 39 44 -41 -44     

Right Cerebellum 3871* 43 -43 -46     

Right Cerebellum 3871* 23 -55 -45     

Right Cerebellum 3871* 24 -43 -27     

Right Thalamus 3871* 8 -15 1     

Univariate Seed 2: Right Supramarginal Gyrus [x=49, y=-24, z=35] 

Left Lingual Gyrus 96 -2 -79 4     

Left Parahippocampal Gyrus 59 -18 -25 -13     
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Left Middle Temporal Gyrus 29 -54 -56 19     

Left Cingulate Gyrus 306* -12 7 30     

Left Cingulate Gyrus 911* -2 -20 44     

Left Supramarginal Gyrus 911* -60 -17 33     

Left Precentral Gyrus 911* -29 -21 61     

Left Inferior Frontal Gyrus 39 -30 23 -14     

Left Cerebellum 89 -51 -56 -26     

Left Cerebellum 66 -12 -68 -37     

Left Thalamus 306* -4 -10 15     

Right Fusiform Gyrus 37 37 -4 -29     

Right Superior Frontal Gyrus 41 3 44 36     

Right Cerebellum 87 30 -34 -26     

Right Putamen 82 30 -11 -3     

Left Supramarginal Gyrus     12 -58 -26 23 

Left Precentral Gyrus     10 -51 4 23 

Left Postcentral Gyrus     27 -44 -30 42 

Right Postcentral Gyrus     87 47 -8 16 

Multi-voxel Seed 1: Left Inferior Occipital Gyrus [x=-30, y=-75, z=-7] 

Left Calcarine Sulcus 225 -14 -96 -5     

Left Fusiform Gyrus 42 -33 -29 -23     

Left Superior Parietal Lobe 28 -18 -63 51 13 -26 -60 42 

Left Orbital Gyrus 22 -40 47 -5     

Left Cerebellum 23 -37 -75 -37     

Left Insula 22 -33 -7 16     

Right Inferior Occipital Gyrus 66* 29 -85 -12     

Right Middle Occipital Gyrus 66* 26 -86 12     
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Right Cerebellum 28 45 -67 -26     

Left Middle Occipital Gyrus     40 -26 -60 -11 

Left Middle Occipital Gyrus     11 -33 -79 27 

Multi-voxel Seed 2: Left Superior Temporal Sulcus [x=-51, y=-41, z=8] 

Left Calcarine Gyrus 2401* -15 -71 12     

Left Fusiform Gyrus 2401* -45 -40 -22     

Left Inferior Temporal Gyrus 2401* -39 0 -26     

Left Parahippocampal Gyrus 43 -19 -8 -29     

Left Superior Parietal Lobe 2401* -30 -64 51     

Left Postcentral Gyrus 2401* -27 -30 50     

Left Inferior Frontal Gyrus 2401* -53 14 2     

Right Middle Occipital Gyrus 95* 33 -82 7     

Right Lingual Gyrus 2401* 16 -96 -7     

Right Inferior Temporal Gyrus 95* 47 -59 -2     

Right Angular Gyrus 78 42 -70 38     

Right Supramarginal Gyrus 74 58 -41 38     

Right Precentral Gyrus 45 33 -23 57     

Right Cerebellum 2401* 47 -59 -33     

Right Cerebellum 2401* 12 -55 -15     

Right Insula  146 35 -19 12     

Common Seed 1: Right Inferior Occipital Gyrus [x=45, y=-61, z=-8] 

Left Fusiform Gyrus 76 -44 -56 -14     

Left Middle Temporal Gyrus 68 -54 -39 -5     

Left Supramarginal Gyrus 36 -65 -30 34     

Right Precuneus 31 20 -48 36     

Right Middle Temporal Gyrus 434 49 -72 12     
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Right Inferior Parietal Lobe 113* 43 -50 53     

Right Supramarginal Gyrus 113* 58 -41 38     

Right Superior Frontal Gyrus 28 12 15 42     

Right Superior Frontal Gyrus 62 16 53 1     

Right Inferior Occipital Gyrus     97* 30 -84 -8 

Right Inferior Temporal Gyrus     97* 56 -53 -8 

Common Seed 2: Left Fusiform Gyrus [x=-38, y=-40, z=-16]  

Left Middle Occipital Gyrus 101 -41 -67 7     

Right Middle Occipital Gyrus 101 51 -65 11     

Right Supramarginal Gyrus 49* 64 -40 29     

Right Inferior Parietal Lobe 49* 53 -47 44     

Left Superior Occipital Gyrus     12 -29 -71 26 

Right Fusiform Gyrus     24 48 -54 -14 

 

Table 1: Significantly connected regions for IC and FC analysis methods.  Significant regions are 

displayed for IC and FC (at p < 0.001 and cluster sizes determined by permutation testing).  

Similarly located regions are listed in the same row.  Clusters significant at the seed’s location are 

not listed to avoid circularity.  Coordinates represent the peak of significant voxel-clusters.  An 

asterisk indicates that the cluster contained multiple peaks, each included separately. 
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Figure 3: Significantly connected regions in IC and FC analyses for three of the seeds.  A group t-

test (p < 0.001 with minimum cluster size from permutation testing) determined significance 

(described in the Methods).  Connectivity strength is displayed between green (lower values) and 

red (higher values).  Each seed region is shown in blue. 

 

To visualize the two methods’ results without a minimum spatial extent, Figure 4 shows 

IC and FC connectivity before applying the cluster-based permutation thresholds.  By visualizing 

the degree of overlap in regions that were significantly informationally and functionally connected 
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with each seed, we found that the two methods identified either largely distinct or slightly 

overlapping networks of regions (Figure 5).  This is also reflected in the small number of regions 

that are listed under both methods in Table 1.  Many of the areas showing synchronous multi-

voxel pattern discriminability include regions that have been implicated in object processing.  

Evidence underlying this involvement is presented in the discussion. 

 

Figure 4: Connectivity strengths before cluster-based thresholding for three of the seeds.  The 

displayed regions have connectivity above zero from the group t-test at p < 0.001 prior to 



	
  
51	
  

thresholding in cluster-based permutation tests, to visualize sub-threshold connectivity for both 

methods.  Connectivity strength is displayed between green (lower values) and red (higher 

values).  Each seed region is shown in blue. 

 

Figure 5: Venn diagrams of voxels significantly connected to each seed through IC (dark gray) 

and FC (light gray).  Searchlights that overlapped with the relevant seed region have been 

removed.  Here, FC results come from an analysis using the timeseries of searchlights’ (rather 

than voxels’) mean values, to give a suitable comparison with the searchlight-based IC results. 

 

We examined the univariate and multivariate characteristics of searchlights, relative to 

their strength of IC and FC, and confirmed that the IC approach can highlight regions that would 

otherwise be ignored by FC.  For example, regions with low univariate activation to conditions, yet 
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decodable multi-voxel information, were ignored by FC, but detected with IC.  This can be seen in 

Figure 6, which shows the group average mean activation, multivariate information and 

connectivity strength (with the left fusiform gyrus seed) for searchlights across the brain.  The 

empty space visible in the top-left octant (representing searchlights with low response levels 

despite high decoding accuracy) in the FC, but not IC, graph highlights connectivity that is 

inaccessible to univariate FC.  This pattern was representative of connectivity with other seeds. 

 

Figure 6: Connectivity strengths of all searchlights with a seed in the left fusiform gyrus (present 

in both the GLM and MVPA searchlight results).  The IC and FC results for every brain 

searchlight are displayed relative to the searchlight’s mean univariate activation to the objects 

and decoding accuracy in a 4-way classification of object type.  Searchlights that overlapped with 

the seed region have been removed.  The FC values reflect the described FC approach, using 

each searchlight’s mean timeseries (rather than each voxel’s timeseries) to give a suitable 

comparison with IC (which reflects information in a searchlight volume).  The empty space visible 

in the top-left octant of the FC graph for searchlights with low response levels (despite high 

decoding accuracy) highlights connectivity that is inaccessible to univariate FC. 

 

The IC networks detected for each seed were not redundant with each other.  A large 

proportion of searchlights were significantly connected with only one seed (Figure 7) and 
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although some searchlights were identified in the networks of two seeds (blue in Figure 7), very 

few were found for three.  The distinctiveness apparent for different seed networks also confirms 

that informational connectivity is not redundant with conducting a typical MVPA searchlight 

analysis, as it can highlight distinct networks based on the selected seed. 
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Figure 7: Searchlights with significant informational connectivity to at least one of the three left 

hemisphere seeds (top) and at least one of the three right hemisphere seeds (bottom), shown 

against MVPA accuracy and mean functional activation.  The green, yellow and red colors each 

represent searchlights that are connected with just one seed.  Blue points show searchlights that 

are connected to two seeds and black points show searchlights connected to three seeds.  

Searchlights overlapping with one of the three seed regions were removed from each scatterplot. 
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Discussion 

This paper has presented a new method – informational connectivity – for measuring 

synchronous discriminability of multi-voxel patterns across the brain.  We have described a metric 

for quantifying multi-voxel pattern discriminability across a timeseries, and conducted an 

informational connectivity analysis on data collected as subjects viewed four types of man-made 

objects.  The IC method identified networks of synchronized regions that were not identified by 

functional connectivity.  Many of these brain areas are linked to object processing (discussed 

below), suggesting that multi-voxel pattern discriminability can identify networks involved in 

processing conditions that are characterized by multi-voxel information (such as perceiving 

objects). 

The limited overlap of regions identified by IC and FC is consistent with a prior report of 

low commonality between MVPA and univariate measures, with MVPA having greater sensitivity 

overall (Jimura and Poldrack, 2012).  GLM and MVPA approaches have been conceptualized as 

tapping basic processing (causing changes in univariate activation) versus representations of the 

content being processed (causing changes in pattern discrimination; Jimura and Poldrack 2012; 

Mur, Bandettini, & Kriegeskorte, 2009; although MVPA has also been applied to identify cognitive 

processes e.g., Esterman, Chiu, Tamber-Rosenau, & Yantis, 2009).  MVPA investigations into 

representational content, such as the type of man-made object being processed, have proven 

effective for advancing our understanding of the visual system (Eger, Ashburner, Haynes, Dolan, 

& Rees, 2008) and others (e.g., auditory system: Lee, Janata, Frost, Hanke, & Granger, 2011).  

Analogously, identifying networks characterized by synchronized discriminability of multi-voxel 

information will be valuable for investigators wishing to study how systems of brain areas are 

engaged.  A related proposed distinction between MVPA and GLM, which frames MVPA as 

reflecting sub-processing that varies during GLM-measured general processing (Jimura and 

Poldrack, 2012) would suggest that IC’s access to multi-voxel patterns would be valuable for 

mapping sub-processing networks. 
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Although a comprehensive discussion of the implications of specific findings from this 

analysis, in terms of our understanding of the visual system, is beyond the scope of this paper, 

we will make some comments on the types of hypotheses that can be informed by this approach.  

Firstly, the IC findings are consistent with theories that an object’s action representations become 

automatically activated when its visual or semantic properties are engaged (Chao and Martin, 

2000; Johnson-Frey, 2004; Mahon and Caramazza, 2009).  A frontal region, the left inferior 

frontal gyrus, has previously been linked to visual-to-motor transformations (Chao and Martin, 

2000) and was informationally connected to several of the seeds here.  Equally, the 

supramarginal gyrus, suggested as a location for representations of object-use skills (Johnson-

Frey, 2004), was informationally connected to four of the seeds.  Secondly, the distinctions 

between the IC and FC results for the left fusiform gyrus seed are consistent with a prior fMRI 

investigation into the organization of object-processing regions (Mahon et al., 2007).  Mahon and 

colleagues (2007) have reported that while the left and right fusiform gyri respond similarly to 

different object categories in terms of their mean BOLD activation, their underlying neural 

representations (when measured through repetition suppression) differ.  This is supported by the 

IC and FC differences reported here: the left and right fusiform gyri were functionally connected 

(fitting with Mahon et al.’s mean activation findings) but not informationally connected (for the 

same statistical thresholds), giving support for the left and right fusiform regions differing in their 

object representations (Mahon et al., 2007).  This study is the first to find that object-processing 

regions are linked together by common fluctuations in multi-voxel patterns for different types of 

man-made objects. 

As a primary analysis method, a key advantage of IC is its ability to examine synchrony 

within condition-related information that is not accessible from univariate response levels, such as 

object identity.  Dynamically changing cognitive states (such as attention to objects or visual 

properties) will also differentially affect systems during the time-course of an experiment.  For 

example, time-points marked by greater or reduced attention will likely show increased or 

decreased pattern discriminability.  Regions that process stimuli as part of an interconnected 
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system will often share these effects.  As well as acting as a primary analysis method, IC can be 

used as a further analysis after an MVPA searchlight procedure, which is often used to identify 

regions that have condition-relevant information or a relationship to individual differences (e.g., 

Coutanche, Thompson-Schill, & Schultz, 2011).  The brain regions identified in a searchlight 

analysis will likely decode conditions using a variety of separation principles and forms of relevant 

information (i.e., the analysis is “opportunistic”; p. 550, Jimura and Poldrack, 2012).  For example, 

man-made objects could be separated by visual appearance in early visual areas, viewpoint-

independent identity in later visual areas, associated motor movements in motor areas, and so 

on.  A region’s basis for its distributed information will strongly influence which stimuli and time-

points are particularly discriminable.  The IC approach can help identify different networks of 

regions, moving beyond one overall MVPA searchlight map.  The ability to separate regions 

based on decoding principles is visible in the IC results for a left inferior occipital gyrus seed in 

this work.  This posterior occipital region showed strong informational connectivity with occipital 

regions in the opposite hemisphere, but little other contralateral cortex.  In contrast, more anterior 

seeds had more extensive IC.  This result was expected, given the basic visual properties that 

are processed in these early visual areas (Kamitani and Tong, 2005).  Once the visual processing 

stream moves to more anterior brain areas, the processing target moves away from basic visual 

properties to whole objects, which are processed across different brain regions. 

Among other applications, IC can also be used to compare groups by directly contrasting 

subjects’ informational connectivity values, or to examine differences in informational connectivity 

strengths between tasks.  For example, certain networks may show connectivity increases if 

participants make action-related, compared to visual, judgments of objects.  The IC method’s 

general framework can be extended to use classifiers other than the correlation-based approach 

employed here.  Many classifiers, including support vector machines, assign continuous values to 

the potential conditions for each time-point.  These condition-weights determine a classifier’s 

predictions, and incorporate how well the conditions’ multi-voxel patterns can be distinguished 

from each other.  By extracting and treating these values in the manner outlined here for 
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correlations (i.e., correlating a timeseries of classifier condition-weights instead of z-scored 

correlation coefficients), investigators can draw on the advantages of a range of classification 

methods. 

Although we employed IC using spherical volumes for seeds and searchlights, the 

method is compatible with seeds and targets that are defined in other ways, such as through 

anatomical masks or a separate functional localizer.  In some cases, it might be desirable to 

select a seed with a theoretically driven size.  For example, an investigator may wish to ensure 

that the entire visual field of retinotopic V1 is selected as a seed so that the pattern 

discriminability metric reflects the information available from this entire region.  Future 

investigations that employ both FC and IC can examine seeds that are defined according to a 

variety of criteria.  Here, we selected the univariate-based seeds based on GLM contrasts that 

were directly comparable to the selection criteria of the multivariate seeds (condition 

discriminability), but a connectivity seed can be defined in a number of different ways, such as 

selecting regions with high within-condition variance.  The seed and data used in an FC or IC 

analysis may be influenced by the particular question under investigation.  Whereas studies of the 

object-processing system, for example, may examine a timeseries that fluctuates with different 

conditions, other targets, such as the influence of attention, may be accessible from seeds that 

show fluctuating responses within a condition. 

One methodological question concerns the length of a timeseries required for robust IC 

results.  The specific data requirements for a given experiment will depend strongly on a number 

of factors, including the conditions that trigger the data.  For IC, experimental paradigms that 

extensively sample a stimulus space, or that challenge a neural system to varying degrees, will 

likely produce strongly fluctuating multi-voxel discriminability, potentially increasing the 

opportunity to sensitively detect relationships between regions.  Similarly, an engaging task will 

likely reduce participant fatigue, and more reliably engage neural representations, thereby 

producing a more robust measure of discriminability at each time-point.  In addition to influencing 

the quantity of time-points in the IC timeseries, the amount of collected data will influence the 
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robustness of the training model.  This factor is well known to MVPA investigators, and readers 

are referred to relevant discussions (e.g., Mur et al., 2009; O’Toole et al., 2007) or approaches to 

improving training data (e.g., Coutanche & Thompson-Schill, 2012) for further information.  We 

note that for the data analyzed here, we observed (from re-running analyses with randomly 

selected subsets of runs) that the reported informationally connected regions reached 

significance (as measured with a group mean t-value) when the subjects’ IC values were 

calculated from a minimum of between seven and eleven runs (depending on the seed).  For this 

particular set of stimuli and participants, approximately seven to eleven blocks of each condition 

were therefore sufficient for identifying the brain networks reported above. 

Although we found that a prototypical FC analysis was unable to identify the networks 

found using IC, we acknowledge that a variety of FC analysis measures are available, and others 

may be more effective.  Future work may wish to compare IC results to other FC analysis 

approaches.  Equally, there may be circumstances where investigators wish to track variations in 

a general process, without influence from sub-process or representational nuances.  Analyzing 

data with FC or IC does not preclude using the other method: in many circumstances, they could 

be used together and their results compared, as discussed above for the left and right fusiform 

gyri.  A joint approach may lead to a more nuanced understanding of relevant networks.  We 

have created and made available an Informational Connectivity Toolbox online 

(http://www.informationalconnectivity.org) to aid investigators in applying this technique to their 

own data. 
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CHAPTER 4: GENERAL DISCUSSION 

 

“If the instruments played the identical parts, but in a different order, the nature of the 
symphony changes.” 
 
 – McIntosh (2000, p. 863) 

 

How are distinct multi-voxel codes integrated across object-processing regions of the 

human brain?  Chapter 2 examined the activation of memory representations for objects’ specific 

features and their convergence to a neural representation of identity.  Brain activity was recorded 

as participants attempted to detect one of four types of fruits and vegetables that differed 

orthogonally in shape and color. Top-down object knowledge was examined by analyzing data 

from time periods in which the search target had not yet appeared.  Activity patterns of the left 

anterior temporal lobe (ATL) contained information about a retrieved object’s identity, but not its 

features.  In contrast, the object’s specific shape and color, but not its identity, were decoded from 

distinct regions of early visual cortex.  In support of theories that hypothesize the existence of a 

convergence zone, the presence of identity information within the left ATL predicted concurrent 

decoding of the retrieved object’s color in right V4, and shape in bilateral lateral occipital cortex.  

Chapter 3 outlined a novel analysis method – informational connectivity (IC) – that identifies 

networks of regions with synchronized fluctuations in multi-voxel information.  The IC method can 

detect connectivity for conditions with multi-voxel pattern signatures, and can evaluate whether 

particular regions’ connectivity is sensitive to the fine-grained perceptual and cognitive 

distinctions encoded in distributed activity patterns.  This new analytical method detected 

networks of regions that are informationally connected during object processing.  Many of the 

identified inter-regional relationships were not detectable from fluctuating univariate responses, 

suggesting they are specific to information within multi-voxel patterns, and the high degree of 

perceptual and cognitive specificity that multi-voxel patterns reflect (Brants, Baeck, Wagemans, & 

Op de Beeck, 2011; Eger, Ashburner, Haynes, Dolan, & Rees, 2008).  These results highlight 
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that, in addition to multi-voxel patterns playing an important role within individual regions, 

networks of object-processing areas share fluctuations in multi-voxel information. 

 Collectively, the results presented here show that networks of regions can be 

characterized by synchronous pattern-emergence across time. Furthermore, because multi-voxel 

patterns can reflect cognitive and perceptual targets with a high-degree of specificity, such as 

differences in shape or object-type, these findings in turn reveal that brain networks are 

modulated by fine-grained distinctions in cognitions and perceptions.  This did not have to be 

true.  If inter-regional connectivity depended solely on engagement of a process (e.g., whether 

shape processing is occurring), rather than the specific processing target (e.g., whether a sphere 

or cylinder is retrieved), multi-voxel information synchrony would not have: a) revealed a link 

between specific features and object identity in the left ATL, shown in Chapter 2; and b) detected 

large object networks that are not present in univariate fluctuations, shown in Chapter 3.  By 

examining synchronous decoding, the investigations in this dissertation have answered questions 

that are not addressable using existing approaches, such as MVPA (which does not typically 

relate regions across time) and functional connectivity (which is insensitive to the fine-grained 

cognitive distinctions encoded within the brain’s multi-voxel patterns).  The novel approaches 

employed here have allowed the testing of a convergence zone theory (Chapter 2) and the 

existence of distributed semantic networks that would otherwise have remained inaccessible 

(Chapter 3). 

 The results presented here speak to an existing debate regarding how object concepts 

are represented in the human brain (Binder & Desai, 2011; Martin, 2007; Simmons & Barsalou, 

2003).  The results of Chapter 2 are consistent with the existence of a convergence zone, 

particularly findings of: feature-specific decoding in specialized areas of visual cortex (i.e., the 

substrates of convergence), object-identity decoding in the potential convergence zone (i.e., the 

results of convergence), and a direct relationship between the zone’s retrieval of object identity 

and synchronous activation of the relevant feature fragments (i.e., the convergence of features to 

identity).  As discussed in Chapter 2, the identification of this color-and-shape convergence zone 
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offers a new explanation of recent reports of severely affected semantic dementia patients, for 

whom knowledge of items that are rich in both color and shape was particularly vulnerable to 

disruption (Hoffman, Jones, & Lambon Ralph, 2012).  If temporal lobe atrophy were to reach the 

color-and-shape convergence zone identified in Chapter 2, we would expect this result. Hoffman 

and colleagues suggested that atrophy may have extended into feature regions in these patients. 

Although atrophy of feature regions is possible, disruption of a convergence zone is a more 

parsimonious explanation for the patients’ color and shape deficits, than damage to distinct color 

and shape systems. 

Additionally, the studies’ findings emphasize an important role for distributed 

sensorimotor cortex.  First, the discovered link between a retrieved object’s identity code and 

simultaneous feature codes is more consistent with a reciprocal active connection between the 

integration region and sensorimotor cortices than it is with a single amodal hub.  Additionally, the 

IC analysis of object processing in Chapter 3 revealed large informationally connected networks 

within frontoparietal action cortex, during a basic (1-back) task that did not require explicit 

retrieval of action knowledge.  These results are consistent with prior findings that action-related 

processing is engaged when manipulable objects are processed (Chao & Martin, 2000).  The IC 

findings are therefore consistent with sensorimotor cortices playing a central role in the 

perceptual and conceptual processing of object-concepts, at a high degree of specificity. 

Taken together, the results support the existence of one or more integration zones, with 

an important role for early sensorimotor cortex.  One model that is consistent with these findings 

is the “hub-and-spoke” model of semantic memory (Lambon Ralph, Sage, Jones, & Mayberry, 

2010).  In the context of the studies presented here, the left ATL region from Chapter 2 has the 

role of an integrative hub, while lateral occipital cortex, right V4 (Chapter 2), and the dorsal action 

network (Chapter 3) are spokes. 

Theories proposing integration regions differ in a number of respects, such as the 

number of proposed regions (e.g., Damasio, 1989; Patterson, Nestor, & Rogers, 2007) and 

whether they extend beyond the temporal lobe (Binder & Desai, 2011).  Future research will be 
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needed to distinguish between these alternatives.  The new interpretation of patient deficits 

presented above is more consistent with multiple convergence zones, as items rich in sound and 

motion or tactile and action properties (alternative convergences) were unaffected by disruption to 

the potential convergence zone (Hoffman et al., 2012).  Some of the regions identified in the 

informationally connected networks of Chapter 3 may act as convergence zones.  For example, 

multi-voxel patterns in frontoparietal action cortex may have dependences on synchronous 

properties, such as a particular grip and type of manipulation. 

The work here suggests several avenues of future research.  The findings and analysis 

methods of Chapter 2 can be applied to other visual features; for example motion, to ask whether 

other feature combinations (e.g., shape and motion) would converge on the same or a different 

cortical location as shape and color.  Relatedly, does the addition of a third feature (e.g., shape, 

color and motion) prompt convergence in the same region, or at a more anterior position in the 

temporal lobe? Such a result might be predicted from accounts hypothesizing a hierarchy of 

convergence zones (Meyer & Damasio, 2009). 

Future work may also further examine the implications of two regions having greater 

multi-voxel pattern synchrony than univariate synchrony, and vice versa.  The direction of this 

difference might indicate the specificity at which a brain network is processing a perceptual or 

cognitive target, in the same manner that multi-voxel and univariate analyses reflect this (Brants 

et al., 2011; Coutanche, 2013).  Systematically manipulating the specificity of object distinctions, 

and measuring changes in IC between object regions, could help illuminate this further. 

Our knowledge of an object includes its features, and how they are bound together into a 

coherent identity.  The research presented here has found that perceptual and conceptual object 

processing is associated with the synchronous emergence of multi-voxel patterns across a 

network of regions.  A region in the left ATL was found to have a number of properties that are 

predicted by a theory of a neural convergence zone, including a close link between information 

about object identity and the synchronous activation of an object’s specific features in specialized 

visual areas of cortex.  Further, the findings reported here suggested that when we perceive 
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objects, large networks of cortex show shared fluctuations of information within distributed activity 

patterns.  This work reveals that connectivity between object-processing regions is affected by 

variations across features and objects at a high degree of specificity. 

  



	
  
65	
  

BIBLIOGRAPHY 
 

Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive 

Sciences, 15(11), 527–536. 

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional connectivity in 

the motor cortex of resting human brain using echo-planar mri. Magnetic resonance in 

medicine, 34(4), 537–541. 

Bouvier, S. E., & Engel, S. A. (2006). Behavioral deficits and cortical damage loci in cerebral 

achromatopsia. Cerebral Cortex, 16(2), 183–191. 

Bramão, I., Faísca, L., Forkstam, C., Reis, A., & Petersson, K. M. (2010). Cortical brain regions 

associated with color processing: an FMRI study. The open neuroimaging journal, 4, 164–

173. 

Brants, M., Baeck, A., Wagemans, J., & Op de Beeck, H. P. (2011). Multiple scales of 

organization for object selectivity in ventral visual cortex. NeuroImage, 56(3), 1372–1381. 

Carlson, T., Hogendoorn, H., Hubert Fonteijn, & Verstraten, F. A. J. (2011). Spatial coding and 

invariance in object-selective cortex. Cortex, 47(1), 14–22. 

Cavina-Pratesi, C., Kentridge, R. W., Heywood, C. A., & Milner, A. D. (2010). Separate 

processing of texture and form in the ventral stream: evidence from FMRI and visual 

agnosia. Cerebral Cortex, 20(2), 433–446. 

Chai, B., Walther, D. B., Beck, D. M., and Fei-Fei, L. (2009). Exploring functional connectivity of 

the human brain using multivariate information analysis. Advances in neural information 

processing systems, 22, 270–278. 

Chao, L. L., and Martin, A. (2000). Representation of Manipulable Man-Made Objects in the 

Dorsal Stream. NeuroImage, 12(4), 478–484. 

Chiu, Y.-C., Esterman, M. S., Gmeindl, L., and Yantis, S. (2012). Tracking cognitive fluctuations 

with multivoxel pattern time course (MVPTC) analysis. Neuropsychologia, 50(4), 479–486. 



	
  
66	
  

Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1990). Attentional 

modulation of neural processing of shape, color, and velocity in humans. Science, 

248(4962), 1556–1559. 

Coutanche, M. N. (2013). Distinguishing multi-voxel patterns and mean activation: Why, how, and 

what does it tell us? Cognitive, affective & behavioral neuroscience. 

Coutanche, M.N., and Thompson-Schill, S.L. (2011, April). Informational Connectivity: a novel 

fMRI analysis method for identifying brain areas that share distributed encoding principles. 

Poster presented at the Cognitive Neuroscience Society Annual Meeting 2011, San 

Francisco, CA. 

Coutanche, M. N., and Thompson-Schill, S. L. (2012). The advantage of brief fMRI acquisition 

runs for multi-voxel pattern detection across runs. NeuroImage, 61(4), 1113–1119. 

Coutanche, M. N., Thompson-Schill, S. L., and Schultz, R. T. (2011). Multi-voxel pattern analysis 

of fMRI data predicts clinical symptom severity. NeuroImage, 57(1), 113–123. 

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance 

neuroimages. Computers and Biomedical Research, 29(3), 162–173. 

Damasio, A. R. (1989). The Brain Binds Entities and Events by Multiregional Activation from 

Convergence Zones. Neural Computation, 1(1), 123–132. 

Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on 

“sensory-specific” brain regions, neural responses, and judgments. Neuron, 57(1), 11–23. 

Eger, E., Ashburner, J., Haynes, J.-D., Dolan, R. J., & Rees, G. (2008). fMRI activity patterns in 

human LOC carry information about object exemplars within category. Journal of 

Cognitive Neuroscience, 20(2), 356–370. 

Esterman, M., Chiu, Y.-C., Tamber-Rosenau, B. J., and Yantis, S. (2009). Decoding cognitive 

control in human parietal cortex. Proceedings of the National Academy of Sciences of the 

United States of America, 106(42), 17974–17979. 



	
  
67	
  

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). 

Whole brain segmentation: automated labeling of neuroanatomical structures in the 

human brain. Neuron, 33(3), 341–355. 

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). 

The human brain is intrinsically organized into dynamic, anticorrelated functional networks. 

Proceedings of the National Academy of Sciences of the United States of America, 

102(27), 9673–9678. 

Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., and Dolan, R. J. (1997). 

Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 

218–229. 

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., and Frackowiak, R. S. J. 

(1994). Statistical parametric maps in functional imaging: a general linear approach. 

Human brain mapping, 2(4), 189–210. 

Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). 

Differential processing of objects under various viewing conditions in the human lateral 

occipital complex. Neuron, 24(1), 187–203. 

Hanson, S. J., Matsuka, T., and Haxby, J. V. (2004). Combinatorial codes in ventral temporal lobe 

for object recognition: Haxby (2001) revisited: is there a “face” area? NeuroImage, 23(1), 

156–166. 

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). 

Distributed and overlapping representations of faces and objects in ventral temporal 

cortex. Science, 293(5539), 2425–2430. 

Haynes, J.-D., and Rees, G. (2006). Decoding mental states from brain activity in humans. 

Nature Reviews. Neuroscience, 7(7), 523–534. 

Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic Dementia Progressive 

Fluent Aphasia with Temporal Lobe Atrophy. Brain, 115(6), 1783–1806. 



	
  
68	
  

Hoffman, P., Jones, R. W., & Lambon Ralph, M. A. (2012). The degraded concept representation 

system in semantic dementia: damage to pan-modal hub, then visual spoke. Brain, 

135(12), 3770–3780. 

Jimura, K., and Poldrack, R. A. (2012). Analyses of regional-average activation and multivoxel 

pattern information tell complementary stories. Neuropsychologia, 50(4), 544–552. 

Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in 

Cognitive Sciences, 8(2), 71–78. 

Kamitani, Y., and Tong, F. (2005). Decoding the visual and subjective contents of the human 

brain. Nature Neuroscience, 8(5), 679–685. 

Kamitani, Y., and Tong, F. (2006). Decoding seen and attended motion directions from activity in 

the human visual cortex. Current biology: CB, 16(11), 1096–1102. 

Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical 

developments, current evidence and future directions. Cortex, 48(7), 805–825. 

Kosslyn, S. M., Thompson, W. L., Costantini-Ferrando, M. F., Alpert, N. M., & Spiegel, D. (2000). 

Hypnotic visual illusion alters color processing in the brain. The American journal of 

psychiatry, 157(8), 1279–1284. 

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. 

Proceedings of the National Academy of Sciences of the United States of America, 

103(10), 3863–3868. 

Lambon Ralph, M. A., & Patterson, K. (2008). Generalization and Differentiation in Semantic 

Memory. Annals of the New York Academy of Sciences, 1124(1), 61–76. 

Lambon Ralph, M. A., Sage, K., Jones, R. W., & Mayberry, E. J. (2010). Coherent concepts are 

computed in the anterior temporal lobes. Proceedings of the National Academy of 

Sciences, 107(6), 2717–2722. 

Lee, Y.-S., Janata, P., Frost, C., Hanke, M., and Granger, R. (2011). Investigation of melodic 

contour processing in the brain using multivariate pattern-based fMRI. NeuroImage, 57(1), 

293–300. 



	
  
69	
  

Lee, S.-H., Kravitz, D. J., & Baker, C. I. (2012). Disentangling visual imagery and perception of 

real-world objects. NeuroImage, 59(4), 4064–4073. 

Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J.-D., and Prokopenko, M. (2011). Multivariate 

information-theoretic measures reveal directed information structure and task relevant 

changes in fMRI connectivity. Journal of computational neuroscience, 30(1), 85–107. 

Mahon, B. Z., and Caramazza, A. (2009). Concepts and categories: a cognitive 

neuropsychological perspective. Annual review of psychology, 60, 27–51. 

Mahon, B. Z., Milleville, S. C., Negri, G. A. L., Rumiati, R. I., Caramazza, A., and Martin, A. 

(2007). Action-related properties shape object representations in the ventral stream. 

Neuron, 55(3), 507–520. 

Martin, A. (2007). The representation of object concepts in the brain. Annual Review of 

Psychology, 58, 25–45. 

Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: structure and processes. 

Current Opinion in Neurobiology, 11(2), 194–201. 

Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in 

neurosciences, 29(6), 317–322. 

McIntosh, A. R. (2000). Towards a network theory of cognition. Neural networks, 13(8-9), 861–

870. 

McKeefry, D. J., & Zeki, S. (1997). The position and topography of the human colour centre as 

revealed by functional magnetic resonance imaging. Brain, 120 (12), 2229–2242. 

McNorgan, C. (2012). A meta-analytic review of multisensory imagery identifies the neural 

correlates of modality-specific and modality-general imagery. Frontiers in Human 

Neuroscience, 6, 285. 

Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architecture for 

recognition and memory. Trends in neurosciences, 32(7), 376–382. 



	
  
70	
  

Mitchell, T., Hutchinson, R., Niculescu, R., Pereira, F., Wang, X., Just, M., & Newman, S. (2004). 

Learning to Decode Cognitive States from Brain Images. Machine Learning, 57(1), 145–

175. 

Morita, T., Kochiyama, T., Okada, T., Yonekura, Y., Matsumura, M., & Sadato, N. (2004). The 

neural substrates of conscious color perception demonstrated using fMRI. NeuroImage, 

21(4), 1665–1673. 

Mur, M., Bandettini, P. A., and Kriegeskorte, N. (2009). Revealing representational content with 

pattern-information fMRI—an introductory guide. Social Cognitive and Affective 

Neuroscience, 4(1), 101 –109. 

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of 

logistic regression and naive bayes. Advances in neural information processing systems, 

2(14), 841–848. 

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond mind-reading: multi-

voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430. 

O’Toole, A. J., Jiang, F., Abdi, H., and Haxby, J. V. (2005). Partially distributed representations of 

objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17(4), 

580–590. 

O’Toole, A. J., Jiang, F., Abdi, H., Pénard, N., Dunlop, J. P., and Parent, M. A. (2007). 

Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification 

Approaches to the Analysis of Functional Neuroimaging Data. Journal of Cognitive 

Neuroscience, 19(11), 1735–1752. 

Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The 

representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 

8(12), 976–987. 

Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human 

occipitotemporal cortex. Proceedings of the National Academy of Sciences of the United 

States of America, 108(29), 12125–12130. 



	
  
71	
  

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial 

overview. NeuroImage, 45(1 Suppl), S199–209. 

Pobric, G., Jefferies, E., & Lambon Ralph, M. A. (2010). Category-specific versus category-

general semantic impairment induced by transcranial magnetic stimulation. Current 

biology, 20(10), 964–968. 

Quamme, J. R., Weiss, D. J., and Norman, K. A. (2010). Listening for recollection: a multi-voxel 

pattern analysis of recognition memory retrieval strategies. Frontiers in Human 

Neuroscience, 4. 

Raizada, R. D. S., and Connolly, A. C. (2012). What makes different people’s representations 

alike: neural similarity space solves the problem of across-subject fMRI decoding. Journal 

of cognitive neuroscience, 24(4), 868–877. 

Reddy, L., Tsuchiya, N., & Serre, T. (2010). Reading the mind’s eye: decoding category 

information during mental imagery. NeuroImage, 50(2), 818–825. 

Roe, A. W., Chelazzi, L., Connor, C. E., Conway, B. R., Fujita, I., Gallant, J. L., … Vanduffel, W. 

(2012). Toward a unified theory of visual area V4. Neuron, 74(1), 12–29. 

Rogers, T. T., Patterson, K., & Graham, K. (2007). Colour knowledge in semantic dementia: It is 

not all black and white. Neuropsychologia, 45(14), 3285–3298. 

Seghier, M. L. (2013). The Angular Gyrus Multiple Functions and Multiple Subdivisions. The 

Neuroscientist, 19(1), 43–61. 

Simmons, W. K., & Barsalou, L. W. (2003). The similarity-in-topography principle: reconciling 

theories of conceptual deficits. Cognitive Neuropsychology, 20(3), 451–486. 

Singh, V., Miyapuram, K. P., & Bapi, R. S. (2005). Detection of Cognitive States from fMRI data 

using Machine Learning Techniques. In: Proceedings of Twentieth International 

Conference on Artificial Intelligence. (2007) 587–592. 

Spiridon, M., & Kanwisher, N. (2002). How distributed is visual category information in human 

occipito-temporal cortex? An fMRI study. Neuron, 35(6), 1157–1165. 



	
  
72	
  

Stokes, M., Thompson, R., Cusack, R., & Duncan, J. (2009). Top-down activation of shape-

specific population codes in visual cortex during mental imagery. The Journal of 

Neuroscience, 29(5), 1565–1572. 

Stokes, M., Thompson, R., Nobre, A. C., & Duncan, J. (2009). Shape-specific preparatory activity 

mediates attention to targets in human visual cortex. Proceedings of the National 

Academy of Sciences, 106(46), 19569–19574. 

Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., and Poline, J.-B. (2007). Analysis of a 

large fMRI cohort: Statistical and methodological issues for group analyses. NeuroImage, 

35(1), 105–120. 

Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: inferring “how” from 

“where.” Neuropsychologia, 41(3), 280–292. 

Tong, F., & Pratte, M. S. (2012). Decoding patterns of human brain activity. Annual review of 

psychology, 63, 483–509. 

Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2009). Natural scene categories revealed 

in distributed patterns of activity in the human brain. The Journal of neuroscience, 29(34), 

10573–10581. 

Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., and 

Bullmore, E. (2005). Functional disconnectivity of the medial temporal lobe in Asperger’s 

syndrome. Biological psychiatry, 57(9), 991–998. 

Zhao, M., & Lyengar, S. (2010). Nonconvergence in Logistic and Poisson Models for Neural 

Spiking. Neural Computation, 22(5), 1231–1244. 


