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ABSTRACT 

 

COMPUTATIONAL MODELING OF GEOMETRY DEPENDENT PHONON 

TRANSPORT IN SILICON NANOSTRUCTURES 

Drew A. Cheney 

Dr. Jennifer R. Lukes 

 

Recent experiments have demonstrated that thermal properties of semiconductor 

nanostructures depend on nanostructure boundary geometry.  Phonons are quantized 

mechanical vibrations that are the dominant carrier of heat in semiconductor materials 

and their aggregate behavior determine a nanostructure’s thermal performance.  Phonon-

geometry scattering processes as well as waveguiding effects which result from coherent 

phonon interference are responsible for the shape dependence of thermal transport in 

these systems.  Nanoscale phonon-geometry interactions provide a mechanism by which 

nanostructure geometry may be used to create materials with targeted thermal properties.  

However, the ability to manipulate material thermal properties via controlling 

nanostructure geometry is contingent upon first obtaining increased theoretical 

understanding of fundamental geometry induced phonon scattering processes and having 

robust analytical and computational models capable of exploring the nanostructure design 

space, simulating the phonon scattering events, and linking the behavior of individual  
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phonon modes to overall thermal behavior.  The overall goal of this research is to predict 

and analyze the effect of nanostructure geometry on thermal transport. To this end, a 

harmonic lattice-dynamics based atomistic computational modeling tool was created to 

calculate phonon spectra and modal phonon transmission coefficients in geometrically 

irregular nanostructures. The computational tool is used to evaluate the accuracy and 

regimes of applicability of alternative computational techniques based upon continuum 

elastic wave theory.  The model is also used to investigate phonon transmission and 

thermal conductance in diameter modulated silicon nanowires.  Motivated by the 

complexity of the transmission results, a simplified model based upon long wavelength 

beam theory was derived and helps explain geometry induced phonon scattering of low 

frequency nanowire phonon modes.   
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1 Introduction 

1.1 Experimental and Theoretical Background  

In contrast to most conventional engineering materials, semiconductor 

nanostructures exhibit thermal properties that depend on their size and geometry.  For 

example, it has been experimentally demonstrated that sub-micron structures such as 

suspended silicon thin films [1] silicon on insulator layers [2] , and silicon nanowires 

[3][4] have much lower thermal conductivities than bulk silicon.  Depending on 

temperature and nanostructure size, thermal conductivity can be reduced by a factor of 

100 or more when compared to bulk silicon.  Researchers have also demonstrated that 

nanostructures with augmented surface roughness can exhibit even further decreased 

thermal conductivity when compared with smooth nanowires [5], [6].  More recent 

experiments have shown that more ordered nanostructure geometries also exhibit 

geometry dependent thermal properties.  For example, silicon nanowires with a 

controlled, corrugated boundary topology can reduce the thermal conductance relative to 

a smooth nanowire by factor of up to approximately 60% [7] and serpentine shaped 

nanowires exhibit a thermal conductance that is reduced by a factor of about 30% [8].   

The unique thermal behavior of nanostructures is a consequence of the behavior of 

the systems’ phonons.  Phonons are quantized lattice vibrations that are the dominant 

carrier of heat in dielectric solids and semiconductors.  At most length scales, phonons 

scatter heavily before encountering a structure’s boundary.  As a result, phonon-boundary 
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interactions have negligible impact on thermal transport and the thermal conductivity of a 

material is independent of structure size and geometry.  However, if the size of a 

structure is greatly reduced so that the mean free path of the phonon, which is the 

characteristic length the phonon travels before scattering, is comparable to the structure’s 

size, phonon-boundary interactions can significantly influence phonon transport in the 

system and cause size and geometry dependent thermal properties. 

Phonon-boundary interactions impact aggregate phonon transport and thermal 

properties of nanostructures in two ways.  First, the increased surface area to volume 

ratios characteristic of nanostructures increases the incidence of boundary scattering 

which suppresses phonon transport and results in lower thermal conductivity.  For 

regimes where boundary scattering dominates other phonon scattering mechanisms, the 

geometric details of the boundary can strongly influence the scattering process and result 

in thermal properties that not only depend on size, but also on nanostructure shape.  

Second, coherent reflections of phonons off of nanostructure boundaries cause phonon 

interference and results in phonon spectra that are different from bulk materials.  This 

phenomenon is referred to as phonon confinement and causes nanostructures to function 

as phonon waveguides analogous to acoustic or electromagnetic waveguides.  In contrast 

to phonon transport in bulk materials where the phonon modes can be described as 

decoupled longitudinal or transverse modes, the continuous reflection off of the 

boundaries gives rise to coupled mode types which are unique to structures with confined 

boundaries.  Both the boundary/geometry scattering effect and the phonon confinement 
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effect give rise to the possibility of using nanostructure geometry to control phonon 

transport and potentially tune the thermal performance of a material. 

1.2 Motivating Application: Thermoelectric Materials 

A primary and potentially immediate application area for nanostructures with 

geometrically tuned thermal properties is in the creation of high efficiency thermoelectric 

materials.  Thermoelectric materials directly convert temperature differences to electric 

voltage and vice-versa.  These materials are useful in the direct generation of electric 

power from waste thermal energy or in highly reliable and lightweight solid-state 

refrigeration or electronics cooling applications.  The performance of a thermoelectric 

material is characterized by its figure of merit [9]: 

 
2S T

ZT



   (1) 

Here, σ is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, 

and κ is the thermal conductivity.  Conventional and commercially available 

thermoelectric materials have a figure of merit of ~0.8 and operate at efficiencies of ~5-

6% [9]. ZT values of 3-4 are required to become competitive with conventional 

compressor based generation and refrigeration technologies [9]. One strategy for 

obtaining enhanced thermoelectric materials is to use nanostructures that impede the 

transport of phonons and reduce thermal conductivity without adversely affecting the 

material’s electrical properties.  This can be done through manipulation of nanostructure 
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size and boundary geometry resulting in phonon confinement effects and increased 

boundary/geometry scattering.   Recent experiments have shown that 52 nm diameter 

rough silicon nanowires fabricated by the electroless etching technique can increase ZT 

from the bulk Si value of around 0.01 to around 0.60 [5]. When compared against smooth 

nanowires synthesized using the vapor-liquid-solid technique, the rough nanowires 

exhibited improvement in ZT by a factor of 5-10.  Similar increases in figure of merit 

were observed for 10 and 20 nm diameter silicon nanowires fabricated using the 

superlattice nanowire pattern transfer method [10].   

1.3 Previous Work and Modeling Approaches: 

The aforementioned experimental results indicate that controlled nanostructure 

geometry can be used to suppress phonon transport resulting in geometrically controlled 

thermal properties and potentially enabling the creation of nanostructured materials with 

enhanced thermoelectric performance.  Moreover, recent advances in nanofabrication 

technology have enabled the creation of a myriad of different nanoscale geometries [11-

21] that could potentially be used to tune phonon-geometry interactions in order to obtain 

desired overall thermal properties.  However, the ability to design nanostructure 

geometry for optimally tuned thermal performance is contingent upon first obtaining 

increased theoretical understanding of fundamental geometry induced phonon scattering 

processes, having robust analytical and computational models capable of exploring the 

nanostructure design space, simulating the phonon scattering events, and linking the 
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behavior of individual phonon modes to overall thermal behavior.  To these ends, 

researchers have investigated geometrical effects on phonon transport and thermal 

properties of nanostructures using a variety of approaches. 

1.3.1 Particle-Specularity Parameter Based Models 

The simplest manner in which nanostructure geometry can be included into a 

model for nanostructure thermal transport is by including boundary scattering in a 

particle based formulation for the thermal conductivity.  For example, the thermal 

conductivity of a nanostructure or material, κ, under the relaxation time approximation, is 

expressed as a summation of the contributions of each phonon mode indexed by the 

phonon’s wave vector, k, and mode type, ν [22]: 

    2
, ,cv



   
k

k k   (2)     (3) 

Here, c is the phonon modal specific heat, v is the phonon group velocity and  , k  is 

the phonon relaxation time.  The relaxation time is the characteristic time it takes for a 

phonon to scatter and decay and has contributions from phonon-phonon scattering which 

is associated with anharmonic interatomic interactions, phonon-impurity scattering, and 

phonon-boundary scattering.  If phonon coherence is neglected and phonons are modeled 

as particles, the effective mean free path for boundary scattering in nanowires, LB, is 

commonly expressed as
1

1
B

p
L D

p





 [23] where D is the nanowire diameter and p is the 

specularity parameter.  The specularity parameter quantifies the degree to which phonon 
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scattering is specular (p=1) or diffuse (p=0) and is commonly calculated using the 

formula of Ziman as  2exp 16 php     [23] where δ is the root mean square surface 

roughness and λph is the phonon wavelength.  The relaxation time can be calculated by 

dividing the mean free path by the phonon group velocity and combining with other 

scattering mechanisms such as phonon-phonon scattering and impurity scattering via use 

of Matthiessen’s rule.  That is, the inverse of the total relaxation time is equal to the sum 

of scattering rates associated with each process.  In this way, two parameters, the 

nanowire diameter and the root mean square surface roughness, can be used to predict the 

geometry effects on nanostructure thermal conductivity. 

 Coarse changes in nanostructure boundary geometry can be modeled by including 

the specularity parameter model within a Monte Carlo (MC) particle tracking approach 

that includes irregular domain boundaries and solves for steady-state spatially dependent 

phonon populations and uses the phonon populations to extract the thermal conductivity.  

For example, Moore, et al. [24] adapted a MC model used for the calculation of thermal 

conductivity of straight silicon nanowires [25] for the calculation of thermal conductivity 

in symmetric sawtooth nanowires.  Their work showed that periodic sawtooth patterning 

of nanowires can induce significant phonon backscattering and reduce the thermal 

conductivity below the diffuse surface limit (κdiffuse). The diffuse surface limit refers to 

thermal conductivity obtained via purely diffuse phonon boundary scattering (p=0).  In 

this limit the mean free path due to boundary scattering is equal to the nanowire diameter.  

In MC models for nanowire thermal conductivity that employ only a specularity 
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parameter and flat surface, thermal conductivity below κdiffuse can only be attained with 

specularity parameter between -1 and 0. Roberts and Walker used a similar approach to 

explore phonon transport in asymmetric sawtooth nanowires [26].  The model in their 

study was executed such that right traveling phonons scattered specularly from sawtooth 

facets while boundary scattering of left traveling phonons was either specular or diffuse 

depending on a probability determined by a specularity parameter.  Their study showed 

that directionally dependent thermal conductivity is possible at lower temperatures and 

when one side of a sawtooth facet is treated as rough enough to induce frequency 

dependent diffuse roughness scattering.   

   The utility of these particle-specularity parameter based approaches is limited by 

the fact that they are only appropriate for modeling nanostructure surfaces with 

effectively random roughness.  Though the MC approach enables coarse changes in 

nanostructure boundary geometry by allowing boundary surfaces to change orientation, 

each individual surface is still treated as being effectively rough.  In addition, in the most 

rigorous calculation of phonon boundary scattering, specific mode dependency on 

scattering would be taken in account.  However, in practice, most models for boundary 

scattering, including the aforementioned Ziman model, use simplified expressions for 

phonon mean free path that may only depend on one or a few phonon properties.  This 

approach does not account for scattering that may vary between different phonon modes 

of the same wavelength (e.g. longitudinal or transverse phonon modes).  Furthermore, 

since this approach is formulated based on the assumption that the phonons can be 
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modeled as particles, bulk type phonon propagation is assumed and phonon interference 

and waveguiding effects are neglected.   

1.3.2 Molecular Dynamics Models 

A much more detailed and realistic manner in which geometry effects can be 

included in the investigation of geometry dependent nanostructure thermal properties is 

through molecular dynamics (MD) simulation [27].  The MD approach models a 

nanostructure as a collection of classically behaving point particles.  Empirical potential 

functions are used to model interatomic forces and particle trajectories are obtained by 

solving classical equations of motion using explicit numerical methods.  Heat fluxes and 

temperature gradients can be directly modeled in MD and used to calculate nanostructure 

thermal properties such as thermal conductivity. Since molecular dynamics simulation 

models each atom individually, effects associated with wave coherence and specific 

mode dependence are implicitly included.  Atomic level geometric detail and effects such 

as lattice strain can also be included.   There is a great body of MD based research on 

thermal properties and phonon behavior in nanostructures.  Among these are studies of 

size effects on phonon transport in confined nanostructures including silicon thin films 

[28], silicon nanowires [29-31], and carbon nanotubes [32].  

In addition, there has been some limited MD research that has specifically probed 

boundary geometry.  For example, Liu and Chen [34] investigated the effect of periodic 

ripple roughness on the thermal conductivity of silicon nanowires with square cross-
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section.  Their results showed that patterned roughness can significantly reduce the 

thermal conductivity of nanowires and that the reduction is greater for roughness of 

smaller wavelength and larger amplitude.  Qiu, et. al performed a similar study on Bi2Te3 

nanowires and found that roughness can produce a 35% reduction in thermal conductivity 

versus a smooth wire for a 5.2 nm diameter case [35].  An analytical model fitted to their 

MD produced data showed that the primary cause for thermal conductivity reduction in 

atomically smooth wires was strong phonon confinement resulting in “softening” of the 

phonon dispersion curve.  Both phonon confinement and strong phonon scattering from 

roughness were the causes for reduced thermal conductivity in the rough nanowires.  MD 

studies of smooth and rough graphene nanoribbons have also highlighted the ability of 

surface roughness to reduce thermal conductivity [36].  In another study, He and Galli 

calculated the room temperature thermal conductivity of 15 nm diameter silicon 

nanowires with 1.5 nm deep silica rippled surface and showed that the thermal 

conductivity of the rippled nanowire was reduced by approximately 90% versus the value 

calculated for the smooth silica free nanowire and a reduction of around 60% versus a 

nanowire with an amorphous silica layer [38].  From an analysis of the nanowire’s 

vibrational density of states, they deduced that phonon scattering at all frequencies plays 

a role in the thermal conductivity reduction. Termentzidis et al. [39] performed a 

molecular dynamics study on the thermal conductivity of modulated SiC nanowires at a 

mean domain temperature of 300K.  When they extrapolated their results for the 

infinitely long nanowire system, the thermal conductivity of the periodically modulated 
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nanowire was reduced by about 6% when compared with a straight SiC nanowire of 

diameter equal to the minimum diameter of the modulated nanowire (D≈2.23 nm).  The 

reduction in thermal conductivity was about 21% versus a nanowire equal to the largest 

diameter in the modulated system (D≈3.35 nm). 

The results of the previous molecular dynamics studies are consistent in that they 

all indicated that nanostructure boundary geometry can significantly impede phonon 

transport relative to a smooth and straight nanostructure. In addition, the MD based 

studies are advantageous over the particle based approach because they directly account 

for specific nanoscale geometry and wave interference effects.  However, phonon 

behavior is only observed as the aggregate result of all possible modes and therefore 

information about how a specific phonon mode interacts with a geometric feature is not 

obtained.  Such information could be useful for designing nanostructures for targeted 

thermal performance.  Furthermore, since MD is a classical method, it will only yield 

accurate results for high temperatures when all phonon modes are occupied.  This is 

because quantization of vibrational energy leads to high occupation of lower frequency 

phonon modes when the system temperature is low.  Information about thermal behavior 

at low temperatures, where geometry induced scattering is expected to dominate phonon-

phonon scattering, is not reliably obtained from an MD simulation.  
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1.4 Landauer approach to thermal transport 

An alternative to using MD to aid in the understanding and simulation of thermal 

transport in nanoscale systems with irregular geometry is using the Landauer approach 

for energy carriers [40].  In this approach, thermal transport through a nanostructure 

geometric feature is analyzed by decomposing the nanoscale system into 3 parts: left and 

right nanostructure leads and an irregular geometric feature (Figure 1.1).  The left and 

right leads are considered to be thermal reservoirs that continuously emit phonons toward 

the geometric feature.  The total rate at which thermal energy is emitted from the left 

nanostructure lead can be expressed as a summation over all of the phonon modes in the 

left lead that are traveling in the positive x direction.  Similarly, the total rate at which 

thermal energy is emitted from the right nanostructure lead can be expressed as a 

summation over all of the phonon modes in the right lead that are traveling in the 

negative x direction.  The fraction of energy in a given normal mode that is transmitted 

across the geometric feature is the modal phonon transmission coefficient, 
mode .  Thus, 

if the group velocity of a given mode is 
modev and each lead is of arbitrary length, L, the 

net heat flow across the geometric feature can be expressed as: 

 
mode mode,+ mode mode mode,- mode

mode,+ mode,-

net

v v
q

L L

   
     (4) 

Here, 
mode,+  is the total energy in a given normal mode of the left nanostructure lead that 

is traveling in the positive x direction and mode,- is the total energy in a given normal 
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mode of the right nanostructure lead that is traveling in the negative x direction. The 

summation over all of the normal modes can be expanded by indexing each normal mode 

by its wavenumber, k, and mode type, ν, so that the net heat flow across the geometry is 

given by: 

 
, , , , , ,

, ,

k k k k k k

net

k k

v v
q

L L

     

 

   

 

     (5) 

Here, the summation over wavenumbers is restricted so that only positive traveling 

modes are included for modes in the left nanostructure lead and only negative traveling 

modes are included for modes in the right nanostructure lead.  The total energy in a given 

mode is given by: 

 
mode,+ mode,+

1

2
N  

 
  
 

  (6) 

Where mode,+N   is the number of positive/negative traveling phonons of the given mode, 

 is Planck’s constant divided by 2π and   is the phonon’s angular frequency.  Since the 

density of states of a 1-D system with propagating phonons is 
2n

k L





 the summation 

over wavenumber can be converted to an integral over wavenumber so that the net heat 

flow can be expressed as: 

  , , , ,+ , ,- ,

1

2
net k k k k kq N N v dk    



 


    (7) 
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Figure 1.1: Illustration of nanostructure phonon-geometry scattering domain.  A single incident phonon 

mode is incident upon the irregular geometric feature from the left side nanostructure lead.  Energy is 

scattered into reflected phonon modes and transmitted phonon modes.  Each nanostructure lead is 

considered to be perfectly smooth and straight and extends semi-infinitely along the length of the 

nanostructure.  

In general, the number of phonons of each mode at either side of the irregular 

geometry is a complicated non-equilibrium quantity that will depend on the details of the 

geometry, anharmonic processes that occur throughout nanostructure, and the system 

temperature.  It is commonly assumed that the system is in quasi-equilibrium so that the 

phonon distributions on either side of the interface can be approximated by equilibrium 

distributions corresponding to temperatures of the left and right nanostructure leads, TL 

and TR.  Under this assumption, the number of phonons on either side is given by the 

Bose-Einstein distribution, BEf , which depends only on the lead temperatures and the 

phonon frequencies.  This results in an expression for the net heat flow given by: 

     , , ,

1

2

BE BE

net k k L R kq f T f T v dk    


 


     (8) 

In the limit of a small temperature difference across the irregular geometry, the thermal 

conductance, σ, across the irregular geometry can be calculated from: 
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1
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f T
v dk

T



  


  






   (9) 

Equation (9) provides a “bottom-up” approach by which one can relate the behavior of a 

particular phonon mode to the overall thermal performance of a nanostructure.  

Therefore, a critical step toward both understanding the physical processes that govern 

thermal transport in geometrically irregular nanostructures as well as in designing 

nanostructures for targeted thermal performance, such as in minimizing phonon transport 

for thermoelectric applications, is to determine the quantities necessary to calculate the 

thermal conductance.   

1.5 Project Scope 

 This project’s goal is to develop and implement computational and analytical 

models to analyze and predict how individual phonon modes are affected by irregular 

nanostructure geometry, use the models to compare to previous approaches assigned to 

the same task, and to investigate how nanostructure geometry affects overall thermal 

transport.  These tasks are largely done within the context of the Landauer approach to 

thermal transport across an irregular geometry described in Section 1.4. Chapter 2 of this 

dissertation describes how the phonon spectra, which includes the phonon frequencies 

and group velocities, of the left and right nanostructure leads can be determined using an 

atomistic lattice-dynamics model.   The model’s correct implementation is verified 

through comparison with alternative computational approaches based on molecular 
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dynamics simulation and continuum elastic wave theory.  Chapter 3 discusses a variety of 

approaches by which the modal phonon transmission coefficient can be calculated. 

Chapter 3 also describes and verifies the implementation of an atomistic lattice-dynamics 

based computational methodology known as the scattering boundary method.  Chapter 4 

uses the atomistic computational model developed in Chapters 2 and 3 to assess the 

accuracy and appropriate regimes of applicability of continuum theoretical approaches 

that have commonly been used to calculate phonon transmission in nanoscale systems.   

Chapters 5 and 6 are concerned with developing and using models for the goal of tuning 

thermal transport in nanowire systems with irregular geometries. Chapter 5 describes a 

simple model for phonon transmission that is based on long wavelength beam theory and 

is applicable to the four lowest frequency phonon branches that dominate thermal 

transport at low temperatures.  Informed by the results obtained in Chapter 5, Chapter 6 

uses the more comprehensive atomistic computational model developed in Chapters 2 

and 3 to investigate aggregate phonon transport in nanowire systems with sections of 

modulated diameter.  Chapter 7 summarizes the most important contributions that were 

made in the creation of this dissertation and suggests a few topics for future research. 

Portions of the work contained in this dissertation were previously published in 

the ASME Journal of Heat Transfer, Proceedings of ASME 2012 3rd Micro/Nanoscale 

Heat & Mass Transfer International Conference, and Proceedings of the ASME/JSME 

2011 8th Thermal Engineering Joint Conference.  
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2 Determination of Phonon Spectra and Mode Shapes  

2.1 Introduction 

 In order to evaluate the Landauer heat flow and estimate the thermal conductance 

across a nanostructure geometric feature, one must determine the phonon spectrum 

associated with the nanostructure leads.  This primarily involves being able to calculate 

the relationship between the phonon wavenumbers and frequencies associated with each 

phonon normal mode as well as the complex atomic displacement vectors associated with 

each mode.  There are two primary approaches by which this can be done: continuum 

based models and atomistic models. 

2.1.1 Continuum Acoustic Analogy for Phonon Spectra 

  Continuum methods rely on the assumption that phonons can be treated analogously 

to acoustic/elastic waves propagating through continuous, linearly elastic media.  This is 

known as the continuum acoustic analogy (CAA).  This approach involves finding 

solutions to elastic wave equations subject to chosen boundary conditions and appropriate 

for a given geometry.  Since this approach is rooted in a field that has been established 

for well over one hundred years many different geometries and boundary conditions have 

been considered.  Elementary isotropic elastic wave theory can be used to obtain 

analytical solutions for elastic wave propagation in plate waveguides and cylindrical 

beams [95].  These solutions are the archetype for guided elastic wave theory. Though 

they are elegantly formulated, their implementation is not without difficultly since they 
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usually require the numerical solution of transcendental equations.  Further, since they 

are valid for isotropic materials, their usefulness toward the analysis of nanostructures is 

limited since the most common nanoscale materials such as silicon have anisotropic 

elastic properties.    More complicated theoretical frameworks are available for the 

analysis of anisotropic systems and more complicated shapes [41], but require 

considerable computational effort. Additionally, CAA methods cannot include nanoscale 

effects such as phonon dispersion associated with discrete particles, irregular lattice 

strain, or atomistic granularity which is a type of roughness inherent to discrete systems.  

Another drawback of CAA methods is that they cannot model optical phonons.  Optical 

phonons are associated with high frequency atomic motions when the dominant direction 

of movement of one atom is opposite that of its neighbors. This may not be a significant 

drawback because the contribution of optical modes to thermal transport is generally 

small due to slower group velocity, as compared to lower frequency acoustic modes, and 

relatively low occupation of optical modes at low and mid-range temperatures.  However, 

recent computational studies of phonon transport in silicon thin films [42][43] have 

indicated that the role of optical phonons increases with decreasing film width.  

Therefore, neglecting optical phonons entirely as CAA models do may not always be 

appropriate.  Overall, the CAA approach is likely faithful to the true physics of a 

nanostructure for low frequency, long-wavelength phonons.  As such, it provides an 

important starting point for the analysis of phonon dynamics in nanostructures. 
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2.1.2 Atomistic Models for Phonon Spectra 

 Alternatively, phonon spectra may also be calculated using atomistic models.  The 

atomistic approach treats each atom as a point particle with discrete mass.  Atomistic 

studies of phonon dynamics commonly model interatomic interactions through the use of 

an empirical potential function.  Potential functions are obtained through the 

consideration of general physical principles which determine the functional form and by 

fitting the function’s parameters to experimental results.  Potential functions vary in 

complexity and are tailored to model specific types of materials, but are always empirical 

in nature.  Alternatively, interatomic interactions can be modeled through more accurate, 

but substantially more computationally demanding, ab initio quantum chemistry methods 

which involve numerical solution of the Schrödinger equation.  In contrast to the CAA, 

atomistic methods directly account for nanoscale effects such as atomic discreteness and 

lattice strain.  Furthermore, atomistic methods are applicable to the study of optical 

modes.  

 For these reasons, an atomistic approach for analyzing and calculating phonon 

spectra serves as the basis by which phonon transport is modeled throughout this 

dissertation.  The remainder of this chapter describes the chosen atomistic approach, 

harmonic lattice dynamics, as applied to two geometric systems: silicon nanowires and 

silicon plates.  In addition to describing the method, the method is verified through 

comparison with an alternative atomistic approach built around molecular dynamics 

simulation for the specific case of a silicon plate bounded by rigid walls.  The lattice 
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dynamics calculations are further verified through comparison with continuum elastic 

wave theory for the case of a silicon plate with a free boundary condition.  The 

comparison with continuum theory demonstrates that atomistic effects can cause 

deviation between an atomistic and a continuum approach and that continuum approaches 

to modeling phonon dispersion relations are only appropriate for some regimes. 

2.2 Harmonic Lattice Dynamics 

2.2.1 Geometric Decomposition into Supercells 

 Harmonic lattice dynamics (LD) analysis of phonon spectra is performed by 

decomposing the system of interest into unit cells such that periodically arraying the unit 

cell results in the entire structure.  LD has typically and extensively been used to 

characterize the phonon spectra of bulk materials, i.e. systems that are considered to 

extend infinitely in all directions.  In these systems phonons are able to propagate in all 

directions and most monatomic systems can be described by a unit cell consisting of one 

or only a few atoms.  For instance, bulk silicon can be described by the two atom unit cell 

characteristic of the diamond lattice.  In this work, the interest is on confined phonon 

propagation in nanostructures such that the bulk treatment with very simple and small 

unit cells is not appropriate. Instead, the nanostructures of interest are decomposed into 

supercells whereby each supercell spans the entire confined direction and contains many 

atoms.  Supercells are arrayed periodically and infinitely along the non-confined 

directions to create a nanostructure that is finite in one or two directions but extends 
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infinitely in the other directions.  This dissertation is specifically focused on two 

nanostructure systems: silicon nanowires and silicon plates.  These nanostructures and 

their decomposition into supercells are shown in Figure 2.1.    

 
Figure 2.1(a): decompostion of silicon nanowire into supercells; (b): decomposition of silicon plate into 

supercells.   
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 For the systems studied in this work nanowires are always oriented so that the 

nanowire extends along the [110] crystal axis and the supercell lattice parameter, 

1

2
sca a  , where a=0.543 nm is the conventional lattice parameter.  The supercell 

lattice parameter is the distance along the x-direction between equivalent atoms in 

neighboring supercells.  For the plate geometries studied in this dissertation the x-axis of 

the plate is always aligned with the [100] crystal axis so that 
sca a .  

 

Figure 2.2(a): side view and cross section of nanowire supercell; (b) side view and cross section of plate 

supercell. 

2.2.2 Theory 

 In a nanowire system phonons only propagate along the axis of the nanowire (x-

direction).  In a plate system, phonons propagate in any direction in the x-z plane, but not 

in the y-direction.  However, for purposes of this dissertation, only phonon propagation 

along the x-direction is considered.  Thus, for both the plate and the nanowire geometries, 
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known as the wavenumber, is denoted k, and the lattice dynamics analysis of both the 

nanowire and the plate geometric are developed in tandem.  Instead of referring to each 

geometry specifically, the term nanostructure supercell is used to collectively refer to 

either the nanowire supercell or the plate supercell.  The only functional difference 

between the two geometry types are the differing construction of supercells and the fact 

that periodic boundary conditions are employed in the z-direction for the evaluation of 

interatomic interactions in the plate geometry. 

 In harmonic lattice dynamics theory the displacement from equilibrium of any atom 

in the nanostructure supercell, indexed, jl, is expressed as a summation over all normal 

modes of nanostructure vibration: 

        ,

,

, , , expk

k

jl t A j k i kx jl t


  u U   (10) 

In this analysis the notation of Dove [44] is followed such that j is the index of an atom in 

a reference supercell and l is the index of each supercell. ω is the phonon angular 

frequency, x is the equilibrium x-coordinate of the atom, and ν denotes a mode type. Note 

that in the plotting of results, the ordinary frequency, f is also used  2 f  .  

However, most of the mathematical analysis in this dissertation uses   which is simply 

referred to as the frequency.  Each phonon mode is uniquely identified by its 

wavenumber k and its mode type ν. Note that the terms mode type and dispersion branch 

are used interchangeably in this dissertation.  The displacement of any atom j in any 

supercell l for a given k and ν is found by multiplying  , ,j k U  by the mode amplitude, 
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,kA  , and an exponential phase factor.  Using standard methods of lattice dynamics [44], 

whereby Eq. (10) is substituted into Newton’s second law, the equation of motion for an 

atom, jl, can be written as 

    , ,
j l

jj
m jl t j l t

ll 

 
      

u u   (11) 

Here m is the mass of the atom and Φ is the force constant matrix.  The force constant 

matrix is a 3Nsc x 3Nsc matrix (Nsc is the number of atoms in a nanostructure supercell) 

comprised of Nsc 3 x 3 submatrices with elements: 

  
   

2

,
W

jl j l
u jl u j l



 


  

  
  (12) 

α and β denote the Cartesian vector components x, y, and z and W is the total lattice 

potential energy.  Using the column vector 

          1 2

, 1, , 1, , 1, , 2, , ... , ,sc

T

k x y z x zm U k U k U k U k U kN        e  (13) 

and substituting Eq. (10) into Eq. (11)  results in the following eigenvalue problem: 

        2 , , ,k k k k    e D e   (14) 

With the dynamical matrix, D defined by: 

          
1

, 0, exp 0
l

jj j j l ik x j l x j
m 

     D k Φ   (15) 

Here l=0 denotes the index of the reference supercell and the summation over l  spans all 

supercells in the system including the reference supercell.  For practical implementation, 
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only supercells containing atoms that have non-zero force interactions with atoms in the 

reference supercell need to be included in the summation.  The phonon dispersion 

relation which is the relationship between k and ω can be found by computing the 

eigenvalues of the dynamical matrix D as the wavenumber is changed.  Each 

wavenumber and mode type is also associated with the eigenvector, e.  This vector is 

denoted the mode shape vector and contains the complex polarization vectors 

corresponding to each atom within the supercell. The mode shape vector characterizes the 

spatial variation of atomic motion within a supercell and is analogous to mode shapes 

used in the analysis of elastic waves in continuum systems except that it is defined for 

each atom within a supercell as opposed to being a continuous function of nanostructure 

lateral position.   

2.2.3 Stillinger-Weber Potential Function 

In order to evaluate the lattice potential energy, W, an empirical interatomic 

potential is required. Numerous empirical interatomic potential functions are available for 

modeling interatomic interactions in silicon.  These include the Tersoff potential [45], 

EDIP [46], MEAM [47], and the Stillinger-Weber (SW) potential [48].  These potential 

functions have been thoroughly discussed and compared elsewhere [49].  No single 

potential function gives a perfect match for all relevant thermo-mechanical properties and 

they vary in complexity and computational efficiency.  Because of its widespread use, 

relative computational efficiency, and ability to produce reasonable agreement with 



25 

 

experimental values for silicon elastic constants, phonon frequencies, and thermal 

conductivities, the Stillinger-Weber potential function parameterized for silicon was 

chosen for this dissertation.  The total system potential energy when approximated using 

Stillinger-Weber potential includes pair interactions between two atoms, indexed i and j 

(denoted the two-body term,  2 ,v i j ), potential energy associated with the bond triangle 

formed by 3 atoms indexed, i, j, and k (denoted the three-body term,  3 , ,v i j k  ) so that 

the system energy can be evaluated as a sum over all interactions via: 

    2 3, , ,
i j i i j k j

v i j v i j k
 

      (16) 

The two body interactions are modeled using: 
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  (17) 

and the three-body interactions are modeled using:   
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  (18) 

Here, 
i

jr is the distance between two atoms i and j, and 
jik is the angle between atoms j, i, 

and k with the atom i at the vertex. For both two-body and three-body interactions, the 
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interaction energy is zero if either 

i

j

SW

r


 or 

i

k

SW

r


 is greater than c (denoted the cutoff 

radius).  The values for the other parameters are as follows: 2.14 eV  ,

0.20950 nm  , 21  , 0.6022245584B  , 7.049556277A , 1.8c  , and 1.2  . 

2.3 Verification of Harmonic Lattice Dynamics 

 To verify the computational implementation of the harmonic lattice dynamics 

technique described in Section 2.2, the results from the lattice dynamics calculation are 

compared with an alternative approaches to calculating phonon spectra.  First, the lattice 

dynamics approach is compared with an alternative atomistic method based on molecular 

dynamics simulation.  Second, the lattice dynamics method is compared with an approach 

based on continuum elastic wave theory.  

2.3.1 Comparison with Molecular Dynamics 

 An alternative atomistic method by which phonon spectra can be calculated is based 

on molecular dynamics (MD) simulation [27]. The MD approach models a nanostructure 

as a collection of classically behaving point particles. Similar to lattice dynamics, 

empirical potential functions are used to model interatomic forces.  However, instead of 

directly decomposing atomic motions into summations over harmonic normal modes as is 

done in harmonic lattice dynamics, MD simulation directly computes and tracks particle 

trajectories by integrating classical equations of motion using explicit numerical methods.   
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 In order to determine phonon spectra from an MD simulation, an entire 

nanostructure domain is constructed with particle locations initialized on their 

equilibrium lattice sites with initial particle velocities distributed according to the 

Maxwell Boltzmann distribution corresponding to a desired simulation temperature as to 

activate incoherent particle vibrations with arbitrary spatial variation.  The system is 

equilibrated for several thousand time steps so that particle motion is no longer affected 

by the randomness of the initial velocity distribution and is instead governed by the 

normal vibrational modes of the structure.   

 After equilibration, the system progresses for an additional period over which 

particle velocities are recorded at regular intervals.  After the full time history of particle 

velocities has been recorded, the spectral energy density method [50] is used to calculate 

the structure’s dispersion relation.  The spectral energy density is found by projecting the 

velocities of the particles in the structure onto a generic form of a traveling wave 

characterized by a wavenumber and angular frequency. The spectral energy density of a 

mode corresponding to a unique wavenumber and frequency is calculated using:  

      
2

, 0, exp
aN

p

p

k C u t ikx p i t dt


         (19) 

Here,  ,pu t  is the p
th

 particle’s velocity component in the α direction.  aN is the total 

number of atoms in the system and  0x p is the equilibrium x-coordinate of the particle 

p. The quantity C is a normalization constant that is not important for the calculation 
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since only the location of spectral energy density peaks is required, not the magnitude.  

The peaks in the spectral energy density calculated at each wave number constitute each 

wavenumber’s possible frequencies of vibration.  The amplitude of the peaks can then be 

plotted as a function of frequency and wavenumber and connected to form each branch of 

the nanostructure’s dispersion relation.   

 Unlike in harmonic lattice dynamics, it is not straight forward to use molecular 

dynamics to calculate the mode shapes associated with each normal mode.  Because of 

this, a new computational method was developed to do this that was based upon 

arbitrarily exciting a small region in the MD simulated domain at a desired frequency.  In 

this way all possible phonon modes at that frequency are excited.  The atomic 

displacements at different snap shots in time are then analyzed using Fourier analysis to 

extract the mode shape associated with a specific wavenumber.  It was found that this 

method was computationally expensive and prone to numerical error and was therefore 

discarded in favor of harmonic lattice dynamics.  Because of this, the details of the 

method are not presented in this dissertation, but can be found in reference [51].  As an 

alternative to the spectral energy density approach, it should be noted that another method 

has recently been developed [52] in which the dynamical matrix can be determined 

through analysis and post-processing of MD particle velocity data. 

 To verify that the lattice dynamics calculations are implemented correctly, a 

comparison with the MD calculated spectral energy density was performed for a silicon 

plate bounded by rigid walls. The rigid wall boundary condition was employed to prevent 
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structural relaxation in the MD system.  Structural relaxation can complicate the MD 

analysis since obtaining relaxed configurations requires additional computational 

expense.  Since this comparison was done only to confirm the proper computational 

implementation of the lattice dynamics calculation, the added complication and 

computational expense associated with structural relaxation was avoided by using the 

rigid boundary condition.  In order to include the effect of the rigid boundary condition in 

the lattice dynamics calculation, four layers of atoms were added on both sides of the 

plate for the determination of the harmonic stiffness matrices.  Though these atoms exert 

forces on atoms in the plate supercell, they are not included in the supercell itself since 

the rigid condition prohibits their motion. 

The LD and MD calculated dispersion relations are compared in Figure 2.3 by 

overlaying the LD calculated dispersion relation on top of the MD calculated spectral 

energy density.  The spectral energy density is represented by mapping its intensity to a 

color as indicated in the color bar of Figure 2.3.  The peaks in the spectral energy density 

indicate the existence of a normal mode and appear in darker red.  Some of the peaks are 

difficult to discern since the MD simulation occurs at finite temperature (T=1K for results 

presented herein) which enables energy to change modes and causes noise in the 

frequency spectrum surrounding each peak.   The resolution of the MD produced 

dispersion relations can be improved by increasing simulation time and through filtration 

of the image produced by the spectral energy density.  Since the MD-spectral energy 

density technique was found to be, in general, inferior to harmonic lattice dynamics, a 
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thorough investigation of how to improve the clarity of the MD produced dispersion 

relations was not performed.  However, the peaks in the spectral energy density that are 

clearly discernible are well aligned with the dispersion curves calculated with lattice 

dynamics. This confirms that the LD calculations are implemented correctly.     

 
Figure 2.3: Dispersion relation comparison for rigid wall plate waveguide.  Width of plate is 3.4 nm.  The 

MD calculated dispersion relation is presented by mapping the magnitude of the spectral energy density to 

the colors indicated in the color bar. Darker red corresponds to peaks in the spectral energy density.  The 

peaks that are clearly discernible are well aligned with the dispersion relation curves calculated using lattice 

dynamics. 

2.3.2 Comparison with Continuum Theory 

 Phonon dispersion relations are also commonly calculated using methods based 

on continuum elastic wave theory.  This treatment is appropriate for long-

wavelength/low-frequency phonons in nanostructures with characteristic widths much 

greater than the interatomic spacing.  To further verify the implementation of the lattice 

dynamics calculation, a comparison with continuum theory was also made.  In contrast 
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with the comparison that was done with molecular dynamics, where the rigid boundary 

condition was largely chosen out of computational convenience, a free boundary 

condition was used in the comparison with continuum theory.  

 The continuum dispersion relations were calculated using the superposition of 

partial waves (SPW) method presented by Solie and Auld [53].  In their work, the 

problem of the elastic plate with stress-free boundary conditions was solved for elastic 

wave propagation in cubic crystal systems where the axes of the plate are aligned with 

the material’s crystal axes.  In the method, the Christoffel matrix equation is used to find 

the generic forms of the partial traveling elastic waves that are possible for the given 

crystal structure and orientation.    For elastic wave propagation aligned with direction of 

high crystal symmetry, the theoretical displacement field separates into two distinct mode 

families: shear horizontal modes (SH modes), and Lamb modes.  SH modes consist only 

of uncoupled shear partial waves that are polarized perpendicular to the plane established 

by the plate thickness and the direction of propagation.  Because of their uncoupled 

nature, the SH mode dispersion relation can be calculated from a simple analytical 

expression found in most elementary elastic wave theory textbooks [54].  Lamb modes 

consist of coupled P (quasi-longitudinal) and SV (quasi-shear vertical) partial wave 

components and have non-zero displacements in the plane established by the plate 

thickness and the direction of propagation.  Because of their more complicated nature, the 

dispersion relations associated with the Lamb modes must be calculated numerically. 
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 The results of the comparison are shown in Figure 2.4. The elastic stiffness 

constants used in the calculations, c11=151.4GPa, c12=76.4GPa, and c44=56.4GPa, are 

taken from a computational study of crystalline silicon approximated by the Stillinger-

Weber potential [55].  In the comparison of methods, results for three different sizes are 

presented. In all three cases the continuum and atomistic curves are virtually 

indistinguishable from one another for the zeroth order modes (modes that propagate 

down to zero frequency) at low wavenumbers.  There are deviations between the models 

at higher wavenumbers and for higher order modes.  Higher order modes are modes with 

non-zero cutoff frequencies.  The cutoff frequency is the minimum frequency that a mode 

can propagate.  In general, the comparison with continuum becomes more favorable with 

increasing plate width, but there is always a gradual worsening of model agreement at 

higher frequencies and wavenumbers.  While an exhaustive comparison was not 

performed, these results suggest that a continuum approach to modeling phonon spectra 

is appropriate for silicon nanostructures with lateral width greater than 10 nm, 

wavenumbers less than 1 (1/nm) (corresponds to wavelengths greater than about 6 nm), 

and phonon frequencies less than 2 THz.  Depending on the level of accuracy desired and 

the size of nanostructure considered, these limits of continuum model applicability may 

perhaps be extended.  However, because of the discrete nature of the atomistic system, 

the continuum model should be expected to fail for higher wavenumber, higher frequency 

phonons.  More discussion on the limits of continuum models on modeling phonon 

transport in nanoscale systems is given in Chapter 4.  Though a thorough conclusion has 
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not been drawn regarding the general applicability of continuum models to modeling 

phonon spectra, this comparison further verifies the computational implementation of the 

lattice dynamics calculation and demonstrates that atomistic dispersion relations match 

continuum dispersion relations in long wavelength, low frequency limit. 
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Figure 2.4: Dispersion relation comparison for plate waveguide with free boundaries.  Results of continuum 

calculation (using the method of Solie and Auld [53]) are given in dashed colored lines.  Atomistic results 

from harmonic lattice dynamics are given in solid black lines.  h is the width of the plate.   
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2.4 Summary 

This chapter described the mathematical background and computational 

implementation of a harmonic lattice dynamics approach to calculating phonon spectra of 

a nanostructure.  The harmonic lattice dynamics formulation was described for both 

nanowire and nanoplate geometries. The implementation of the lattice dynamics 

calculation was verified via comparison with a plot of the phonon spectral energy density 

obtained from a molecular dynamics simulation of a silicon plate with rigid walls.  The 

lattice dynamics calculation was further verified via comparison with the superposition of 

partial waves method based continuum elastic wave theory for the case of a silicon plate 

with free boundaries.  The comparison with continuum theory, while limited in scope, 

suggested conservative regime boundaries for the applicability of continuum elastic wave 

theory to modeling phonon spectra in nanoscale systems. 
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3 Determination of Modal Phonon Transmission  

3.1 Chapter Overview 

 The next task in modeling geometry dependent phonon transport in nanostructures 

is developing a suitable computational tool that can be used to calculate modal phonon 

transmission coefficients. This chapter discusses several computational approaches that 

can be used to calculate phonon transmission coefficients in geometrically irregular 

nanostructures. Section 3.2 surveys two previously used approaches and highlights some 

of their disadvantages.  An alternative lattice dynamics based computational technique 

called the scattering boundary method improves on some of the shortcomings of the 

previous approaches and was selected as the primary computational tool to be used for 

the completion of this dissertation.  The method was adapted from previous studies on 

phonon transmission across bulk material interfaces and is described in detail in Section 

3.3.  A comparable computational technique called the molecular dynamics wavepacket 

method was also considered as a means to calculate modal phonon transmission 

coefficients.  This method is described in Section 3.4 and is used to verify the 

computational implementation of the scattering boundary method calculations. The 

verification of the scattering boundary calculations is done for the simple case of shear-

horizontal phonon transmission through a rigid-walled silicon plate with T-stub. Section 

3.5 presents the results of this comparison and demonstrates that the scattering boundary 

calculations have been implemented correctly. 
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3.2 Survey of Previous Approaches 

3.2.1 Continuum Acoustics Approach 

 To date, modal phonon transmission coefficients are most popularly calculated 

through the use of continuum acoustics analogy.  Researchers have used continuum 

acoustics methods to calculate phonon transmission in a wide variety of geometries [56-

70].  Despite their widespread use, continuum acoustics methods suffer from a number of 

shortcomings.  First, as was the case with CAA methods used to calculate phonon 

spectra, CAA transmission methods cannot include nanoscale effects associated with 

atomic discreteness nor are they capable of calculating phonon transmission of optical 

modes.  Additionally, most works utilizing CAA methods have typically employed 

dispersion and mode shape models that are greatly simplified when compared to systems 

of real practical interest such as semiconductor nanowires.  For instance, the models used 

are generally two-dimensional and employ scalar models for wave transport.  In doing so, 

the problem is formulated in a way that is tractable using simple eigenmode expansion 

methods such as the scattering matrix method [72].  Though this approach is rigorous and 

exact for the case of shear horizontal (SH) wave propagation in infinite plates, it only 

approximates the complex dynamics of most elastic wave modes (e.g. Lamb modes in 

plates or general wire modes) since, for the example of wave propagation in an infinite 

plate, quasi-shear vertical (SV) and quasi-longitudinal (P) partial wave modes are 

coupled.  Because of this, it is unlikely that the detailed findings of CA studies will 
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maintain validity when applied to three dimensional nanostructures with more complex 

and coupled phonon modes.  More sophisticated continuum methods including hybrid 

finite element-eigenmode expansion methods [73] [74] could be used to study phonon 

transport in nanostructures in a more a rigorous way in that they will allow for mode 

coupling and three-dimensional geometry. These methods have been motivated by 

macroscale applications in non-destructive testing and have thus far not been 

implemented explicitly for the investigation of ballistic phonon transport in nanoscale 

systems.  However, any continuum method is not able to model the atomistic effects such 

as atomic discreteness nor will they allow for optical modes.  

3.2.2 Atomistic Green’s Functions Method: 

 An alternative approach for calculating phonon transmission that does accurately 

model all phonon modes and accounts for atomistic effects is the atomistic Green’s 

functions (AGF) method.  The AGF couples the vibrational degrees of freedom of two 

“lead or contact” regions through a “device” region via the calculation of harmonic 

matrices for both the contact and device regions.  Frequency dependent Green’s 

functions that are formulated in terms of the harmonic matrices are then used to 

calculate total phonon transmission from one contact to another through the device as a 

function of incident phonon frequency.  The AGF method has been used, for example, to 

calculate phonon transmission across silicon nanowire-bulk junctions [75], graphene and 

graphene nanoribbon interfaces [77,78] and silicon-germanium heterostructures [79].  
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AGF models are formulated so that phonon transmission is output as a function of 

frequency.  AGF models account for all of the vibrational degrees of freedom, but 

atomic motions are not decomposed into nanostructure normal modes.  As a result, 

phonon transmission dependence on mode type and wavenumber is not directly 

discerned. While it may be possible to deconstruct frequency dependent phonon 

transmission into each mode’s contribution, this has not been done in the literature 

surveyed.  

3.3  Scattering Boundary Method 

The ability to design nanostructures for specific phonon transmission behavior 

would best be enabled by a model capable of calculating individual mode transmission 

since only this kind of model will be able to directly discern the dependence of phonon 

transmission on the properties of a particular mode.  Relevant mode properties include 

the mode’s wavelength and its associated made shape vectors.  One computational 

approach capable of doing this is the scattering boundary method.  The scattering 

boundary method (SBM) is an atomistic method that is based on harmonic lattice 

dynamics and is similar in spirit to the AGF method.  Though they are fundamentally 

equivalent [79,80] the SBM is formulated so that mode dependent transmission is a direct 

output and that differences in phonon transmission between phonon modes at the same 

frequency can be easily discerned.  Like the AGF method, the SBM approach calculates 

harmonic stiffness matrices for irregular geometric feature and nanostructure leads 
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regions, but the motions of the nanostructure lead region atoms are constrained so that 

they are linear combinations of the nanostructure lead regions’ normal modes of 

vibration.   

3.3.1 Previous Use 

  While the SBM is notable for its ability to obtain mode and geometry dependent 

detail while also accounting for nanoscale effects, it is a relatively new method and has 

only seen limited implementation in the investigation of nanoscale geometry and 

thermal properties.  The SBM has most popularly been used to predict individual 

phonon transmission and characterize overall thermal resistance of bulk material 

interfaces [81-83].  It has also been used to calculate the cross-plane thermal resistance 

of superlattice layers [82,84].  In terms of its implementation for the study phonon 

transport in geometrically irregular nanostructures it has thus far only seen very limited 

use.  It was used by Wang and Wang to calculate mode dependent phonon transmission 

across asymmetric nanotube junctions [85] and a very similar method, not described by 

the author as the scattering boundary method, but similar in implementation, was used 

by Khater et al. to study phonon transmission and thermal resistance though a 

constricted ultra-thin (2 atomic layers) gold thin film [86].   

3.3.2 Geometric Decomposition  

 The scattering boundary method analysis of a nanostructure scattering problem 

is done by decomposing a nanostructure scattering domain into three regions: two 
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nanostructure leads (left and right) and the nanostructure scattering central region. The 

scattering central region is analogous to the “device” region in the AGF formulation.  

See Figure 3.1 for illustration of scattering boundary domain decomposition.   The two 

nanostructure leads are constructed as the semi-infinite periodic arrangement of 

nanostructure supercells.  The nanostructure supercells may be nanowire supercells 

(Figure 2.2(a)) or plate supercells (Figure 2.2(b)).  This dissertation presents calculation 

results for both geometry types.  The illustration presented here is of a constricted 

nanowire geometry, but the decomposition and computational technique is valid for an 

arbitrary geometry within the nanostructure scattering central region and the 

nanostructure leads may be wire or plate geometries. 

 

Figure 3.1: Geometric decomposition of atomistic nanostructure scattering system for scattering boundary 

method calculations.  

irregular 

geometry

buffer 

supercells

nanostructure scattering 

central region

left nanostructure lead right nanostructure lead

bordering supercells bordering supercells

left reference supercell right reference supercell



42 

 

 The nanostructure scattering central region contains any irregular feature that 

breaks the periodicity of the semi-infinite nanostructure leads, one or more supercells that 

interact with atoms that comprise the irregular geometric feature (denoted buffer 

supercells), and one supercell of each nanostructure lead (denoted lead reference 

supercells).  The minimum number of buffer supercells is determined by the longest 

interaction distance corresponding to the chosen potential.  Because of the short-range 

nature of the Stillinger-Weber potential, only one buffer supercell is required.  Additional 

supercells may be included, but it was found that these do not affect the transmission 

result.  The effect of the semi-infinite nanostructure lead is manifest through 

consideration of bordering supercells (shown in Figure 3.1).  Because of the semi-

infinite, periodic nature of the nanostructure leads, only the atoms within the 

nanostructure scattering central region and the bordering supercells and are explicitly 

included in the numerical analysis.  

3.3.3 Transmission Calculation 

 Phonons incident from the left nanostructure lead, encounter the irregular 

geometric feature and scatter so that some of the energy is reflected backwards and some 

is transmitted to the right nanostructure lead. The interatomic interactions in the system 

are modeled using linearized potential functions so that the scattering process is elastic.  

As a result, reflected and transmitted phonon frequencies are equal to the incident phonon 

frequency.  Since all motions occur at the same frequency, the time dependence can be 
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omitted and only the displacement phasor, L

jlu , of a given atom in the left nanostructure 

lead is considered.  Note that the notation used in this presentation is the same as that 

used in Chapter 3.  The displacement phasor, L

jlu , is expressed as the superposition of the 

incident phonon mode and the sum of all reflected phonon modes, L

re , which are normal 

modes of the left nanostructure lead: 

          
,

, , exp , , exp

L
re

L L
re re

L
re

N
L L L L L L L L L L L

jl in in in re re rek
j k ik x jl A j k ik x jl




  u U U   (20) 

The incident mode which is identified by its wavenumber, L

ink , and mode index, L

in , has a 

corresponding  polarization vector unique to each atom with the reference nanostructure 

lead, L
U .  The amplitude of the incident mode is assumed to be one.  Each reflected 

mode has a corresponding wavenumber, L

rek , mode index, L

re , and unknown amplitude, 

,L L
re rek

A


.  As described in Chapter 2,  j is an atom index corresponding to an atom within 

the reference supercell and l is a supercell index.  For the calculations presented herein, l 

spans the reference supercell and one bordering supercell. This is because the Stillinger-

Weber potential has a short interaction distance.  For interatomic potentials with longer 

range interactions, additional bordering supercells would be required. Reflected modes of 

the left nanostructure lead either propagate to the left and have negative group velocity 

and wavenumbers that are purely real or have complex wavenumbers and decay away 

from the interface between the left nanostructure lead and the scattering central region.  

The summation over reflected modes includes both propagating modes and evanescent 
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modes so that the total number of reflected modes is L

reN  .  Similar analysis is performed 

for the right nanostructure lead so that the displacement phasor, R

jlu , of a given atom in 

the right nanostructure lead is expressed as the sum of all possible transmitted phonon 

modes, R

tr , which are normal modes of the right nanostructure lead:   

     , , exp

R
tr

R R
tr tr

R
tr

N
R R R R R R R

jl tr tr trk
A j k ik x jl




u U   (21) 

The possible transmitted phonon modes of the right nanostructure lead are those that 

either propagate to the right and have positive group velocity and purely real components 

of wavenumber or have complex wavenumbers and decay away from the interface 

between the right nanostructure lead and the scattering central region.  The total number 

of transmitted modes is R

trN .  Each transmitted mode has a corresponding wavenumber, 

R

trk , mode index, R

tr , and unknown amplitude, 
,R R

tr trk
A


.   

 The displacement phasor of any atom, p, within the nanostructure scattering 

central region must satisfy the harmonic equations of motion defined as a summation 

over interactions with each atom, q, within the entire system:    

  2 ,p p q

q

m p q u Φ u   (22) 

The sum over q includes all atoms within the nanostructure scattering central region, 

atoms in the reference supercells, and atoms in the bordering supercells.   
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 Equations (20), (21), and (22) are solved simultaneously for the amplitudes of the 

transmitted and reflected modes, 
,tr tr

R

kA  , and 
,L L

re rek
A


, respectively, as well as the 

displacement phasor, 
pu , of each atom in nanostructure scattering central region. The 

amplitudes are used to compute the modal phonon transmission coefficient, 
,in ink  , and 

reflection coefficient, 
,in ink  , of the incident mode using [82]:  

 
,
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The summations in Eqs. (23) and (24) include only propagating modes.  The 

propagating modes are those with purely real wavenumbers.  Modes with non-zero 

imaginary components of wavenumber are evanescent modes that decay away from the 

interfaces between the nanostructure leads and the nanostructure scattering central 

region.  Therefore, they do not carry energy and are not required to calculate the modal 

transmission and reflection coefficients.  Their amplitudes are required to properly solve 

the equations of motion in the scattering central region and must be included in 

equations (20) and (21).  The group velocity, v , corresponding to any mode may either 

be calculated by numerically differentiating the dispersion curves or from [82]:  

    ,

1
, ,

2
kv k k

k
  



  
   

D
e e   (25) 
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Here,  ,k 
e is the complex conjugate of  ,k e .  Comparison of the two calculation 

approaches for group velocity showed that for most system sizes it is more 

computationally efficient to calculate the group velocity from equation (25).  For each 

transmission calculation, in order to ensure that energy is conserved and as a simple 

computational check, it is verified that the total transmission and reflection coefficients 

add to one.   

3.3.4 Determination of Normal Modes 

 In order to solve the aforementioned system, the wavenumbers and complex 

displacement vectors associated with each mode must be known.  In the lattice dynamics 

formulation described in Chapter 2, a wavenumber is chosen and the frequencies and 

polarization vectors are calculated by finding the eigenvalues and eigenvectors of the 

dynamical matrix, D.   In order to perform the transmission calculation, a frequency is 

chosen and all of the possible wavenumbers and their corresponding polarization vectors 

must be calculated.  To accomplish this task, the approach of Zhao and Freund [81] was 

used and an alternative formulation of the eigenvalue problem (equation (14)) is 

constructed:   

      2 ˆˆ ˆ, ,k k k   e D e   (26) 

Where the alternative dynamical matrix is defined by   

          
1ˆ , 0, exp 0 00

l

jj k j j l ik x l x
m 

    D Φ   (27) 
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The only difference in Eq. (27) versus Eq. (15) is that the phase factor in Eq. (27) uses 

the x-position of a reference atom, denoted j=0, in the given supercell, l , relative to a 

reference atom in the reference supercell that is unchanged in the summation.  This 

relative position is always either ±asc or zero.  As noted in [81,82], this reformulation of 

the eigenvalue problem arises from the short-range nature of the Stillinger-Weber 

potential enables one to decompose the dynamical matrix into three parts associated with 

interactions with only the nearest neighboring supercells following:   

 
1

0
ˆ ˆ ˆ ˆ 

   D D D D   (28) 

Here, the phase factor,  , is defined as 

  exp scika    (29) 

so that ˆ D contains only the elements of D̂  that multiply the phase factor  exp scika , 

ˆ
D contains only the elements of D̂  that multiply the phase factor  exp scika , and 0D̂

contains only the elements of D̂  corresponding to interactions within the reference 

supercell such that the phase factor is one.  sca is the supercell lattice parameter and is 

defined in Chapter 2.  Combining (26) and (28)  results in the non-linear eigensystem:  

    2 1

0
ˆ ˆ ˆˆ ˆ, ,k k    

 
    
 

e D D D e   (30) 

For a chosen phonon frequency, Eq. (30) is used to solve for the eigenvalues ς which, by 

using Eq. (29), yields all of the wavenumbers at the incident phonon frequency.  The 
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wavenumbers can be used with equation (14) to find the mode shape vector, e, 

associated with each normal mode which are used to obtain the complex polarization 

vectors, U, for each atom in the nanostructure leads for each nanostructure lead normal 

mode. 

 In summary, in order to calculate the atomistic modal phonon transmission 

coefficients, first a desired incident mode is selected and its frequency at a chosen 

wavenumber is calculated using (14).  Next, the wavenumbers of all of the possible 

excited modes of both the left and right nanostructure leads at the incident mode 

frequency are calculated by finding the eigenvalues of Eq. (30).  Next, all of the mode 

shape vectors associated with the possible excited modes are calculated using equation 

(14) evaluated at each possible excited wavenumber.  Eqs. (20), (21), and (22) are 

solved simultaneously for each possible excited mode’s amplitude.  The amplitudes are 

then used to calculate the modal transmission coefficients using  Eqs. (23) and (24). 

3.4 Molecular Dynamics Wavepacket Method 

 The molecular dynamics wavepacket method (MDWPM) is another atomistic 

method that can be used to calculate modal phonon transmission coefficients.  The 

method was originally introduced for the study of bulk longitudinal and transverse 

phonon transmission at semiconductor interfaces [87].  Subsequent to its original 

application, it was used to study scattering of phonon wavepackets at material interfaces 

in semiconductor nanowires [87,88] and to study scattering of longitudinal and twisting 
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phonon modes in defective carbon nanotubes [89]. Similar techniques have been used to 

study bulk acoustic phonon scattering from isolated nanoparticle inclusions [90] and 

phonon scattering in nanostructured thin films [91].  The MDWPM approach was 

initially explored as a primary means of calculating modal phonon transmission 

coefficients for the purposes of this dissertation. Experience with the method revealed it 

to be inferior to the scattering boundary method and was abandoned as a primary 

computational tool.  However, the reason it was abandoned was practical (too 

computationally expensive and unwieldy) rather than scientific since it was found to 

yield accurate results that agree with other methods.  The method is presented here 

primarily as a means to verify the correct computational implementation of the 

scattering boundary method, but also to highlight its viability and shortcomings as a 

computational method. 

3.4.1 Description of Method 

The MDWPM approach operates by simulating a molecular dynamics 

nanostructure system such as that shown in Figure 3.2.  Note that the method is generally 

applicable to any irregular geometric feature that joins two nearly semi-infinite 

nanostructure lead regions that can be constructed through the periodic repetition of 

supercells such as those used to calculate phonon spectra using harmonic lattice 

dynamics.  However, the method is specifically described here for the rigid-walled plate 

T-stub geometry shown in Figure 3.2 which is the system that is used to verify the 
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computational implementation of the scattering boundary method.  On the left hand side 

of the domain is a very long region that is denoted the incident region   For a given 

wavenumber and dispersion branch of interest, a phonon wavepacket of narrowly defined 

frequency and wavenumber is excited in the incident region by initializing the atomic 

displacements, u, and velocities, v, according to their normal modes as calculated using 

the harmonic lattice dynamics techniques described in Chapter 2.  The atomic 

displacements and velocities are initialized as follows: 
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  (31) 

x0 is set equal to 1/4 of the total nanostructure length so that the wavepacket is 

centered in incident region and the parameter η is varied to control the wavepacket width 

noting that the extent of the wavepacket is approximately proportional to 1/η.  For results 

presented in herein, the wavepacket width is defined such that Lwp=4/η (see illustration of 

wavepacket width in Figure 3.4(a)).  Accurate determination of phonon transmission 

requires that thermalization, or distribution of the wavepacket energy across all 

frequencies, be avoided. For this reason, the molecular dynamics simulations use low 

energy wavepackets superposed on a zero temperature background. The excitation 

amplitude, Aex, must be chosen to be low enough to avoid phonon decay associated with 

anharmonicity of the interatomic potential, but high enough such that the signal strength 

is significantly greater than background numerical noise.  For the results presented 
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herein, Aex=0.0005σ was used (σ is the Stillinger-Weber length parameter). The length of 

the nanostructure (x-direction) is variable depending on the width of the wavepacket 

excited and, in general application, may be aligned with any direction that could be 

decomposed into periodic supercells.  For the verification results presented in section 3.4 

it is aligned with the [1 0 0] crystal axis.  The thickness of the plate in the z-direction is 

one conventional unit cell (i.e. one lattice parameter).  Larger widths in the z-direction 

were tested and the changes in results were negligible.  Periodic boundary conditions are 

employed in the z-direction.  The T-stub is located in the middle of the domain and the 

rigid wall boundary condition is enforced by fixing the displacement of the first several 

outer atomic layers to zero for the duration of the simulation.  The simulation is executed 

according to standard techniques of molecular dynamics [48] using a time step of one 

femtosecond. The total duration of the simulation is chosen such that the phonon 

wavepacket has time to propagate across the entire domain and is variable depending on 

the group velocity of the excited mode and the domain length.  The total energy of the 

system on each side of the T-stub is monitored and the transmission coefficient is 

calculated from the final distribution of system energy via  

 
,in in

transmitted
k

incident

E

E
    (32) 
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Figure 3.2: Molecular dynamics computational geometry used for MDWPM comparison with SBM. 

3.4.2 Disadvantages of MDWPM  

 Experience with the method demonstrated that it can reliably obtain mode 

dependent transmission results, but it does have significant shortcomings.  First, since 

this method uses wavepackets, it cannot precisely isolate phonon modes comprised of 

only one wavenumber or frequency.  Rather, the wavepacket is comprised of modes 

spanning a range of wavenumber and frequency that is centered about a desired mode.  

While longer wavepackets can be used to better isolate the desired mode, this requires 

the simulation of large domains that can be computationally expensive. In order to 

ensure accuracy of transmission results, a convergence study of transmission versus 

wavepacket size should be performed to estimate the minimum wavepacket size 

required to obtain a desired level of accuracy.  Second, since this technique occurs 

within the framework of an MD simulation it can be susceptible to background noise 
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associated with signal spreading to unwanted frequencies from anharmonic interactions 

or due to the relaxation of the base structure to a new lower potential energy equilibrium 

state.  Wavepackets with extremely small amplitude can be used to minimize 

anharmonic interactions, but these can then be susceptible to other noise problems 

associated with numerical error. If care is taken to select a proper excitation amplitude 

this problem can usually be avoided.  Rigid wall boundary conditions can be 

implemented to avoid problems associated with structural relaxation and make the 

method computationally easier to implement.  Though the rigid wall boundary condition 

has been used by others for computations of thermal transport in silicon [92], it is most 

valid only for the case of silicon confined by very stiff layers. Such a situation would 

occur, for example, in silicon-on-diamond electronics.  Most cases of real technological 

interest are better modeled using a free boundary condition.  In these cases, relaxed 

structures can be attained through an MD annealing process or other means, but this 

requires additional computational burden.  In contrast, the scattering boundary method 

avoids all of these problems and is much more computationally efficient. As such, the 

MD-wavepacket method is used only as a means to verify the proper implementation of 

the scattering boundary method. 

3.5 Verification of SBM Implementation 

 The correct implementation of the scattering boundary method transmission 

calculation was verified via comparison with MDWPM simulations for the T-stub 
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geometry.  Since the purpose of this comparison is only for SBM model verification, the 

results presented herein are for only one geometry size and for the first shear horizontal 

mode (SH1).  For more discussion on the transmission of shear horizontal modes in rigid 

wall systems, see reference [92] which also presents MDWPM transmission results for a 

wider range of systems sizes. Figure 3.3 plots SH1 phonon transmission through the T-

stub as a function of incident wavenumber using both the MDWPM and SBM 

approaches.  The SBM result agrees very well with the MDWPM results across the entire 

range of wavenumber computed. Results for other system sizes and mode types showed 

similar model agreement.  Minor differences between the two approaches can be 

accounted for by the fact that the accuracy of the MDWPM  approach is limited by the 

length of wavepacket that can be simulated.  The length of the wavepacket that can be 

simulated is limited by computational resources.  To investigate this effect, a wavepacket 

sensitivity study was performed at one wavenumber.  This result presented in Figure 

Figure 3.4(b). The figure shows that as the wavepacket width is made larger, the 

transmission results obtained from MDWPM gradually converges to the SBM result 

which, in essence, represents the infinite wavepacket limit.  This gradual convergence 

with wavenumber was confirmed for other mode types and wavenumbers.  The total 

domain length used to obtain the MDWPM results presented in Figure 3.4(b) was 

variable and was sized to be large enough to contain the wavepacket and not confuse 

incident and reflected signals.  It was also found that changing the domain length while 

holding the wavepacket width constant did not affect the transmission result.  The 
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favorable comparison between the MDWPM results, for wavepackets of sufficient width, 

and the SBM results confirms that the SBM transmission calculation is implemented 

correctly and can be used with confidence.  
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Figure 3.3: Comparison of scattering boundary transmission calculation with MD wavepacket transmission 

calculation for SH1 propagation through silicon plate with T-stub and rigid walls.  Lateral dimension of 

plate, hI, is 1.22 nm, width if T-stub region, hII, is 2.44 nm, and length of T-stub, d, is 1.22 nm.  The 

wavepacket width is held constant at 97 nm and the total domain length is 434 nm. 

 
Figure 3.4: (a) illustration of wavepacket width for kx=1.19 (1/nm). (b) Convergence of MDWPM 

transmission result with increased wavepacket width.   Wider wavepackets better approximate phonons of 

single wavenumber. Transmission is calculated for SH1 propagation at kx= 0.759 (1/nm).   Red circles 

correspond to MDWPM results for different wavepacket widths.  Black dashed line corresponds to SBM 

calculation of same mode. 
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3.6 Chapter Summary 

This chapter described the adaptation of the scattering boundary method for the 

calculation of modal phonon transmission coefficients in geometrically irregular 

nanostructures.  An alternative atomistic computational approach for calculating phonon 

transmission in comparable systems, the MD wavepacket method, was also presented and 

its disadvantages which are associated with wavepacket width and computational 

convenience were highlighted.  Using a silicon plate with a T-stub and rigid boundary 

condition as a case study geometry, the MD wavepacket method was used to verify that 

the SBM computational model was implemented correctly. 
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4 Comparison of Atomistic and Continuum Methods for Calculation 

of Phonon Transmission  

4.1 Overview 

 In this chapter, two methods for calculating shear-horizontal phonon transmission 

across stepped silicon plate junctions are presented.  The first approach, which has been 

commonly used in previous studies on phonon transport in nanostructures, is based on 

continuum elastic wave theory and uses eigenmode expansion to solve for the fraction of 

energy transmitted across the stepped interface.  Comparison with results obtained using 

the scattering boundary approach developed in Chapter 3 applied to the same geometry 

demonstrates that the continuum approach is only appropriate for modeling the 

transmission of long wavelength phonons in larger nanostructures.  The origin of the 

disagreement between the two models is discussed and a simple model for estimating an 

upper bound on the deviation between the two models in the long wavelength, low 

frequency limit is presented.   

4.2  Background 

The mode dependent ballistic phonon transmission coefficient, ,k  , is an 

important quantity used to characterize phonon  transport and  predict thermal properties 

of geometrically irregular nanostructures. ,k   is defined as the fraction of energy in a 

mode type/dispersion branch, ν, and wavenumber, k, that is transmitted across a 
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geometric feature (see Figure 1.1 for an example geometry).  When used with Landauer 

theory [40], knowledge of ,k  for all phonon modes provides a “bottom-up” way of 

predicting the thermal conductance across a particular geometric element.  Most 

commonly, ,k   has been calculated by applying the continuum acoustic analogy and 

modeling phonons as elastic waves propagating through continuous media.  Researchers 

have used continuum acoustics methods to calculate phonon transmission across “T-stub” 

resonators [56,57], waveguide constrictions [58], asymmetric waveguide junctions [61],  

combinations of  resonators and cavities [63-65], nanoscale waveguide bends [67], and a 

number of other nanoscale geometries [69-71].   These studies have uncovered 

fundamental mechanisms underlying phonon scattering behavior including the role of 

evanescent phonon modes [58] and the appearance of strongly oscillating transmission 

curves that result from phonon interference and resonance [56].  It has also been found 

that resonator and cavity combinations can lead to selective phonon transmission as well 

as wide frequency gaps in phonon transmission [64] which suggest that specifically 

designed nanostructure geometry may be useful for obtaining targeted phonon behavior 

and tuned thermal properties.  However, because continuum methods neglect the discrete 

nature of an atomic lattice, they do not include atomistic effects that can arise when the 

nanostructure size or the phonon wavelength approaches the interatomic spacing.  For 

long wavelength phonon modes, in nanostructures of sufficient size, continuum models 

should accurately model phonon interactions with geometrical irregularities. 
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Alternatively, ,k   may be calculated using an atomistic method such as the 

scattering boundary method (SBM) [82,85] or the molecular dynamics wave packet 

method (MDWPM) [87,88].  These methods directly include atomic discreteness and as 

such model phonon interactions with geometry more accurately than continuum models 

and are applicable for all ranges of phonon wavelengths and frequency.  To date there has 

been very little research published that compares the atomistic and continuum approaches 

and assesses the limits of applicability of continuum models to atomistic systems.  In a 

recent work, a comparison was made for the case of shear-horizontal modes propagating 

through a silicon rigid-walled plate waveguide with a T-stub geometric feature and a 

rigid boundary [92].  However, the scope of that study was limited by the atomistic 

computational method that was used in the comparison (MDWPM) since that method is 

extremely computationally demanding due to the large domain sizes required for accurate 

transmission calculations.  In addition, the MDWPM is limited in its ability to tightly 

define the excited wave number spectrum in the molecular dynamics simulation due to 

the requirement that the simulated wave packets be finite in size.  The limitations of the 

MDWPM are discussed in greater detail in section 3.4.2 and in the previous work [92]. 

 In this chapter, the lattice dynamics-scattering boundary method (LD-SBM) 

computational approach which was described in Chapters 2 and 3 is used to perform a 

more detailed comparison between atomistic and continuum computational approaches to 

model phonon interactions with geometry.  In contrast to MDWPM, LD-SBM is capable 

of calculating phonon transmission at a precisely defined wavenumber and is much more 
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computationally efficient since it requires the computational analysis of a much smaller 

number of atoms.  This increases confidence in the atomistic result and facilitates a more 

comprehensive comparison with continuum theory.  Rather than repeating the 

investigation of the T-stub system, a simpler phonon scattering problem is used to 

compare the two computational approaches: the transmission of shear-horizontal (SH) 

modes through a stepped junction between two silicon plate waveguides with free 

boundaries. This geometry is shown in Figure 4.1.   Performing the comparison for this 

specific system was done for three reasons.  First, SH modes in plates are the most easily 

studied elastic mode family from a continuum analysis standpoint since they consist only 

of uncoupled shear waves.  Other modes, for example Lamb modes in plates and 

dilatational, flexural, and torsional modes in beams are substantially more complicated 

and cannot generally be decomposed into uncoupled components.  Restricting the study 

to SH plate modes allows for the use of simple eigenmode expansion computational 

methods which are not easily applicable to general elastic modes.  Moreover, because of 

the simplicity of the treatment, uncoupled SH modes have been the most commonly 

investigated class of modes in previously reported geometry induced phonon scattering 

studies [57,58,64,65]. Second, for the geometry chosen, the transmission of a specific 

phonon branch depends only on the incident mode’s wavenumber and the relative size of 

the two plates.  The small number of parameters involved allows for focus to be placed 

on atomistic effects dependent on system size and wavenumber without having to 

exhaustively characterize the effect of other geometric parameters inherent in more 
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complicated geometries. Third, the free boundary condition is believed to be a more 

realistic approximation to the actual silicon boundary condition than the rigid boundary 

condition which was previously employed.  The remainder of this chapter is organized as 

follows: in Section 4.3 the continuum analysis of the problem is presented. In Section 4.4 

the atomistic computational approach and geometry used in the comparison are 

summarized.  In Section 4.5, transmission results corresponding to the two approaches 

are presented.  In Section 4.6, the origins for the differences between the two models are 

discussed.  In Section 4.7 the conclusions are summarized. 

 
Figure 4.1: Schematic of silicon stepped plate waveguide junction.  Direction of phonon propagation is in 

the x direction which is aligned with the [100] crystal axis.  The plate is considered to extend infinitely in y 

and z directions.  Shear-horizontal phonon modes are polarized in the z-direction.  The scattering system is 

deconstructed into two regions, the incident side, labeled I, and the transmitted side, labeled II. 

4.3 Continuum Analysis 

 For the geometry illustrated in Figure 4.1, phonons are incident from plate I and 

are transmitted to plate II.  The wave fields do not vary in the z-direction so that phonon 

propagation occurs only in the x-direction.  In this way, the model system is “quasi-2D” 

and the continuum analysis can be performed using methods applicable to elastic wave 
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propagation in anisotropic plates.  If the x-axis is aligned with a high symmetry direction 

of the plate and energy is only incident from plate I, one family of solutions for the 

displacement field in the two plate sections are given by [53]:    

 

      
,

, , , , ,

1

0

0

exp exp

I SH

M

I I I I IF y A i t k x A i t k x    


  



 
 
  

  
 

      
     



u   (33) 
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II SH

M
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 
  

  
 

  
   



u   (34) 

Here M is the number of phonon modes at the frequency of interest,  is the mode 

index, and  , ,A A   

   is the amplitude of a forward (backward) traveling wave of mode 

type  in region ξ, which may be I or II.  This family of solutions is known as the shear 

horizontal (SH) set of solutions and has nonzero displacement only in the z-direction.  

This set of solutions is characterized by a simple dispersion relation [53], 

 

1
22 2

,

S

k
V h

 



    
           

  (35) 

where SV is the shear wave velocity. The mode shapes for each region are given by: 
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
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
 

 
 

 

  (37) 

The mode shape represents the variation in z-displacement at a particular y 

coordinate and satisfies a stress free boundary condition at y=0 and y=hξ.  To solve for 

the transmission across the junction the conditions, I IIu u , and I II  T n T n , must first 

be satisfied at the interface between regions I and II.  Here, n is the normal vector to the 

interface and T is the stress tensor.  Since for SH modes there is only one nonzero 

component of displacement these interface conditions simplify to
, ,z I z IIu u and 

, ,zx I zx IIT T where 
,

, 44

z

zx

u
T c

x









.  Eliminating the time dependence, setting the interface 

location to x=0, and dividing by the stiffness constant, c44, which is the same in every 

region, the interface conditions reduce to: 

     , , , , ,

M M

I I I II IIF y A A F y A    
 

       (38) 

     , , , , , , , ,

M M

I I I I I II II IIF y k A k A F y k A       
 

         (39) 
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The next step in obtaining the transmission coefficient is to determine the unknown 

excited mode amplitudes ,IA 


, ,IIA 


.  This is done by multiplying both sides of the 

displacement interface condition (Eq. (38)) by  ,IIF y   and integrating across the width 

of plate II.  Both sides of the stress interface condition (Eq. (39)) are multiplied by 

 ,IIF y  and integrated across the width of plate I.  Here,   is a dummy index that spans 

all modes. Noting that  , 0IIF y  for IIy h  and using the fact that   

   , ,
0

h

F y F y dy


      , where    is equal to one for    and zero otherwise, the 

following linear system is obtained. 

 
     

    
     

T - T +

I I

+ +

I II II I I

Φ -I A -Φ A

K ΦK A K A
  (40) 

Here, the elements of the M by M expansion coefficient matrix Φ  are 

   , ,
0

IIh

I IIF y F y dy      .   The elements of the M by M wavenumber matrices Kξ are 

diagonal with elements   ,,
K k   

  . The vectors 
±

ξA contain the amplitudes of the 

excited modes,
 

,

,A 
 , in each region and are of length M.  ,IA 

  is assumed to be one for 

the incident mode and zero for all other modes.  Equation (40) is solved for the unknown 

mode amplitudes and the transmission coefficient, , inck  , and reflection coefficient,

 

, inck 

, of the incident mode, inc , can be calculated using [57]: 
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   . (42) 

Here, ,A 


indicates the complex conjugate of ,A 


.   Note that complex amplitudes 

are required to account for phase differences in the displacement fields associated with 

different modes.  For simplicity, equations (38)-(40) are calculated using the same finite 

number of modes in regions I and II.  In principle, the calculation would include an 

infinite number of modes.  However, in practice, all of the propagating modes (those with 

real wavenumbers), and the first several non-propagating modes (those with imaginary 

wavenumbers) are included in the construction of the expansion coefficient matrices.  

The actual number of non-propagating modes that are necessary varies depending on the 

frequency.  The total number of modes used in each calculation was increased until the 

transmission calculation converged to a constant value that was independent of number of 

modes included.  Five non-propagating modes is typically a large enough number for an 

accurate transmission calculation.  The summation over modes in the calculation of 

transmission and reflection coefficients for a given incident mode (Eqs. (41) and (42)) 

includes only the Mprop propagating modes with purely real wavenumber since only these 

modes carry energy.  While evanescent modes are not included in the transmission 

calculation, they are required to properly resolve the displacement field near the plate 

junction and accurately determine the excited mode amplitudes.  To ensure energy 
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conservation, it has been verified for all cases presented herein that the sum of the 

transmission and reflection coefficients is equal to one.  

4.4 Atomistic Analysis 

The atomistic model used follows the LD-SBM computational method as described 

earlier in this dissertation.  The plate junction is decomposed as illustrated in Figure 4.2.  

The phonon spectrum of each plate lead is analyzed using the harmonic lattice dynamics 

techniques described in Chapter 2.  The transmission calculation follows the scattering 

boundary method described in Chapter 3.  

 

Figure 4.2: Illustration of geometry used in atomistic analysis.  Computational domain decomposed into 

left and right plate leads and the scattering central region.  These regions and their roles in the transmission 

calculation are defined in Chapter 3.  Periodic boundary conditions are employed in the z-direction. 

In order to calculate the modal transmission coefficients of the shear-horizontal 

modes, first the full dispersion relation of the incident side plate lead is calculated. The 
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phonon branches analogous to the continuum SH modes are identified through 

comparison of the atomistic and continuum dispersion relations and inspection of each 

mode’s mode shape.  The transmission along each SH phonon branch is systematically 

calculated across a range of desired wavenumber.  The investigation is limited to the first 

four shear-horizontal modes, SH0, SH1, SH2, and SH3 (corresponding to ν=0,1,2,3).  An 

example phonon spectrum along the [100] direction is presented in Figure 4.3.  The full 

phonon dispersion is plotted in Figure 4.3(a).  The low frequency, low wavenumber 

regime that is investigated in this study is plotted in a larger figure in Figure 4.3 (b).  The 

branches corresponding to the first four SH modes are plotted in blue and labeled 

according to mode number. The other low frequency phonon branches, which are Lamb 

modes, are colored in orange, but are not investigated in this study. 

 
Figure 4.3: Phonon spectrum for silicon plate waveguide along for phonon propagation aligned with the 

[100] crystal axis.  The dimensionless plate width is hI/a=12, (corresponds to hI=6.52nm).  The first four 

shear-horizontal modes that are of interest in this study are colored blue and labeled in the figure.  Lamb 

modes, which are not investigated herein, are plotted in orange. 
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4.5 Model Comparison  

4.5.1 Transmission Results for SH0 

Transmission results associated with the atomistic and continuum modeling 

approaches corresponding to the SH0 mode are compared in Figure 4.4.  The results are 

plotted against dimensionless wavenumber, ka, where a is the lattice parameter.  Three 

different plate sizes are compared, but the ratio between the heights, 
* II
II

I

h
h

h
 , of the two 

plates is held constant at * 0.25IIh  .  While the results associated with only one value of 

*

IIh  are presented in detail herein, the qualitative shape of the continuum transmission 

curve remains the same independent of *

IIh .  The transmission approaches a constant 

value at low wavenumbers.  The long wavelength limit can be analytically derived 

following the same analysis presented in Section 4.3, but by assuming that only SH0 

modes participate in the scattering process.  This results in a long wavelength SH0 

transmission given by: 

 

 

*

SH0, 0 2
*

4

1

II
k

II

h

h
  


  (43) 

Such a derivation is appropriate and expected since at low wavenumbers the 

displacement fields associated with all of the higher order modes decay immediately 

away from the stepped plate interface since they have large and imaginary components of 

wavenumber. As such, coupling with higher order modes is negligible and only the 
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interactions between the SH0 modes in each plate need to be considered.  At higher 

wavenumbers, the transmission exhibits strong discontinuities at regular intervals of 

wavenumber (kh=1,2,3,…).  Each of these discontinuities occur when the incident 

phonon frequency is equal to the cutoff frequency of a higher order SH mode (e.g. SH1, 

SH2,…).  The magnitude of the discontinuities decreases with increasing wavenumber 

and eventually the transmission approaches a short wavelength limit.   The transmission 

of the short wavelength SH0 modes was empirically found to approach a value of: 

 *

SH0,k IIh     (44) 
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Figure 4.4: Atomistic transmission as compared to continuum transmission for SH0 mode as a function of 

incident mode dimensionless wavenumber, ka.  *

IIh is held constant at 0.25.  Increasing the plate size 

improves model agreement for low wavenumber modes.  Atomistic “wavelength” effects are demonstrated 

higher wavenumbers as atomistic transmission result diverges from continuum.  
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The transmission coefficients calculated using the LD-SBM atomistic model, 
A  , 

agree well with the continuum transmission, 
C , obtained from Eq. (41) at low 

wavenumbers, but significant deviation between the two models is observed at high 

wavenumbers.  The origin of this disagreement is discussed in detail in Section 4.6.1.  

Slight deviation between the two models occurs at low wavenumber, but deviation 

lessens with larger plate sizes.  This behavior is explained and further characterized in 

Section 4.6.2. 

4.5.2 Transmission Results for SH1, SH2, and SH3 

The comparison of transmission results for the SH1, SH2, and SH3 modes are 

presented in Figure 4.5.  Two different plate sizes are presented and the plate size ratio, 

*

IIh , is held constant at 0.25.  Similar to the results presented for SH0, the atomistic and 

continuum results for these modes tend to exhibit better agreement at low wavenumbers, 

but substantial disagreement between models is observed at higher wavenumbers.  

Deviation between the models that occurs at lower wavenumbers is more severe for the 

smaller plate size presented.  In addition, model agreement worsens as mode order 

increases. That is, the agreement for SH3 is worse than for SH2 and SH2 is worse than 

SH1.  All of these effects are discussed and explained in Section 4.6. 
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Figure 4.5: Atomistic transmission as compared to continuum transmission for SH1, SH2, and SH3 modes 

as a function of incident mode dimensionless wavenumber, ka.  *

IIh  is held constant at 0.25.  Two different 

system sizes were investigated as annotated in the figure.   
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4.6 Origins of Differences Between Models 

Differences between the continuum model and the atomistic model arise from 

atomistic effects that can be loosely categorized as being either nanostructure size effects 

or phonon wavelength effects.    

4.6.1 Atomistic Wavelength Effects 

For the results presented in Figure 4.4 and Figure 4.5, the deviation between the 

models that occurs at higher wavenumbers results from atomistic wavelength effects.  

Wavelength effects arise when the phonon wavelength, 
2

k


  , gets smaller and 

approaches the length scale of the atomic discreteness. For this reason, wavelength 

effects are characterized using the dimensionless parameter ka. At high values of ka the 

spatial variation of atomic displacements is too rapid, relative to the interatomic spacing, 

to be adequately modeled using continuous displacement fields.  The divergence from 

continuum in an atomistic system at higher wavenumbers was confirmed for many 

different waveguide sizes and several values of *

IIh .  It was found that no matter the 

system size the models always diverged from one another at higher wavenumbers.  

However, the wavenumber threshold at which this transition occurs as well as the rate of 

the transition depends on the specific geometry.  There is appreciable variation in where 

the transition occurs which makes it difficult to define the transition wavenumber with 

precision.  However, in the cases investigated, atomistic effects generally become non-
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negligible between ka equal to 0.40 and 0.80.  This corresponds to wavelengths less than 

between approximately 4 and 8 nm. 

Additional wavelength effects occur for the higher order modes, SH1, SH2, and 

SH3.  The ka parameter only characterizes the longitudinal variation of atomic 

displacements relative to the lattice spacing. Higher order modes exhibit additional 

variation in the displacement field that is transverse to the direction of propagation. This 

is why, for a fixed value of ka, model agreement worsens as mode order increases (see 

Figure 4.5). 

It was found that the deviation observed at higher wavenumbers as well as for 

higher order modes is associated with deviations between the atomistically calculated 

mode shapes (from harmonic lattice dynamics) and the continuum model (from equation 

(37)).  The atomistically calculated mode shapes of the first four SH modes are compared 

to continuum at small and larger wavenumbers in Figure 4.6.  At low wavenumbers and 

the lowest order modes there is negligible disagreement between the two mode shape 

models.  However, for the higher order modes (even at very low wavenumbers) and all 

modes at higher wavenumbers, there is appreciable disagreement between the two mode 

shape models.  These differences in mode shape gradually become worse as the 

wavenumber is increased.    The atomistically calculated mode shapes differ from the 

continuum in two ways.  First, the lateral dependence on z component of displacement 

changes with wavenumber and the agreement with continuum tends to worsen at higher 

wavenumbers.  Second, while continuum theory predicts that displacements in the x and 
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y directions are completely decoupled from motions in the z-direction and should not 

appear in SH modes, it is found that atomistically calculated mode shapes for SH modes 

do include x and y displacement that is non zero.  The amount of x and y displacement 

increases with increasing wavenumber and the agreement between models at a given 

wavenumber worsens for higher order modes which have lower transverse wavelength.  

Since both the continuum and atomistic transmission calculation methodologies are 

intimately linked to their respective mode shapes, any deviation in mode shape 

calculations will cause the transmission results to differ. 
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Figure 4.6: Comparison of normalized continuum and atomistic normal mode shapes of first four SH 

modes for 12Ih a  .  The colored markers indicate the atomistic result.  Green circles correspond to 

displacement in the z-direction. Red squares and blue triangles correspond to x and y displacement, 

respectively.  Note that the plotted y displacement mode shape is 90 degrees out of phase with the z and x 

displacement.  The black lines indicate the continuum mode shape corresponding to each mode.  In the 

continuum model, motions in the z-direction are completely decoupled from x and y motions, so that the 

only non-zero component of displacement for SH modes is in the z direction.  Note that for atomistic 

results not all atoms in a supercell share the same equilibrium x or z positions. 
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4.6.2 Atomistic Size Effects 

While the most noticeable difference between the two models occurs at high 

wavenumbers and results from atomistic wavelength effects, there is an additional source 

of deviation between the two models that can persist independent of the phonon 

wavelength.  These effects are denoted size effects and occur when the width of either 

plate section, hI or hII, approaches the length scale of the atomic discreteness.  Here, the 

lattice parameter (a=0.543nm) is chosen as the relevant length scale of the atomic 

discreteness and the dimensionless parameter hI /a is used to characterize how the size of 

the system compares to the atomic discreteness. 

Included among nanostructure size effects are atomistic roughness effects, 

dimensional uncertainty effects, and non-uniform stiffness effects.  Due to the nature of 

the atomic lattice, the plate boundary as well as the topography of the stepped plate 

interface are inherently rough.  For example, neighboring atoms at the plate boundaries 

may not have the same equilibrium y position. Similarly, neighboring atoms at the 

stepped plate-plate interface may not have the same equilibrium x position.  Thus, both 

the plate interface and the plate boundaries will have a jagged topology that only appears 

smooth when hI /a is large.  This is the atomistic roughness effect and is illustrate in 

Figure 4.7.  A related set of effects are denoted dimensional uncertainty effects.  Since 

atoms at the plate boundary do not all have the same equilibrium y position, there is an 

inherent ambiguity in determining the dimension of both hI and hII.  The continuum 

model includes sharp and precisely defined interfaces and boundaries.  It is difficult to 
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define sharp interfaces/boundaries in the atomistic system since it is unclear if the 

interface or boundary should be defined between atomic layers or at layer centers.  This 

uncertainty leads to uncertainty in the measurement of hI and hII both of which are 

required for the continuum transmission calculation.  For the results presented herein, any 

plate height, h , is defined as the distance between the centers of the outermost boundary 

atomic layers.   

 
Figure 4.7: Illustration of atomistic size effects.  Discrete atomic lattice causes inherent roughness at plate 

boundaries and at plate-plate interfaces.  In addition, the discrete lattice results in ambiguity in defining the 

height, h,  of the plates, resulting in an uncertainty in the height definition, Δh.  For this study, h, is chosen 

to be measured from the centers of the atoms at the plate boundaries as shown in the figure.  

Another size related atomistic effect, the non-uniform stiffness effect, arises from 

the fact that as h becomes smaller, a higher fraction of the atoms in each plate are near or 

at the plate boundary.  Because the boundary is free, atoms near or at the boundary 

experience forces that are different than those closer to the plate center.  As result, the 

elastic stiffness varies across the plate width and is less stiff near the plate boundaries.  In 

addition, the overall effective material properties such as the relevant shear stiffness, c44, 
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and shear velocity, VS differ between plates of different sizes.  As the plate is made 

larger, the stiffness properties of the plate approach that of bulk, and this atomistic effect 

is minimized.  To illustrate this effect, the group velocity was computed from numerical 

differentiation of the dispersion curve of the SH0 mode in the long wavelength limit as a 

function of plate size.  This result is plotted in Figure 4.8.  The group velocity of the SH0 

mode is slightly reduced for smaller plate sizes.  For larger plate sizes, the calculated 

group velocity converges to the expected continuum shear velocity (

44 4920 m/sSV c   ).  The bulk shear stiffness, 44 56.4 GPac  , was taken from a 

lattice dynamics study [55] of bulk Stillinger-Weber silicon.  The height dependence of 

the SH0 mode velocity clearly demonstrates that atomistic boundary effects can alter 

overall elastic properties.  This affects atomistic phonon transmission and its agreement 

with continuum theory since continuum theory relies upon the assumption of material 

properties that are both size and wavenumber independent. 
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Figure 4.8: Atomistically calculated SH0 mode velocity in the long wavelength limit (markers) as a 

function of plate size.  SH0 mode velocity is reduced for smaller plate sizes but converges to the continuum 

value when the size of the plate is much larger than the interatomic spacing. 

In order to isolate nanostructure size effects from atomistic wavelength effects 

focus is placed on the deviation between the atomistic and the continuum models for the 

SH0 mode in the long wavelength limit (ka near zero).  For an example of this deviation 

note the small difference between atomistic and continuum transmission results apparent 

near k=0 in Figure 4.4(a).  Since the spatial variation of atomic displacements associated 

with these modes is small, atomistic wavelength effects are minimized and the only 

possible source of deviation arises from atomistic size effects.  In the investigation of this 

regime, the atomistic transmission of the SH0 mode was calculated for k near zero and 

compared with the continuum value (Eq. (43)).  The effect of nanostructure size was 

specifically investigated by varying the value of 
Ih .  Four different values of *

IIh  were 

investigation. The percent difference between the atomistic model and the long 
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wavelength continuum model is shown in Figure 4.9. For SH0 modes in the long 

wavelength limit, the deviation between the atomistic and the continuum model gets 

smaller as 
Ih is increased.  This is because increasing plate width reduces dimensional 

uncertainty and the relative importance of atomistic roughness and non-uniform stiffness 

effects.  For 
Ih a greater than 20, the deviation between the atomistic model and the 

continuum model is less than 1% for all values of *

IIh  investigated. For 
Ih a greater than 

5, the deviation between the atomistic model and the continuum model is less than 5% for 

all values of *

IIh  investigated. The figure shows that only the smallest two values of *

IIh  

investigated resulted in appreciable disagreement between models and this was only for 

small values of 
Ih a .  The deviation between the atomistic model and the continuum 

model for long wavelengths is less for larger values of *

IIh .   
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Figure 4.9: Percent difference between atomistic and continuum models for SH0 mode in the long 

wavelength limit.  Calculated deviation between models for different values of 
*

IIh  are plotted according to 

the markers shown in the legend.  The dashed lines are the estimated upper bound for “dimensional 

uncertainty” as calculated using equation (46).  The colors of the dashed lines correspond to the coloring of 

the markers for each value of 
*

IIh  .   

It is hypothesized that the greatest source of deviation between the models arises 

from what is described as dimensional uncertainty which in the long wavelength limit 

leads only to uncertainty in the parameter *

IIh which is used in the continuum long 

wavelength calculation.  Using standard propagation of uncertainty techniques [94], an 

expression for the expected upper error bound, du , arising only from the dimensional 

uncertainty, h , in h can be estimated from: 
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    

1
2 2 2

2 2SH0, 0 SH0, 0k k

du
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h h
h h

 
  

     
        

      

  (45) 

Which, upon simplification and substitution of 
* II
II

I

h
h

h
 yields: 

 
 

 
 

*

*

3
*

4
1

I II I

du I II

I II I

h h h
h h h

h h h



   


  (46) 

The uncertainty in h  is estimated to be 
8

a
h   .  This value corresponds to half the 

distance between atomic layers.  The expected upper error bound, du , is calculated 

using Eq. (46) and compared with the actual calculated deviation between the two 

models.  This estimated upper bound on model deviation is plotted in dashed lines 

alongside the actual deviation between models in Fig. 3.  It was found that equation (46) 

serves as a good estimator of the upper bound for expected deviation between the models 

in the long wavelength limit as all data points fall below the line and closely track the 

trend.  Additionally, explaining the deviation in this manner demonstrates why larger 

values of *

IIh result in closer agreement between the atomistic and the continuum model.  

Comparison with this model, which is based solely on deviations associated with 

dimensional uncertainty, indicates that atomistic roughness and non-uniform stiffness 

affect transmission much less than dimensional uncertainty.  It is also noted that the 
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maximum deviation resulting from dimensional uncertainty occurs as *

IIh approaches zero 

and gives a limiting value of 
4

du

I

h

h



  .   

4.7 Conclusions 

Two different computational approaches were used to calculate shear-horizontal 

phonon transmission across stepped silicon plate junctions.  The first approach, which is 

based on continuum elastic wave theory, follows the same procedures used in previous 

studies of phonon transmission in geometrically irregular nanostructures.  The second 

approach directly models the vibrations of individual atoms and therefore includes effects 

related to the discrete nature of an atomic lattice.  The two models were compared for the 

first four SH phonon branches over a range of wavenumber.  The most significant 

deviation between the two models was observed for short wavelength modes and was 

shown to be related to disagreement between each approach’s mode shape models.  In 

addition, the results indicate that rapid variations in atomic displacement in the direction 

transverse to the propagation direction (characteristic of higher order modes) leads to 

further disagreement between the continuum and atomistic approaches that is evident in 

both the mode shape and transmission results.  Another source of deviation, denoted 

atomistic size effects, was found to be an additional contributor to differences between 

the two models.  Atomistic size effects were isolated by analyzing the differences in 

transmission of long wavelength SH0 modes.  A simple analytical model based upon 
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dimensional uncertainty in the atomistic system was developed that estimates an upper 

bound on the deviation between the models for these modes.  Consistent with the results 

from the model comparison, the simple model predicts less deviation for larger sizes and 

size ratios.  Although the specific continuum method presented herein is only valid for 

uncoupled shear horizontal mode propagation in quasi-2D (plate-like) nanostructures, 

similar deviations between atomistic and continuum models can be expected for any 

phonon mode type and in other types of nanoscale geometries such as nanowires and 

nanoribbons. 
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5 Simple Model for Phonon Transmission Across Abrupt Nanowire 

Discontinuities 

5.1 Introduction 

5.1.1 Chapter Overview 

In this chapter, a simple analytical model for estimating the ballistic transmission 

coefficient of guided phonons in nanowires with abrupt geometric and material 

discontinuities is presented.  The model includes separate consideration of each of the 

four lowest frequency nanowire phonon modes-one extensional, one torsional, and two 

flexural modes-and is based upon the long wavelength behavior of these modes as 

analyzed using continuum elastic wave theory of prismatic beams. The model is 

presented using a transfer matrix approach that can be applied to a nanowire with any 

number of discontinuities and arbitrary but piecewise constant cross-section.  Simplified 

analytical expressions for a step junction of two coaxial nanowires with different 

diameters and for a nanowire with a central coaxial constriction or expansion are also 

presented.  For the test case of a cylindrical silicon nanowire system, the analytical model 

is compared with modal transmission coefficients calculated using the lattice dynamics - 

scattering boundary method (LD–SBM) approach described in Chapters 2 and 3.  Despite 

the simplicity of the analytical model, good agreement is found between the simple 

model and the LD-SBM model for small wavenumbers.      
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5.1.2 Background and Motivation for Simple Model 

Geometry induced phonon scattering events are complicated processes that depend 

on many different variables including, at a minimum, nanostructure size, shape, 

constituent atom type, crystal orientation, and the properties of the incident phonon mode 

(i.e. its wavenumber and dispersion branch).  In a more detailed case, the phonon-

geometry scattering problem may also include dependence on material impurities, crystal 

defects, lattice strain, and relaxation of the crystal lattice near nanostructure boundaries.  

However, given a suitable empirical interatomic potential (or more complicated and 

computationally expensive ab initio interatomic force calculations) and a known or 

calculated atomic configuration, many of these complications can be accounted for and 

transmission coefficients can be computed using an atomistic computational method such 

as those described in Chapter 3.  Unfortunately, these calculations require considerable 

effort in both problem set-up (e.g. specifying atomic positions and interatomic forces) 

and computation (e.g. solving systems of equations with thousands of unknowns or 

executing MD simulations with hundreds of thousands of particles). For instance, a 

typical scattering boundary transmission calculation for an Si nanowire of diameter less 

than 5 nm requires solving a system of equations with more than 6000 unknowns.  The 

substantial computational effort associated with the aforementioned detailed transmission 

calculation methodologies limits their ease of use.  Furthermore, for an arbitrary 

geometry, the scattering process may involve conversion from a single incident mode to 

many different reflected and transmitted modes, the excitation of higher order modes as 
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well as evanescent modes localized to an irregular geometry, and complicated 

overlapping of resonant phenomena associated with each excited mode.  These factors 

can give rise to mode dependent transmission curves that are very complicated functions 

of incident phonon wavenumber (or, alternatively, frequency) that may exhibit strong 

peaks and valleys in transmission with no easily discerned relation to the nanostructure 

geometry or the properties of the incident phonon.  The complicated, and sometimes non-

intuitive, transmission behavior predicted by these methods give little clarity to the 

problem of designing nanostructures for “tuned” phonon transmission behavior.   

 One approach that has been used that avoids the some of the difficulties 

associated with the more complicated and computationally expensive atomistic 

approaches is to use continuum acoustic theory to model phonon transport.  As discussed 

in Chapter 4 and in another work [93], this approach has been shown to accurately match 

more complicated atomistic calculations for low frequency modes in the long wavelength 

limit. However, as discussed in Chapter 3, many recent studies using this approach have 

employed continuum scalar wave models that are greatly simplified when compared to 

systems of real practical interest, for example geometrically modified semiconductor 

nanowires.  More complicated continuum elastic theories applicable to anisotropic 

nanowires (see, for example, the method formulated in [41]), or finite element numerical 

approaches [73,74] could provide more accurate representations of phonon dynamics in 

nanowires, but these approaches are still considerably complicated because finding the 

dispersion relation alone requires the numerical solution to transcendental equations of 
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varying complexity.  Application to scattering problems would further compound their 

complexity and undermine the advantages continuum models have over atomistic 

models. 

 Since the currently available computational approaches to calculating phonon 

transmission in geometrically irregular nanoscale systems are either too simple for 

accurate application to nanowire geometries or too computationally expensive and 

complicated for easy use, it is desirable to develop simpler geometric phonon 

transmission models that can be more easily used within the nanoscale thermal transport 

community.  One means of attaining such a model is by focusing only on phonon 

scattering behavior in the low-frequency, long wavelength limit.   Since these long 

wavelength-low-frequency modes are the most important modes for thermal transport in 

the low temperature ballistic regime, a model for these modes provides a first step toward 

designing nanostructures for tuned phonon transport performance and establishes a 

baseline to which more generally applicable models can be compared.  In this chapter a 

model for phonon transmission in nanowires with irregular geometry is presented.  The 

model is derived from elementary elastic beam theory and is valid for the four lowest 

frequency phonon branches in the long wavelength limit. The model offers a way of 

understanding geometry induced phonon scattering in nanowires that is both more 

intuitive and less computationally demanding than that offered by more complicated 

computational models.  The analytical model and the nanowire geometry to which it is 

applicable are described in section 5.2.  In order to assess the accuracy of the model and 
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delineate its regime of applicability, the simple analytical model is compared with 

atomistic calculations of modal phonon transmission in simple cylindrical silicon 

nanowire systems.  The atomistic calculations are performed using the lattice dynamics-

scattering boundary method approach described in Chapters 2 and 3 of this dissertation.  

In section 5.3, the results of the comparison are presented.  The origin of the deviation 

between the two models is discussed and a regime of applicability for the simple model is 

recommended.   

5.2  Analytical Model for Phonon Transmission Coefficient 

5.2.1 Overview of Nanowire Geometry and Low Frequency Modes  

This study is concerned with the analysis of an irregular nanowire with an arbitrary 

number of abrupt geometric and material discontinuities (Figure 5.1). The nanowire is 

decomposed into N+1 nanowire sections joined together at N abrupt interfaces.  Each 

nanowire section is identified with the index ξ.  Each nanowire section is coaxial with the 

others, has constant material properties and piecewise constant cross-section. The model 

requires that each cross-section has similar shape and orientation but is formulated to 

allow for each section to have different size and/or material properties. The last and first 

nanowire sections extend semi-infinitely along the nanowire axis (x-axis). 
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Figure 5.1: Illustration of nanowire scattering system comprised of N+1 nanowire sections adjoined at N 

abrupt interfaces.  The first and last nanowire sections extend semi-infinitely.  

  Each nanowire section will have many phonon modes but all except the four 

lowest frequency mode types have non-zero cutoff frequencies. These four mode types, 

which include one extensional branch, one torsional branch and two flexural branches 

propagate down to zero frequency and are known as the “zeroth order” modes.  Due to 

their relatively high velocities and phonon populations, these four mode types are the 

most important modes for thermal transport at low temperatures. The foundation of the 

phonon scattering model presented herein is that the atomic motions associated with the 

four lowest modes are governed by one-dimensional differential equations that result 

from the approximate long wavelength analysis of these modes.   

5.2.2 One-Dimensional Beam Model 

In general, the atomic motions associated with these modes will have components 

in the direction of the nanowire axis (x-direction) as well as is in the plane of the 

nanowire cross-section (y-z plane).  However, continuum elastic wave theory shows that 

for the long wavelength case, kD<<1, these motions decouple into motions that are either 

primarily in the axial direction (the extensional mode), tangential to the nanowire axis 

(torsional mode), or consist of pure bending in the y or z directions (two flexural modes) 
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[94].  The simplified uncoupled nature of these modes at long wavelengths allows for the 

approximate treatment of these modes with one-dimensional beam models. 

The model for extensional motions is based upon the assumption that the cross-

sectional area of the nanowire remains in plane such that the only non-zero component of 

displacement is along the nanowire axis.  Consideration of the forces acting on a 

differential element results in a harmonic 1-D wave equation for axial component of 

displacement, xu , with an associated phase velocity equal to E  where E is the 

Young’s modulus and ρ is the mass density.  The model for torsional motions is based 

upon St. Venant’s theory of torsion for a prismatic beam [96], and results in a 1-D wave 

equation for the angle of twist, θ, with associated torsional phase velocity equal to 

PJ I  , where J is the torsional rigidity of the nanowire cross-section and PI is the 

polar moment of inertia.  For flexural modes the Bernoulli-Euler mode is used under 

which it is assumed that the dominant component of displacement is parallel with the 

plane of the beam cross-section [94].  It is also assumed that the displacement is uniform 

along the beam cross-section and that cross-sectional areas remain in plane and 

perpendicular to the neutral axis.  In contrast to the simple models used for extensional 

and torsional motions, the Bernoulli-Euler model for flexural motions includes 

evanescent motions that decay away from each nanowire interface.  Further, the 

Bernoulli-Euler model results in a dispersion model whereby the frequency is 
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proportional to the wavenumber squared. More in depth discussion of these long 

wavelength models and their derivation can be found in Ref. [94]. 

The governing equations, general solutions for each region, and dispersion relations 

associated with these simple 1-D models are presented in Table 5.1.   

5.2.3 Determination of Transmission Coefficient 

The phonon transmission associated with a single mode incident from the left can 

be determined by relating the modal amplitudes in each region across the interfaces that 

adjoin them.  Following the approach of Cross and Lifshitz in their investigation of 

elastic wave transport across abrupt junctions in mesoscopic thin plates [97], the 

amplitudes across each nanowire section are related by imposing conditions of continuity 

that are unique to each mode type.  Extensional motions satisfy conditions of continuity 

on axial displacement and axial force, xu
F SE

x





, at each interface.  Here, S  is the area 

of the nanowire cross section.  Torsional motions satisfy conditions of continuity on 

angle of twist,  , and total torque, J
x




, at each interface.  Flexural motions satisfy 

conditions of continuity on displacement, 
yu or zu , bending angle, 

/y zu
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interface.  The y and z subscripts associated with the interface conditions for the flexural 

modes are associated with the two orthogonal bending directions, y or z.  Using these 
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conditions of continuity yields linear relations for the amplitudes of forward, A


, and 

negative, A


, traveling modes in each nanowire section adjacent to a given interface: 

    1 1M A M A    
         (47) 

For the extensional and torsional modes, the amplitude vector is defined by 

   , /

T

ex torA A A  

  .  For the flexural modes, the amplitude vector is defined by 

   , ,
T

e eA A A A A    

    .  
,eA


and 

,eA


refer to the amplitudes of the forward and 

backward traveling evanescent flexural waves associated with wavenumbers that are 

purely complex.  In Eq. (47) the amplitudes are evaluated at the , 1   interface. 

The modal amplitudes for the first and last nanowire sections may be related by: 

 
   1 1

tot

NM A A 
      (48) 

where the total transmission matrix, totM   , can be computed through a cascading 

multiplication of the matrices that correspond to each section,  

 
1

1

1

N
totM M M  









              (49) 

The interface matrices, M
   , associated with each mode type are listed in Table 5.2.  

The interface matrices are obtained by substituting the solutions (Table 5.1) into the 

interface conditions (Table 5.2) and assuming x=0 at the interface.  Note that this 

cascading matrix approach is similar in spirit to the cascaded “T-parameter” approach 



96 

 

that is applicable in the analysis of 2-port cascaded electrical networks [98].  This can be 

done since the displacements at the left side of a given nanowire section are related to the 

displacements at the right side of the same section by multiplying the amplitude by a 

phase factor matrix, 
   , defined as follows for extensional or torsional modes, and 

flexural modes, respectively. 

 
 
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Noting that 
1 0NA

   and assuming that
1 1A  , the amplitudes of the transmitted 

mode for the N+1 region may be found for the extensional or torsional case from the 

elements of the total transmission matrix and the simple relation: 

 
, / 12 21

1 11

22

tot tot
ext tor tot

N tot

M M
A M

M



     (52) 

For the flexural case, the unknown amplitudes, including the transmitted amplitude 

may be found by solving the linear system that relates the reflected amplitudes in section 

1 and transmitted amplitudes in section N+1 with the elements of the total transmission 

matrix: 
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In order to derive Eq. (53) it is noted that , ,

1 1 0e e

NA A 

   .  Once the transmitted 

amplitudes,
1NA


, are computed, they may be used to calculate the transmission from the 

ratio of the transmitted to incident time-averaged acoustic power flow: 
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 

   (54) 

The time-averaged acoustic power flow, ,xP  , for each nanowire region is unique 

for each mode type.  For the extensional and torsion modes it may be easily derived via 

integration of the x-component of the acoustic Poynting vector over the nanowire region 

cross-section [99]:  
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Here, 


u is the complex conjugate of the velocity field of a nanowire region, ξ, and σ is 

the stress tensor field of a nanowire region, ξ.  For long wavelength extensional motions, 

there is only an axial component of velocity and a normal component of stress,

,

,

x

xx

u
E

x









, so that the power flow may be evaluated from: 

 , , ,

ext

x x xxP u S      (56) 
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For the torsional mode, there are two non-zero components of shear stress so that the 

power flow may evaluated from:  

 
, , , , ,

tor

x z xz y xyP u u dS          (57) 

The components of shear stress, 
,xz  and 

,xy  , associated with the torsional mode must 

be evaluated from the Prandtl stress function and related to the torsional rigidity and 

angle of twist following the torsion analysis presented, for example, in Ref. [96].  For the 

flexural modes, the power flow is more easily obtained from [100]: 

 
, / ,

1 1

2 2

flex

x y zP V u L    
     (58) 

The appropriate harmonic fields can be substituted into Eqs. (56), (57), and (58) to obtain 

simplified expressions for the time averaged power flow in each region according to 

mode type.  These simplified results are listed in the fourth column of Table 5.2. 

Table 5.1: Governing equations, general solutions for each region, and dispersion relations associated with 

each zeroth-order mode type. 

Mode Type 
Governing 

Equation 
Solution for each region 

Dispersion 

Relation 

Extensional 
2 2

2 2

x xu uE

x t

 


 

      , exp expxu A i t k x A i t k x         
 

ext

E
k


  

Torsional 
2 2

2 2

P

J

I x t

 



 


 
      exp expA i t k x A i t k x          

 

tor

P

J
k

I



  

Flexural 
4 2

/ /

4 2

y z y zu uEI

S x t

 


 
 

     
   

/ ,

, ,

exp exp

exp exp

y z

e e

u A i t k x A i t k x

A i t k x A i t k x

    

   

 

 

 

 

   

   
 

2

flex

EI
k

S



  
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Table 5.2: Interface conditions, interface matrices, and integrated power flow associated with each mode 

type.  Prime indicates neighboring section. 

Mode Type Interface Conditions M
    ,xP   

Extensional 
, ,

, ,

           x x

x x

u u

u u
S E S E

x x

 

 

   





 



 


   

 

1 1

ik E S ik E S     

 
 
 

 
21

2
k S E A    

 

Torsional 
       

J J
x x

 

 

 

 

 









 


   

 

1 1

ik J ik J   

 
 
 

 
21

2
k J A     

Flexural 

/ , / ,

/ , / ,

2 2

/ , / ,

2 2

3 3

/ , / ,

3 3

             

          

  

  

y z y z

y z y z

y z y z

y z y z

u u

u u

x x

u u
E I E I

x x

u u
E I E I

x x

 

 

 

   

 

   







 



 



 


 

 


 

 


 

 
2 2 2 2

3 3 3 3

1 1 1 1

ik ik k k

k E I k E I k E I k E I

ik E I ik E I k E I k E I

   

           

           

 
 

 
 
  
 

   

 2
3k E I A    

 

 

 The analytical technique as described thus far is general.  The nanowire may be 

comprised of many different regions each of which may have a different length, 

constituent material, or cross-section.  For such nanowires, implementation of this 

technique requires some numerical effort.  For nanowires of reduced geometrical and 

material complexity, it is expedient to apply simplified analytical expressions.  Such 

expressions have been derived for a single nanowire interface and a symmetric double 

interface.  These geometries represent, respectively, a coaxial nanowire stepped junction 

and a nanowire with a single coaxial constricted or expanded section (Figure 5.2).  

Analytical transmission coefficient expressions for these geometries are listed in Table 

5.3.  These cases allow for the cross-section size, shape, and material properties to differ 

between nanowire regions I and II.  For the case of the single interface, the simple model 
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predicts a phonon transmission coefficient that is independent of incident wavenumber 

and depends only on the size, shape, and material properties of regions I and II.  For the 

symmetric double interface, the analytical expression for extensional and torsional 

phonon transmission coefficient has additional dependence on the product of the incident 

phonon wavenumber, k, the region length, d, and a few geometrical and material property 

parameters and is similar in functional form to acoustic wave transmission through a 

simple, single element, low-pass filter [101]. 

 

Figure 5.2: Simple nanowire geometries. 

 

 

 

 

(a) stepped nanowire junction

(b) nanowire constriction

(c) nanowire expanded section

I II

I II I

I II I

d

d
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Table 5.3: Transmission results for single interface (nanowire step) or symmetric double interface 

Mode Type   Nanowire Stepped Junction Nanowire Constriction or 

Expansion 

Extensional I II

II I

E

E





 

2

4

1

II II

I I

II II

I I

E S

E S

E S

E S





 
 
 

 
 

 

 

   
2

2 2

4

4cos sinext II II I I

I I ext II II

E S E S
kd kd

E S E S


 



 
  
 

 

Torsional 
,

,

I P II II

II P I I

J I

J I





 
2

4

1

II

I

II

I

J

J

J

J




 

 
 

 

   
2

2 2

4

4cos sinII I

I II

J J
kd kd

J J


 



 
  
 

 

Flexural 

1 4

I I II II

II II I I

E I S

E I S





 
 
 

 

2

3 2

2
2

4 3 2

4 1

2 2 2 1

II II II II II II

I I I I I I

II II II II II II II II

I I I I I I I I

E I E I E I

E I E I E I

E I E I E I E I

E I E I E I E I

   

   

 
   

 

  
        

 

No reduced form found. Use 

general treatment from section 

5.2.3. 

 

 If the model is restricted further such that each nanowire region has square or 

circular cross-section and differs only in size so that the cross-section shape and material 

remain constant, further simplified expressions can be obtained.  In these cases, the 

phonon transmission depends only the size ratio and the product of the incident phonon 

wavenumber, k , and the region length, d .    For nanowires with square cross section, 

II

I

h

h
  .  For nanowires with circular cross section, II

I

D

D
  .  For the cylindrical 

nanowire, 
ID and 

IID are the diameters of the first and second regions, respectively. For 

the nanowire with square cross section, 
Ih and 

IIh , are the side lengths of the first and 
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second regions, respectively.  The analytical transmission results for these simple 

geometries are tabulated in Table 5.4.  

Table 5.4: Analytical results for cases of constant material property nanowires with circular or square cross 

section. 

Mode Type Nanowire Stepped Junction Nanowire Constriction or Expansion 

Extensional 
 

2

2
2

4

1



 
 

   
2

2 2 2

2

4

1
4cos sinkd kd



 
  
 

 

Torsional 
 

4

2
4

4

1



 
 

   
2

2 4 2

4

4

1
4cos sinkd kd



 
  
 

 

Flexural 
 

 

2
5 2 3 1 2 7 2

2
6 5 2 3 7 2

4 1

2 2 2 1

   

   

  

   
 No reduced form found. Use general 

treatment from section 5.2.3. 

 

5.3 Comparison of Simple and Atomistic Models 

5.3.1 Atomistic System Configuration 

In order to assess the range of applicability of the model, it is compared with an 

atomistic computational model that, in contrast to the simple analytical model, accounts 

for mode conversion, the existence of higher order evanescent modes, crystal orientation, 

and atomistic granularity associated with discretely distributed particles.  The atomistic 

calculations are based on the lattice dynamics - scattering boundary method (LD-SBM) 
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approach that is described in Chapter 4.  The goal of these comparisons is to illustrate 

sources of deviation between the two models and delineate the regime of validity for the 

simple analytical model.  The comparison is performed for the test case of a stepped 

cylindrical nanowire and a cylindrical nanowire with a single constriction.  Interatomic 

forces were modeled using the linearized Stillinger-Weber potential. 

 

Figure 5.3: Configuration of atomistic systems used in comparison. 

5.3.2 Model Comparison for Stepped Nanowire 

In Figure 5.4 the SBM results are compared with the simple model for a stepped 

cylindrical nanowire.  As predicted by the simple model, phonon transmission is constant 

at small wavenumbers and the two models agree very well in that regime.  At higher 

wavenumbers, the agreement is not as good.  At first, a gradual deviation is observed for 

all of the modes.  At kDI near 3 a sharp discontinuity is observed in the transmission for 

the extensional mode.  As evidence by the two different sizes plotted in Figure 5.4(a) and 

(b), these trends are common for all system sizes and size ratios, and the deviations 

between the models occur at very similar values of kDI independent of the size ratio β or 

the incident region diameter DI.  The atomistically calculated transmission curves of the y 

and z flexural modes match each other and agree with the simple model for small 

stepped nanowire constricted nanowire

 110

110  

 110

110  
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wavenumbers.  However, they diverge from each other and the simple model at higher 

wave numbers.  This divergence is associated with the fact that the bending in the y-

direction is aligned with the 110   crystal axis, whereas bending in the z-direction is 

aligned with the  001 crystal axis. This inherent asymmetry is not included in the simple 

model.  The agreement between the atomistic model and the simple model is best for the 

torsional mode and deviations between models, in the wavenumber ranged sampled, are 

small and occur at higher wavenumbers.   

 
Figure 5.4: Comparison of atomistic and simple models for case of stepped nanowire system.  Dashed lines 

correspond to simple model results and markers correspond to atomistic results.  Color and mode types are 

indicated in the legend.  DI= 2.37 nm and β=0.73, (b) corresponds to DI= 3.625 nm and β=0.82. 
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5.3.3 Origin of Deviation Between Models 

The origin of the deviations between the models can be attributed to several 

assumptions in the simple model that fail to match the true mechanics of the nanowire 

scattering system, as calculated using the SBM.   

5.3.3.1 Mode Shape Effects 

 The first assumption responsible for deviations between the two models is the 

assumption of simple, one-dimensional mode shapes. While the assumed mode shapes 

are valid at low wavenumbers, the actual mode shapes gradually diverge from the long 

wavelength model (Figure 5.5) as wavenumber increases.  Note that both the real and 

imaginary components of the mode shapes are plotted since in-plane and out-of plane 

motions can sometimes be out of phase with other, but both are important characteristics 

of the modes.  The most severe deviation from the assumed simple model is exhibited by 

the extensional mode.  Rather than being constant across the cross-section, the atomic 

motions associated with the extensional mode begin to vary across the cross-section at 

wavenumbers around kD=1.5.  This trend continues for higher wavenumbers and is 

accompanied by a significant amount of displacement in the plane of the cross-section: an 

appreciable amount of non-axial displacement arises at wavenumbers around kD=2.5.  

The characteristic motion of the extensional mode at higher wavenumber is a contraction 

of the nanowire along one direction that occurs simultaneously with an expansion in the 

direction perpendicular to the contraction.  The directions of maximum contraction and 
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expansion are aligned with the crystal axes of the nanowire.  Because the nanowire is 

anisotropic, this behavior is different than the behavior of the zeroth-order extensional 

mode of an isotropic cylindrical nanowire which exhibits axially symmetric expansion 

and contraction at higher wavenumbers [94].   The atomic motions associated with the 

flexural modes transition from being purely perpendicular to the neutral plane to having 

motions along the nanowire axis. The amount of axial displacement increases with 

wavenumber until the maximum is attained at wavenumbers around kD=2.5.  At 

wavenumbers higher than kD=2.5, the calculations show that the mode shapes of the 

flexural modes change very little.   For the torsional modes, little deviation from the 

assumed mode shape model is observed and the actual calculated atomic displacements in 

the range of wavenumber considered.   This is consistent with 3-D elastic theory which 

predicts no warping of cylindrical beams under torsion [102].   

 A simple way to characterize the deviation of the atomistic mode shapes from 

those of the assumed long wavelength model is through the introduction of the deviation 

parameter,  , which is defined for the different mode types as: 

 

 

 

2 2

, ,

2 2

, , ,1

ext y i z i

i

tor flex y i z i

i

u u

u u





 

  




  (59) 

In the case that the dominant direction of the atomic displacements matches the 

assumed model,   is equal to zero.    is plotted versus dimensionless wavenumber kDI 

in Figure 5.6.  This plot shows that   deviates away from zero most rapidly for the 
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extensional mode. The transition from having most of the displacement associated with 

the extensional mode along the axial direction to having the majority of the displacement 

in the plane of the nanowire cross-section occurs at dimensionless wavenumbers, kDI, 

around 2.5.  A similar, but less severe, trend is also calculated for the two flexural modes.  

As shown in Figure 5.6, the shape of   curve as a function of scaled wavenumber is not 

dependent on the size of the nanowire for nanowires greater than 3 nm in diameter.  This 

suggests that the regime transition associated with mode shape effects can be predicted to 

occur at the same value of kDI, independent of DI.  The increases calculated in   are 

well correlated with the deviation between transmission models for the extensional and 

flexural modes and it is believed that the deviations between mode shape models are a 

primary reason the simple model loses validity for the treatment of extensional and 

flexural modes at higher wavenumbers.   
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Figure 5.5: Dependence of mode shapes on wavenumber. Diameter of nanowire shown in figure is 3.71 

nm. Color indicates amount of axial displacement (red is positive and blue is negative).  Arrows indicate 

direction and relative magnitude of displacement in the plane of the nanowire cross-section.  In the simple 

model, atomic displacements are uniform across the cross section for the extensional and flexural modes 

and vary linearly with radius for torsional modes in a cylinder. 
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Figure 5.6: Plot of deviation parameter

 

as a function of kD for different nanowire sizes. Marker shapes 

indicate the size of the nanowire as indicated in the legend.  Marker colors indicate mode type: red 

corresponds to extensional, orange corresponds to torsional, and blue and green correspond to the two 

flexural modes. 

5.3.3.2 Higher Order Modes and Mode Conversion 

 The next source of deviation between the two models is associated with the fact that 

the simple model does not include the role of higher order modes in determining phonon 

transmission.  Higher order modes are modes with nonzero cutoff frequency.  In 

addition, the simple model does not allow for mode conversion at the nanowire 

interfaces.  This means that in the simple model, energy in an incident mode of one type 

will not be transferred into reflected or transmitted energy of another type.  In contrast, 

the scattering boundary calculations include the possibility of mode conversion and the 

participation of higher order modes.    Higher order modes can affect the transmission 

calculation in one of two ways.  Above their cutoff frequency, they can propagate and 
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carry transmitted or reflected energy away from the interface. Or, if the frequency is 

below their cutoff frequency, higher order modes will have complex wavenumbers and 

their associated displacements decay exponentially away from the nanostructure 

interface.  These are evanescent modes, and while they don’t carry energy, they can have 

nonzero amplitudes and contribute to the solution of the scattering boundary equations 

and equations of motion in the nanowire scattering system.  The scattering boundary 

calculations have shown that at low wavenumbers if the nanowire sections are coaxial 

with each other, interaction with higher order modes and mode conversion effects are 

negligible in the long wavelength limit. As the wavenumber is increased, interactions 

with modes other than the incident mode begin to influence the transmission calculation, 

and are partly responsible for the gradual deviation between the models at wavenumbers 

less than kD=2.5.  Higher order modes affect transmission more strongly when the 

incident phonon frequency is above the cutoff frequency of a higher order mode.  This 

effect is strongly associated with the sharp discontinuity in the transmission of the 

extensional mode at wavenumbers near kDI=3.  An example of mode conversion and 

interaction with higher order modes is given in Figure 5.7 which plots the percent 

transmitted amplitude of non-extensional modes versus kDI for the extensional mode 

incident in stepped nanowire.  At low wavenumbers, all of the transmitted amplitude is 

in the extensional mode.  As the wavenumber is increased, the fraction of amplitude 

associated with other modes gradually increases.  At kDI≈2.5, there is a sharp increase in 

the amount of amplitude in other modes.  This increase coincides with the activation of 
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propagating higher order modes in the incident side region.  Higher order mode effects 

and differences in mode shapes between the two models occur simultaneously. As such, 

it is not possible to precisely attribute deviations in the transmission models to one effect 

or the other.  In fact, participation of other modes may be required, in part, because of 

the wavenumber dependence of each region’s mode shapes.  As mode shapes deviate 

from their simple, 1-D, long wavelength forms, participation of other modes is required 

in order to match the more complicated displacement fields associated with incident 

phonons.  

 

Figure 5.7: Percent transmitted amplitude in modes other than extensional mode. Incident mode is 

extensional. DI=2.37 nm and β=0.73.  

5.3.3.3 Atomistic Effects 

 The third source of deviations arises from the discrete nature of the scattering 

boundary calculations.  These are denoted atomistic effects.  Atomistic effects are 
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differentiated from the other sources of discrepancy in that the other sources could be 

overcome through the use of a more general continuum elastic model that is based upon 

analytic or computational solution of continuum elastic governing equations.  For 

example, methods based upon finite element solution of governing equations, provide an 

avenue to explore the full 3-D elastic-anisotropic aspects of the problem and therefore 

model mode shapes more accurately.  In addition, these methods allow for interaction 

with higher order modes and mode conversion.  However, such an approach would not 

include effects associated with the discrete distribution of atoms in the nanowire.  

Atomistic effects may be understood as being dependent upon how the length scale of 

the discreteness (the lattice parameter) compares with the relevant length scales of the 

nanowire geometry (the nanowire diameter) and the phonon (the phonon wavelength, or, 

alternatively, the wavenumber).  Atomistic effects associated with the phonon 

wavelength are considered first.  If the phonon wavelength is comparable to the lattice 

parameter, one would expect the atomistic nature of the problem to affect the 

transmission results.  This effect was investigated in Chapter 4 for the simpler case of 

shear-horizontal phonon propagation at stepped plate interfaces and it was found that at 

wavenumbers higher than ka≈0.50, wavelength dependent atomistic effects can be 

prominent.  However, for the practically relevant case of nanowires with diameter 

greater than 5 nm, the transition to the wavelength dependent atomistic regime occurs at 

wavenumbers greater than those where the previously described mode shape and higher 

order mode effects are already prominent.  As such, except in the smallest nanowire 
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cases, wavelength dependent atomistic effects should not be viewed as a primary cause 

for deviations between the SBM results and the simple long wavelength model.  On the 

other hand, in the long wavelength limit, atomistic effects that are size dependent are 

observed.  These atomistic effects are responsible for any disagreement between the 

models at low wavenumbers.  For the cases shown in Fig. 5, the disagreement between 

models is less than 2%.  For other cases tested (different nanowire sizes and different 

values of β) the degree of disagreement can sometimes be larger.  The long wavelength 

discrepancy between the models arises from the fact that atoms are distributed on a 

discrete lattice.  This causes the nanowire boundary in the atomistic model to be 

inherently rough and because of the rectilinear nature of the diamond lattice the cross-

section shape will not be exactly circular. The discrete nature also leads to some 

ambiguity in measuring the diameters of regions I and II, which in turn leads to 

uncertainty in the β parameter.  Though other definitions are possible, the nanowire 

radius is defined to be the average distance from the nanowire center to the centers of 

the two outermost boundary atoms.  Another atomistic effect that also limits the 

applicability of the simple model is that as the nanowire is made smaller, a higher 

fraction of the atoms in the nanowire cross-section are near or at the nanowire boundary.  

Because the boundary is free, atoms near or at the boundary experience forces that are 

different than those closer to the nanowire center.  As result, the elastic stiffness will 

vary across the nanowire cross-section and the overall effective material properties (e.g. 

Young’s modulus and shear modulus) will differ between nanowires of different sizes.  
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As the nanowire is made larger, the stiffness properties of the nanowire approach that of 

bulk, and this atomistic effect is be minimized.  All of these factors are minimized as the 

size of the nanowire system is made larger.  In Figure 5.8 the percent difference in 

transmission between the atomistic and simple models for long wavelength modes is 

plotted versus system size while the size ratio was held within a prescribed range.  The 

figure demonstrates that the deviation between models, in general, gets smaller for larger 

system sizes.  Long wavelength atomistic effects on geometry induced phonon scattering 

have been explored in more detail in Chapter 4. 
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Figure 5.8: Percent difference in transmission between models as a function of size for stepped nanowire 

case. Since diameter cannot be continuously defined in the atomistic calculations, β is held within the 

ranges indicated in each plot so that comparable size ratios for nanowires of different sizes may be 

compared. 

5.3.4 Constricted Nanowire Results 

 In Figure 5.9 the SBM results are compared with the simple model for a constricted 

nanowire case.  For this case, unlike the stepped nanowire case, the simple model 

predicts wavenumber dependent transmission.  In this comparison the nanowire size as 

well as the size ratio are held constant and three different values of the constriction 

length d were investigated.  As was the case with the stepped nanowire case, the two 
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models agree very well for small wavenumbers.  The regime of agreement is similar to 

the stepped nanowire case with the shapes of the transmission curves agreeing 

qualitatively to wavenumbers up to kD=2.5.  However, the gradual disagreement that 

was observed for the stepped nanowire case is augmented for the constricted case since 

the transmission curves vary rapidly. This effect is more prominent as d is increased 

which in turn decreases the period of oscillation in the both the simple model and SBM 

transmission curves.  The peaks and valleys in transmission are caused by reflection 

from the interfaces between the constricted and non-constricted sections.  The oscillation 

period decreases for a longer d since there are more opportunities for constructive and 

destructive interference over the range of wavelengths sampled.  This comparison 

demonstrates that while the simple model can be expected to agree qualitatively with the 

SBM model for wavenumbers up to kDI=2.5, close numerical agreement can only be 

expected for kDI<0.50. 
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Figure 5.9: Comparison of atomistic and simple model transmission results for case of constricted nanowire 

system.  Dashed lines correspond to simple model results and markers correspond to atomistic results.  

Color and mode types are indicated in the legend. DI= 2.37 nm and β=0.73 for (a)(b).  (a) corresponds to  

d= 2.99 nm and (b) corresponds to d=11.13nm. 

 

 In addition to the case-study calculations presented herein, and in order to obtain 

generally applicable regime boundaries for the model, an expansive sampling of the 

parameter space was also performed (hundreds of calculations spanning a wide range of 

β, DI , DII , and k) for the stepped nanowire geometry. Through these calculations it was  

found that the deviation between the atomistic and simple models is no more than 10% 

for all four modes for kD<2.5 and D/a>4.5.  These endpoints are recommended as 

conservative regime boundaries for accurate application of the simple model.  Note that 

wavenumber regime (defined by kD) is limited by the largest diameter in the nanowire 

and the size limit (defined by D/a) is limited by the smallest diameter in the nanowire.  

Since the fundamental assumptions of the simple model are the same for the nanowire 
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step as they are for a nanowire comprised of an arbitrary number of nanowire regions, 

similar regime boundaries are recommended for the general geometric case if only 

qualitative agreement is required.  For cases where the transmission varies rapidly with 

wavenumber (i.e. in the constricted nanowire case), close quantitative numerical 

agreement should only be expected up to kD=0.50.  

5.4 Conclusions 

 This chapter described a simple analytical model for estimating ballistic 

transmission rates of guided phonons in nanowires with abrupt geometric and material 

discontinuities.  The model includes separate consideration of the zeroth order 

extensional, torsional, and flexural modes and is based upon the long wavelength 

behavior of these modes as analyzed using continuum elastic wave theory of prismatic 

beams. The model is presented using a cascading approach that is similar to methods 

used in the analysis of electrical networks and may be applied to a nanowire system with 

any number of discontinuities and arbitrary but piecewise constant cross-section. In 

addition to the general cascading matrix approach, simplified analytical expressions were 

presented for the cases of the single nanowire stepped junction and nanowire with coaxial 

constriction or expansion.    For the test case of a cylindrical silicon nanowire system, the 

results of the analytical analytical model are compared with modal transmission rates 

calculated using the lattice dynamics – scattering boundary method model (LD-SBM) 

which was described in Chapters 2 and 3.  In contrast to the simple analytical model, the 
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LD-SBM model accounts for mode conversion, interactions with higher order evanescent 

modes, crystal orientation, and atomistic granularity associated with discretely distributed 

particles.  For the cases studied, the comparison with the atomistic model illustrated that 

the analytical model can be applied with good quantitative agreement for scaled 

wavenumbers less than kD=0.50 and qualitative agreement for scaled wavenumbers less 

than kD=2.5. Since the simple model greatly simplifies the true mechanics of the 

nanowire scattering system, it does not agree with the atomistic model at higher 

wavenumbers.  Boundary related atomistic effects also limit the accuracy of the simple 

model for very small nanowire systems.  Nevertheless, the model provides a good first 

approximation in the analysis of geometry induced phonon scattering in nanowire 

systems. 
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6 Phonon Transmission and Ballistic Thermal Conductance in 

Diameter Modulated Silicon Nanowires 

6.1 Chapter Overview and Scope: 

The previous chapters of this dissertation described the theory, implementation, and 

verification of a harmonic lattice dynamics –scattering boundary method (LD-SBM) 

computational approach to modeling phonon spectra and calculating phonon transmission 

in geometrically irregular nanostructures.  In Chapters 4 and 5 the model was used to 

calculate phonon transmission coefficients in some simple plate and nanowire 

geometries.  In those chapters the LD-SBM model was only used to evaluate the accuracy 

and regimes of applicability of alternative modeling approaches.  Additionally, the 

transmission coefficients of only a few select phonon modes were considered in those 

chapters.   In this chapter, a more expansive use of the model is employed in order to 

address the overall goal of this dissertation: predicting and analyzing the effect of 

nanostructure geometry on thermal transport.   

Inspired by the well-behaved transmission behavior predicted by the simple model 

developed in Chapter 5, this chapter is concerned with ballistic phonon transmission and 

thermal conductance between two semi-infinite straight cylindrical silicon nanowire 

sections (referred to as nanowire leads) through a silicon nanowire section with an 
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irregular geometry created by locally increasing or decreasing the diameter.  This 

geometry is referred to as a diameter modulated silicon nanowire.  This geometry type 

can be viewed as an abstraction or simplification of the notched nanowires [12], spheroid 

nanowires [16], or periodically dilated nanowires [17] that have been synthesized in the 

laboratory by previous researchers.  The modulated nanowire geometry is characterized 

by four parameters: the diameter of the left and right straight nanowire leads, DI, the 

diameter of the modulation, DII, the length of the modulation, d, and the number of 

modulations, N.  In this study, the parameter space for the multiple modulation case is 

restricted by holding the diameter of each successive modulation constant at the reference 

modulation diameter, DII.  The diameter of the sections between each modulation is held 

constant and equal to the diameter of the nanowire leads, DI.  Furthermore, the length of 

each modulation, d, is also held constant for successive modulations.  The geometry is 

constructed and analyzed in a similar manner to that described for the nanowire case in 

Chapter 3 so that the nanowire axis is aligned with the [110] crystal direction and 

interatomic forces are approximated using the linearized Stillinger-Weber potential [48]. 

 
Figure 6.1: Example modulated nanowire geometries. 
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Further motivating the investigation of the diameter modulated nanowire is the fact 

that phonon transport has been investigated in similar geometries by previous researchers 

with alternative computational approaches.  These previous studies are surveyed in 

section 6.2 of this chapter.  The discussion of the prior work focuses on identifying 

shortcomings associated with the previously employed computational methods and how 

the LD-SBM approach represents an improvement on them.  In section 6.3, the analysis 

of the ballistic thermal conductance through the system is developed.  In section 6.4, 

detailed transmission and conductance results are presented for an example constricted 

nanowire that serves as a baseline case to which later results are compared.  The effect of 

structural relaxation on phonon transmission and conductance through the constricted 

nanowire is also explored.  Section 6.5 presents the results of a focused study on three 

key geometrical parameters: the size ratio of modulation, the length of modulation, and 

the number of modulations.  Section 6.6 proposes a framework for a simplified model of 

phonon transmission that can be used to approximate the thermal conductance through 

the nanowire modulation at all temperatures. Section 6.7 summarizes the most important 

findings. 

6.2 Survey of Previous Modeling Work: 

6.2.1 Molecular Dynamics Studies 

Molecular dynamics (MD) simulation is one popular way by which the effects of 

geometry on nanowire thermal properties have been modeled.  Studies employing MD 
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have shown that modulation or rippling of nanowire boundaries can suppress phonon 

transport and reduce nanostructure thermal conductance by factors that range from 10 to 

75% [37-39].  These MD investigations have highlighted the potential for nanostructure 

geometry to suppress phonon transport and obtain reduced thermal conductivity.  

However, they are unable to uncover many of the mechanisms by which phonon transport 

is suppressed as they are only able to predict aggregate phonon behavior and thermal 

properties, not the behavior of individual vibrational modes.  Additionally, since MD 

simulations are based upon the numerical solution of classical equations of motion, they 

are only rigorously applicable to studying phonon transport at moderate to high 

temperatures for which the classical description is appropriate.  Aggregate phonon 

transport at low temperatures, a regime which is important for the attainment of more 

efficient thermoelectric materials in cryogenic applications and where phonon transport is 

more geometrically tunable due to the reduced overall importance of anharmonic phonon 

processes, is not accurately modeled via conventional MD simulation.  It should be noted 

that MD can be used to accurately model the scattering behavior of individual phonon 

modes through the use of MD wavepackets (described in Section 3.4).  The inaccuracy of 

MD at low temperatures is related to its inability to properly account for non-classical 

phonon distributions in a thermalized system where many modes are activated. In 

contrast to conventional MD, the LD-SBM approach utilized herein isolates the behavior 

of individual phonon modes and is able to account for quantum occupation of low 

frequency modes which is the reason why the MD approach fails at low temperature. 
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6.2.2 Lattice Dynamics – Relaxation Time Model 

An alternative computational approach to modeling phonon transport in diameter 

modulated nanowires was employed by Nika et. al [103].  Their study investigated 

phonon heat conduction in infinitely long modulated nanowires of square cross-section 

using an atomistic lattice dynamics based model.  In contrast to the approach used in this 

dissertation where phonon spectra are calculated for semi-infinite, straight nanowire leads 

and the modal transmission through the irregular geometry is calculated, the model 

employed by Nika et. al utilized the translational symmetry of atomic displacement 

inherent to infinitely long systems to calculate phonon spectra of a modulated nanowire 

section.  Each modulated nanowire section was treated in an analogous manner to that 

described for the supercells in Chapter 2, but each section contained the modulated 

geometry (i.e. two different side lengths).    In this way, the effect of the modulation is 

accounted for within the phonon spectra calculation and the modal phonon transmission 

is not needed.  Such an approach is only valid for an infinitely long modulated system.  

They used the modified phonon spectra to calculate the thermal conductivity of the 

nanowire using the relaxation time approximation by estimating the total relaxation time 

from the combined effects of phonon-phonon, phonon-impurity, and phonon-boundary 

scattering. Empirically fit analytical models were used to calculate relaxation times 

associated with phonon-phonon and impurity scattering and a simple, geometry 

dependent and specularity parameter based model was used to estimate the effect of 

boundary scattering.  Their model predicted a three to sevenfold drop in the phonon heat 
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flux in the modulated nanowire over a temperature range of 50 to 400K relative to an 

unmodulated nanowire.  The reduction in phonon heat flux was interpreted as being 

associated with a reduction in phonon group velocity of the confined phonon modes and 

“trapping” of phonon modes within the modulated nanowire segments.  The nanowires 

investigated in their study had an unmodulated side length of about 2 nm.  Their study 

gave a very complete theoretical investigation of phonon transport in size modulated Si 

nanowire systems since they were able to account for all of the relevant phonon processes 

over a wide range of temperatures.  However, the analytical framework of their study 

only afforded the opportunity to investigate the infinitely long nanowire case.  While the 

infinite nanowire is of technological and scientific interest, analyzing the transmission of 

individual modes through irregular sections of finite length, as the LD-SBM approach 

does, gives an alternative approach to understanding phonon transport that enables 

greater understanding of how the number of geometrical interfaces affect phonon 

transport and affords the opportunity to investigate non-periodic and isolated nanowire 

modulations.  

6.2.3 Continuum Scalar Wave Transmission Model 

Zianni [104] used an alternative approach focused only on geometry-induced 

phonon scattering processes and their effect on the phonon heat flux.  In her study, the 

mode-dependent phonon transmission of phonons originating from semi-infinite straight 

GaAs nanowire sections incident upon sections of modulated width were calculated and 
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used with a Landauer [40] approach to estimate the ballistic thermal conductance.  She 

found that the phonon heat conductance is reduced for a larger number of repeated 

modulations and eventually saturates after about 5 successive modulations to the infinite 

periodic case.  She also found that modulating the nanowire width non-periodically is 

more effective at suppressing phonon transport than periodic modulations. Her results 

indicated the possibility to optimally tune phonon transport in order to reduce the 

parasitic heat flow and enhance thermoelectric efficiency.  The accuracy of this study is 

limited by the fact that the model used for phonon spectra and transmission is greatly 

simplified. For instance, the study employed a continuum elastic wave model to calculate 

phonon normal modes and phonon transmission.  As demonstrated in Chapter 4 of this 

dissertation, the use of continuum models is only appropriate for modeling very long 

wavelength, low-frequency phonon modes. In addition, the model employed by Zianni 

was an uncoupled scalar wave equation that is only rigorously appropriate for modeling 

one subset of modes, shear horizontal modes, in plate-like two-dimensional structures.   

In contrast, the LD-SBM model employed herein is atomistic, and as discussed in 

previous chapters, gives a more accurate representation of nanowire mechanics across the 

full phonon spectrum. 
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6.3 Analysis of Phonon Transport in Modulated Si Nanowires 

6.3.1 Analysis of Thermal Conductance 

The aggregate phonon transport through the irregular geometry is characterized by 

the thermal conductance, which is the ratio of the total heat flow through the geometry 

associated with a temperature drop ΔT across the geometry.  The ballistic thermal 

conductance,  ,  is estimated using the Landauer approach for ballistic energy carriers 

whereby the thermal conductance is evaluated in the limit of an infinitesimal temperature 

drop across the geometry and the phonon populations on either side of the geometry are 

assumed to be in quasi-equilibrium and may be evaluated from the Bose-Einstein 

distribution at an assumed average system temperature.  Under these assumptions the 

ballistic thermal conductance can be evaluated by integrating the contribution of each 

mode over phonon wavenumber, k, and summing over phonon branches, ν: 
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This equation is derived in Section 1.4 of this dissertation.  The specific heat of each 

phonon mode, ,kc  ,  is given by: 
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Note that in this context   signifies a phonon branch index that spans all phonon 

branches, the total number of which is equal to 3 scN where Nsc is the total number of 
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atoms in the reference nanowire lead supercell.  
,k  is the modal phonon transmission 

coefficient which is the fraction of energy incident in a mode indexed by k and  that is 

transmitted through the geometry and ,

group

kv  is the group velocity of each mode.  

Formulating the ballistic thermal conductance as an integration over wavenumber is 

convenient since it highlights the wavenumber/wavelength dependence of the modal 

transmission as well as each mode’s individual contribution to ballistic thermal 

conductance.  This contribution is analyzed by defining the modal contribution to thermal 

conductance: 
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It is also convenient to formulate the thermal conductance as an integration over 

frequency rather than wavenumber, utilizing the fact that 
,kv

k






, so that it may be 

calculated from 
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In this context,  signifies a mode index that spans the total number of propagating 

modes, Nω, at a given frequency.  The magnitude of the thermal conductance is very 

sensitive to the size of the nanowire lead cross-sections which determines Nsc and Nω.  In 

order to focus on geometry shape effects (manifest through the parameters d, N, and 

DII/DI) rather than focusing on nanostructure size effects on thermal conductance, it is 
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useful to consider the aggregate thermal transport of a given geometry relative to a 

straight nanowire.  To do this, a dimensionless conductance ratio,  
, is defined to be the 

ratio of the ballistic thermal conductance of the modulated nanowire, mod , relative to 

that of the unmodulated nanowire of the same DI throughout, unmod : 

 mod

unmod






    (64) 

The conductance ratio is a temperature dependent quantity that allows for the 

modal specific heat to vary between modes of different frequency.  In the high 

temperature limit, the phonon populations approach a classical distribution where each 

mode contributes an equal amount, kB , to the modal specific heat and the temperature 

dependence can be removed entirely from the expression for the conductance ratio.  

Thus, the total transmission, 
,tot  , and the total number of modes at each frequency, N ,  

become the chief parameters that characterize phonon transport in the modulated 

nanowire system.  Integrating over each, and taking the ratio results in a simple 

expression for the “classical conductance ratio”, 
C
 , which is used as the primary 

measure of phonon suppression in the modulated nanowire system. 
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Where, 
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N
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  

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Note that for the unmodulated nanowire, the modal transmission equals one for all modes 

since there is no irregular geometry to cause phonon scattering. 

At higher temperatures, which is the situation under which the expression for 
C
  is 

derived, anharmonic processes have significant impact on phonon transport and the 

purely harmonic approach used in LD-SBM model is only an approximate treatment of 

the phonon-geometry scattering process.  At lower temperatures, anharmonic processes 

are not as prominent and the LD-SBM model is expected to more accurately predict 

phonon transmission.  However, in the lower temperature regime, the value of 
C
  may 

not be equal to  due to lower relative occupation of higher frequency modes.  Despite 

this limitation, 
C
  is the most convenient single measure of aggregate phonon 

transmission for a given geometry even when it is not rigorously equal to   .  This is 

because 
C
  is independent of the exact phonon distribution and system temperature 

whereas   is not.  Moreover, it was found that 
C
 can serve as an input into a simple, 

approximate model which predicts  at all temperatures (described in Section 6.6). 
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6.4 Baseline Case: Single Isolated Nanowire Constriction 

6.4.1 Atomic Configuration 

The analysis of phonon transport in the modulated silicon nanowire system begins 

by first considering, in detail, phonon transmission through a single isolated nanowire 

constriction. This serves as a baseline case to which later results are compared.  Figure 

6.2 shows the geometry of interest.  The diameter of the incident side, DI, is 1.72 nm.  

The length of the constriction, d, is 1.15 nm, and the diameter of the constricted section, 

DII, is 0.95 nm. 

 
Figure 6.2: Geometric details of baseline constricted nanowire. 
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6.4.2 Transmission Results  

Figure 6.3(b) presents the total phonon transmission across the nanowire 

constriction as a function of frequency.  Note that these results, and others, are plotted 

against ordinary frequency, f, as opposed to angular frequency,  , whereby 2 f  .  

Comparison with the total number of phonon modes at those frequencies shows that 

phonon transport is greatly suppressed by the constriction. For reference, the full phonon 

dispersion relation of the nanowire leads is shown in Figure 6.3(a).  The zeroth order 

extensional, torsional, and flexural modes are highlighted in color while the higher order 

modes are shown in black. The modal phonon transmission coefficients of all calculated 

modes are plotted in Figure 6.3(c) which indicates that the vast majority of modes exhibit 

relatively low phonon transmission with little obvious dependence on wavenumber. 

Despite the fact that many of the modes exhibit low modal transmission (e.g. between 2 

and 5 THz), their aggregate behavior impacts the overall shape of the frequency 

dependent transmission curve due to the fact that there are a large number of modes at 

those frequencies.  Because of this, the shape of the transmission curve as a function of 

frequency is dominated by the number of modes at a given frequency rather than being 

heavily influenced by the transmission behavior of any one mode or group of modes. 
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Figure 6.3: a) Full phonon dispersion relation of nanowire lead as shown in Figure 6.2. Zeroth order 

phonon branches are highlighted in color: extensional (red), torsional (orange), 2 flexural branches (blue 

and green). Higher order branches are colored in black. b) Frequency dependent phonon transmission 

through nanowire constriction shown in Figure 6.2 compared with phonon transmission through straight 

nanowire. c) transmission of individual modes through nanowire constriction. 

In contrast, some phonon bands, for example the zeroth order phonon branches at 

frequencies less than about 1 THz, exhibit higher phonon transmission and greater 

variability in phonon transmission as a function of wavenumber.  The modal transmission 

behavior of all phonon modes, zeroth order modes included, is quite complicated.  As 

discussed in 5.1.2, this is due to the fact that each phonon scattering process involves 

interactions with many other phonon modes including evanescent vibrational 

disturbances localized near the modulation as well as overlapping constructive and 

destructive interference effects within the modulation that are unique to each mode type.  

Some of the complicated behavior is adequately understood through an uncoupled, one-
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dimensional beam theory analysis that was shown in Chapter 5 to accurately model long 

wavelength zeroth order phonon transmission.  On the other hand, at higher 

wavenumbers, more complicated, less easily explained transmission curves result from 

the fact that the mode shapes associated with each mode are more complicated (Figure 

5.5) and there is greater possibility for interactions with propagating higher order modes.  

Some of the discontinuities observed in the transmission curves, for example, the 

discontinuity that appears in the transmission of the extensional mode (Figure 6.4) at 

around k=1.5 (1/nm), are correlated with the cutoff frequencies of some of the higher 

order modes.  This behavior is similar to that exhibited by zeroth order shear-horizontal 

(SH) phonon branches incident upon stepped plate junctions where the discontinuities in 

transmission are easily attributable to the activation of higher order propagating SH 

branches (see, for example, Figure 4.8).  Other features in the transmission curves have 

no easily identifiable relation to the properties of the mode, geometry, or the overall 

phonon band structure and are likely the product of many different competing 

phenomena.  A detailed accounting of all the features of the phonon transmission curves 

and their causes is not attempted in this dissertation.  Rather, the aim is to characterize 

general trends in the aggregate phonon transmission with an aim to better understand how 

geometry affects overall thermal transport. 
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Figure 6.4: Wavenumber dependence of modal phonon transmission of extensional phonon branch through 

nanowire constriction (Figure 6.2).  Long wavelength behavior is adequately approximated by the beam 

theory (dashed black lines) model developed in Chapter 5.  

6.4.3 Conductance Ratio Results 

The conductance ratio versus system temperature is plotted in Figure 6.5.  Two 

distinct regimes are evident in the figure: a higher temperature regime in which the 

conductance ratio is independent of temperature and is equal to the classical conductance 

ratio and a low temperature regime, where the conductance ratio rapidly decreases with 

increasing temperature.  Because higher frequency modes contribute very little to the 

modal specific heat at lower temperatures, the four zeroth order branches dominate 

thermal transport in this regime.  As such, the low temperature behavior of the 

conductance ratio can be understood by considering the behavior of only these four 

branches.  To illustrate this point, the conductance ratio as estimated by beam theory is 

plotted in Figure 6.5 alongside the result obtained from the full calculation.  The beam 
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theory estimate is calculated from Eq. (54) by summing  over the first four modes and 

calculating 
,   from Table 5.4 (nanowire constriction or expansion case).  As the figure 

shows, the simple beam theory model closely matches the full calculation result at low 

temperatures.  In Chapter 5 it was found that this model is adequate for estimating the 

transmission of the zeroth order phonons with scaled wavenumbers, kD, less than 0.50, 

where D is the largest diameter in the system.  For an approximate rule of thumb that is 

temperature dependent, the use of the beam theory model alone is recommended for 

temperatures less than 
1

2

c
beam

B

T
k


   which corresponds to the  temperature at which the 

majority of the thermal energy is concentrated in modes with frequencies that are less 

than approximately half the cutoff frequency, c , of the first higher order mode.  Since 

simple beam theory enables an approximate analysis of phonon suppression at low 

temperatures, the focus of the remainder of this chapter is primarily on the aggregate 

phonon behavior as manifest through the classical conductance ratio whereby all modes, 

not just the few low frequency modes, contribute equally to the modal specific heat.  

However, the beam theory model and the classical conductance ratio can be used together 

form the basis for a composite simple model that can be used to estimate the thermal 

conductance ratio at any temperature.  This model is proposed and explained in more 

detail in Section 6.6. 
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Figure 6.5: Calculated conductance ratio of constricted nanowire (Figure 6.2) as a function of system 

temperature.  Low temperature behavior adequately approximated by simple beam theory model as 

developed in Chapter 5. Conductance ratio approaches constant value of 
C


at higher temperatures. 

6.4.4 Evaluation of Structural Relaxation 

The effect of structural relaxation near the geometric feature on phonon transport 

in the constricted nanowire is also investigated.  Most of the results presented in this 

chapter and other chapters do not allow for structural relaxation in the system.  As a 

result, the system is analyzed such that all atoms are in idealized, perfectly periodic 

equilibrium positions.  While this configuration represents a local minimum in the 

potential energy landscape, it does not represent a global potential energy minimum.  A 

more realistic/accurate treatment would allow for structural relaxation to lower potential 

energy equilibrium configurations.  Because the relaxed equilibrium configuration 
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includes atomic placements that are not perfectly periodic or symmetric it will cause 

additional phonon scattering, the magnitude and nature of which is not known a priori. 

In order to investigate the effect of structural relaxation near the irregular 

geometric feature, the phonon transmission through a relaxed atomic configuration was 

calculated.  The relaxed configurations were obtained by extending the buffer region 

(defined in Chapter 3) to include 4 additional atomic planes on either side of the 

constriction.  The atoms belonging to the buffer region and the irregular geometry were 

allowed to relax while the atoms in the nanowire leads remained fixed at their base 

configuration.  Fixing the nanowire leads is necessary since the LD-SBM computational 

method requires that the nanowire leads be perfectly periodic.  Relaxed configurations 

were found by performing MD simulations at a desired relaxation temperature and 

calculating the time averaged atomic positions over a period of 1 ns. The MD simulations 

were executed using the LAMMPS parallel molecular dynamics simulator [105,106] and, 

similar to the LD-SBM calculations, employed the Stillinger-Weber potential. The 

configuration associated with the time-averaged atomic positions was relaxed to a local 

minimum energy configuration by iteratively moving atoms in the direction of lower 

potential energy using the simple gradient method.  The additional simple gradient 

energy minimization step is used to eliminate perturbations to the equilibrium 

configurations associated with small errors in time-average position.  This effect could 

generally be ignored with negligible impact on phonon transmission, but was done to 

ensure the stiffness matrices required for the transmission calculation were calculated 
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precisely at the bottom of the local potential energy well.  This method of structural 

relaxation operated on the principle that the addition of thermal energy allows the 

structures to overcome local potential energy barriers in a manner that is temperature 

dependent resulting in enhanced relaxation and greater perturbation to the base structure 

at higher relaxation temperatures. Relaxed structures corresponding to several MD 

simulation temperatures are presented in Figure 6.6.  The amount of reduction in 

potential energy versus relaxation temperature is plotted in Figure 6.7.  For the lowest 

relaxation temperature case, Trelax=10K, very little difference from the unperturbed base 

structure is observed and negligible reduction in potential energy is obtained.  This 

indicates that the thermal energy associated with relaxation temperatures below 10K is 

not enough to overcome the potential energy barriers surrounding the base configuration.  

Higher relaxation temperatures allowed the system to escape the local potential energy 

minimum associated with the base configuration and resulted in larger reductions in 

potential energy relative to the base configuration.  Correspondingly, increased relaxation 

temperature resulted in greater reorganization of equilibrium atomic positions and greater 

differences between the relaxed configuration and the base structure.  The amount of 

reduction in potential energy that can be attained through this method plateaus for 

relaxation temperatures greater than 200K.  Note that the structural relaxation that occurs 

is largely associated with a reorientation of bonds, rather than coarse reorganization of 

the structure.  This means that its boundary dimensions remain very similar to those of 

the base configuration and the other relaxed configurations.  Close inspection of the 
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relaxed configuration indicates that the change in DI or DII relative to the base 

configuration is at most half the distance between one atomic plane (≈0.09 nm).     

 

Figure 6.6: Relaxed equilibrium atomic configurations of nanowire notch.  Dimensions of unrelaxed base 

configuration are the same as in Figure 6.2.  DI is 1.72 nm, DII, is 0.95 nm, and d is 1.15 nm.  
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Figure 6.7: Reduction in potential energy of relaxed configurations. 0U  is the potential energy of the base 

unrelaxed equilibrium configuration. relaxU  is the potential energy of the relaxed configuration.   

The phonon transmission versus frequency for two different relaxed 

configurations and the base configuration is plotted in Figure 6.8.  Negligible differences 

in phonon transmission associated with the various relaxed cases and the base 

configuration are observed for phonon frequencies less than 1THz.  The reason why these 

phonons are unaffected by relaxation is because the length scale of the relaxation, the 

bond length (≈0.10 nm), is much less than the length scale associated with the variation 

in atomic displacement corresponding to these modes.  This is because the wavelengths 

of these modes are greater than 5-10 nm (depending on mode) and, due to their simple 

mode shape vectors (see kD=0 in Figure 5.5), exhibit little to no transverse variation in 

displacement.  Contrastingly, the transmission of higher frequency phonons are 

significantly affected by the relaxed configurations resulting in enhanced phonon 

scattering and an overall decrease in phonon transmission.  While greater structural 

relaxation clearly causes enhanced suppression of higher frequency phonons, the effect of 
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structural relaxation on specific phonon modes, has not been explored, and perhaps 

merits future additional research. 

 

Figure 6.8: Effect of structural relaxation on phonon transmission through the nanowire constriction.  The 

transmission results for Trelax=10 K are not plotted since they are negligibly different from the unrelaxed 

results. 

The effects of structural relaxation on thermal conductance ratio were also 

observed (Figure 6.9).  All three relaxation temperatures considered resulted in a 

reduction in the conductance ratio, * , at higher temperatures.  The reduction 

corresponding to the lowest relaxation temperature (Trelax=10K) is minimal since the 

corresponding relaxed structure and phonon transmission were nearly identical to those 

of the base unrelaxed configuration.  Greater reduction in conductance was calculated for 

the more relaxed configurations obtained from the higher relaxation temperatures of 

Trelax=100K and Trelax=400K.  The greatest reduction in *  relative to the unrelaxed case 
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sensitivity to relaxation due to the fact that the transmission of low frequency phonons is 

largely unaffected by structural relaxation.   

The phonon transmission and conductance results presented in the remainder of this 

chapter are obtained from computations on unrelaxed configurations. This is done in 

order to reduce the computational time required for each calculation and in order to focus 

on coarse changes in nanostructure geometry as manifest through DII, d, and N, rather 

than trying to deduce detailed dependence of phonon transport on different relaxed 

configurations. As indicated by the limited study on structural relaxation, the reader 

should note that the transmission results of low frequency phonons are likely independent 

of structural relaxation.  In contrast, higher frequency phonons, and consequently 

conductance ratios evaluated at higher temperatures, are likely to be lower in relaxed 

modulated nanowires than unrelaxed modulated nanowires.    
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Figure 6.9: Effect of structural relaxation on conductance ratio. 

6.5 Geometry Study: Results and Discussion 

Having performed a thorough investigation of the baseline constricted nanowire 

geometry shown in Figure 6.2, DII, N, and d were varied to gain an understanding of how 

each affects phonon transmission and thermal conductance. 

6.5.1 Investigation of Modulation Diameter 

In the investigation of DII, the length of the modulated section, d, was held constant 

at the baseline value and the size ratio, II
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D
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6.10 
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are explored.  For size ratios less than one, the results for the three nanowire lead sizes 

track fairly close together with size ratio.  The behavior for 1II

I

D

D
 indicate that size ratio, 

not actual size, is the more important parameter concerning phonon scattering in these 

systems.  This is consistent with the simple beam theory model that predicts monotonic 

increases in transmission as a function of size ratio.   

For size ratios greater than one, somewhat different behavior is observed.  All 

nanowire lead sizes exhibit a reduction in the conductance ratio as the size ratio 

increases. It is also observed that 
C
  saturates with increasing size ratio, the saturation 

value decreases with decreasing lead sizes, and the onset of saturation occurs at smaller 

size ratios with increasing lead size.   The 
C
  saturation effect is consistent with the 

finding by Yang, et. al [ 57] who analyzed phonon transport in T-stub waveguides which 

are analogous to the nanowire expansion geometries investigated here.  They found that 

for temperatures greater than 1K, T-stub heights greater than three times the waveguide 

height exhibited no changes in conductance when the T-stub height was increased.  They 

attribute this behavior to the fact that the “wide energy range involved in the conductance 

calculation smears out all oscillations in the transmission coefficient.”  This explanation 

is plausible and is similar to what is observed in the investigation of modulation length, d, 

which is discussed in Section 6.5.2.   
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It should also be noted that the simple beam theory model developed in Chapter 5 

is expected to model phonon transmission for the expanded nanowire case less well when 

the size ratio is large.  This is because the role of higher order modes in the expanded 

section plays a greater role as the diameter of the expanded section increases.  As such, 

it’s not surprising that the limiting behavior for large size ratios predicted by the simple 

model (average transmission goes to zero) does not match the observed behavior for the 

expanded nanowire (average transmission saturates to a finite value).  In addition, while 

it was not noted by Yang, et. al [57], close inspection of the behavior of the T-stub 

waveguide indicates that the formation of standing waves transverse to the waveguide 

length results in a saturation of the average transmission of the SH0 mode at larger size 

ratios.  This limiting behavior is much different than that predicted by a 1-D analysis of 

the T-stub system analogous to that presented for the nanowire geometry in Chapter 5.  A 

more sophisticated simple model that accounts for higher order mode effects and/or 

standing waves transverse to the nanowire axis may be required to better explain both 

size and size ratio dependence of the saturation of 
C
 at higher II

I

D

D
.  Nevertheless, these 

results indicate that, at least for small nanowire systems, increasing the nanowire size can 

increase the aggregate phonon transmission even if the size ratio is held constant. 
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Figure 6.10: Effect of aggregate phonon transmission on modulation size.  The length of modulation, d, is 

held constant at 1.15 nm.  Three different sizes of nanowire leads were investigated.  

6.5.2 Investigation of Modulation Length: Classical Limit 

The effect of the modulation length, d, on phonon transmission was also explored.   

The phonon transmission is plotted versus frequency for three different values of d in 

Figure 6.11.  The modal transmission coefficients of individual modes are clearly 

sensitive to the length of the modulation and exhibit resonance and interference 

phenomena that are strongly dependent on modulation length.  This is best shown in the 

inset of Figure 6.11 which plots the low frequency portion of the phonon transmission for 

three different modulation lengths and demonstrates how d affects the frequencies where 

transmission peaks and valleys occur.  This effect was also evident in Figure 5.9 which 

plots the transmission of individual phonon branches versus wavenumber for a 

comparable geometry.  While changing d modifies the periodicity at which peaks and 
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valleys occur in the transmission at low frequencies, this has little overall effect on the 

conductance ratio when all modes are considered.  Figure 6.12 plots 
C
  versus 

modulation length for two different size ratios and demonstrates that 
C
  exhibits little 

sensitivity to changes in the length of the modulated section.  The conductance ratio 

varies by at most 5% from the mean value. 

 
Figure 6.11: Effect of modulation length, d, on phonon transmission through single modulation. DI=1.72 

nm, DII=0.95 nm. While some of the peaks in transmission are misaligned due to interference effects that 

are dependent on d, the overall shapes of the transmission curves are similar.  The effect of d on the 

location of specific peaks is best observed when looking only at the low frequency transmission which is 

shown in the inset figure.   
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Figure 6.12: Effect of modulation length on aggregate phonon transport through single modulation.  

Diameter of nanowire lead is 1.72 nm.  Two different modulation diameters are presented.  

The small sensitivity of thermal conductance on modulation length arises from the 

fact that many modes contribute to thermal transport across the irregular geometry.  For 

the small nanowire lead size investigated in this study, there can be more than 20 

different modes contributing to heat transfer at some frequencies.  These modes belong to 

different dispersion curves and have different wavenumbers.  As a result, their 

transmission dependence on modulation length will be different such that a peak in 

transmission for one phonon branch may align with a valley in transmission for another 

branch.  When summed over many different modes and averaged over frequency, any 

dependence one particular mode has on d is blurred by the behavior of all of the other 

modes and the thermal conductance is largely independent of d.  Increasing the diameter 

of the nanowire leads will in general increase the number of modes at a given frequency 
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and further obscure any modal dependence on d in the evaluation of overall thermal 

conductance. Thus, for all but the lowest temperatures it is unlikely that d could be used 

to tune thermal conduction.   

It should be noted that in the study on modulation number (Section 6.5.3) it will be 

shown that increasing the number of interfaces decreases aggregate thermal transport.  

Thus, for a given fixed overall length, reducing the length, d, of an individual modulation 

allows for an increase in interface/modulation number density which would in turn 

decrease the thermal conductance.  This effect is consistent with the findings of Liu and 

Chen [34] in their MD study on periodically rippled nanowires in which they found that 

short wavelength ripples, which correspond to shorter d and higher N within a set length, 

resulted in lower calculated thermal conductivity than nanowires with longer wavelength 

ripples. 

6.5.3 Investigation of Modulation Number 

The effect of the number of modulations, N, on the phonon transmission and 

thermal conductance was also explored.  Figure 6.13 plots the total phonon transmission 

as a function of frequency for different numbers of nanowire modulations for an example 

expanded nanowire case.  Additional modulations consistently reduce phonon 

transmission for almost all frequencies.  The effect of additional modulations on 

aggregate phonon transport as manifested through C
  is plotted in Figure 6.14.  

Increasing N, while holding all other parameters constant, reduces the aggregate phonon 



151 

 

transmission for all values of size ratio considered.  However, the amount of reduction 

that can be achieved by adding modulated sections lessens for higher values of N, and 

appears to converge to a minimum value of 
C
 for large N.  These effects are consistent 

with a simple beam theory analysis of the zeroth order branches.  The transmission result 

of the zeroth order modes calculated using the simple beam model is shown in Figure 

6.15.  The simple model predicts deeper valleys in transmission as the number of 

modulations is increased and a convergence effect at higher N.   The average phonon 

transmission of these branches (Figure 6.16), as modeled using the simple beam theory 

model,  also approaches a minimum value at higher N due to the fact that the valley width 

saturates with a larger numbers of modulations.  The phonon dynamics as modeled using 

the LD-SBM computational approach are more complicated/realistic than that predicted 

by the simple model, but the saturation effect at higher N is qualitatively consistent 

between both approaches.  The convergence of 
C
 for large N is also consistent with the 

observation made by Zianni [104] that the reduction in conductance due to the addition of 

modulations saturates for larger values of N.   
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Figure 6.13: Total phonon transmission as a function of frequency for different numbers of nanowire 

modulations.  Case plotted corresponds to DI=1.72 nm and DII=2.37 nm.  The length of all modulated 

sections was held constant at d=1.15 nm. Adding modulations reduces the transmission for nearly all 

frequencies. 

 

Figure 6.14: Effect of adding multiple modulations on aggregate phonon transport. Length of modulation, 

d, is held constant at 1.15 nm and the diameter, DI, of the nanowire lead is 1.72 nm. 
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Figure 6.15: Modal transmission of zeroth order modes calculated using simple beam theory model 

(Section 5.2.3) for different numbers of modulation. The size ratio, DII/DI =1.38, is the same as that 

presented in Figure 6.13.  Note that the valley width saturates with larger N which results in the saturation 

of the average transmission coefficient plotted in Figure 6.16. 
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Figure 6.16: Average transmission of all four zeroth order modes over the intervals plotted in Figure 6.15 

as calculated using the simple beam theory model.  The saturation of average transmission with larger N is 

qualitatively consistent with the result calculated using the much more rigorous LD-SBM computational 

procedure. 

6.5.4 Investigation of Modulation Length: Low Temperature Effects 

The previous analysis whereby aggregate phonon transmission was quantified 

through the parameter 
C
  is most useful for higher temperature cases when the modal 

contribution to thermal conductance ,k   is spread across the entire phonon spectrum and 

no single mode or group of modes dominates the thermal conductance.   However, at 

lower temperatures, ,k  , is significant only for the longest wavelength modes belonging 

to first several lowest frequency phonon branches.  This is the case because the 

magnitude of modal specific heat term of the Landauer thermal conductance is negligible 

for the higher frequency modes.  Additionally, at low temperatures it is possible to 

identify a range of wavenumbers that are dominant contributors to thermal conductance.  

This behavior is illustrated in Figure 6.17 which plots the normalized modal contribution 

to thermal conductance for the unmodulated nanowire versus wavenumber for a low 
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temperature example case (T=12K).  The contribution of all branches combined, the first 

four branches combined, and the contribution of each zeroth order branch are plotted 

versus wavenumber.  As Figure 6.17 shows, the first four branches account for the great 

majority of thermal conductance at this temperature.  The phenomena of having a 

wavenumber or band of wavenumbers that dominate thermal conductance is associated 

with the combined behavior of the four zeroth order branches.  The extensional and 

torsional branches are very strong contributors to thermal conductance at low frequencies 

since they have high group velocities. In fact, their contribution to the thermal 

conductance is maximum for frequencies approaching zero.   Conversely, the two 

flexural branches are not strong contributors to thermal conductance at low frequencies as 

their group velocities approach zero in the low frequency limit.  However, the 

contribution of the flexural modes grows substantially with increasing wavenumber since 

the group velocity of the flexural modes is linearly related to wavenumber in the long 

wavelength limit.  Thus, the combined effect of the extensional, torsional, and two 

flexural branches at low frequencies results in a wavenumber at which the contribution to 

thermal conductance is maximized.  This “peaked” behavior affords some opportunity to 

design the nanostructure modulation such that phonon transmission is minimized at the 

wavenumbers that deliver maximum contribution to thermal conductance.  Such targeted 

reduction in phonon transport via tuning d is not possible at higher temperatures (as 

discussed in section 6.5.2) since many more modes contribute to the thermal conductance 

and the interactions of one mode or one band of modes has a less significant effect on 
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overall thermal transport.  This effect accounts for the relative insensitivity of the 

classical conductance ratio on modulation length.  

 
Figure 6.17: Normalized modal contributions to thermal conductance for an unmodulated nanowire 

(DI=1.72 nm) at T=12K.  The first four branches dominate thermal transport in this regime and account for 

the nearly all of the contribution to thermal conductance.  The extensional and torsional modes’ 

contribution is maximum at k=0, while the two flexural modes do not contribute at k=0 due to their low 

group velocities.  The combined contribution of the four zeroth order modes results in a wavenumber peak 

at k=0.42 (1/nm). 

To demonstrate enhanced dependence of *  on modulation length at lower 

temperatures and the ability to target a particular band of modes, the conductance ratio 

versus modulation length is plotted versus d for a low temperature (T=12K) case (Figure 

6.18).   Both the N=1 and N=2 cases are considered.  At this temperature, the thermal 

conductance is dominated by the behavior of the peak modes and therefore exhibits 

greater dependence on modulation length than at classical temperatures (Figure 6.12).  

While the variability of the conductance ratio with d is still small relative to the 

characteristic changes in conductance that occur due to changing the size ratio or the 
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number of modulations, a clear minimum in the conductance ratio is discernible.  For 

both the N=1 and N=2 cases, the minimum thermal conductance ratio occurs at around 

d≈2.3 nm.  This minimum can be understood through analysis of Figure 6.19.  This figure 

shows the modal contributions to thermal conductance, the differential modal 

contribution to thermal conductance, and the modal transmission coefficients for 

unmodulated nanowires and nanowires with one or two modulations. A local minimum in 

thermal conductance is obtained when the modulation length, d, causes a strong 

transmission minimum in the extensional and torsional phonon branches that is well 

aligned with the wavenumbers of the dominant phonon modes.  Contrastingly, when the 

modulation length is chosen such that the resultant minimum in the transmission of the 

extensional and torsional branches is not aligned with the peak wavenumber (Figure 6.19: 

Case B), the conductance ratio is appreciably larger.  As Figure 6.18 and Figure 6.20 

show the effect is greater for N=2 case since the additional modulation results in a deeper 

transmission valley (Figure 6.20) which causes a greater differential between the 

conductance of the unmodulated nanowire and the modulated nanowire near the peak 

wavenumber band.  Note that the behavior of the two flexural modes does not impact this 

analysis since they exhibit less variability in transmission at low frequencies (see, for 

example, Figure 5.9 and Figure 6.15).  Thus, at low wavenumbers their transmission is 

relatively high irrespective of d which affords less opportunity to tune the conductance of 

these modes. 
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Figure 6.18: Conductance versus modulation length for T=12K. DI is 1.72 nm and DII is 2.37 nm.  Boxed 

cases correspond to plots shown in Figure 6.19 and Figure 6.20. 
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Figure 6.19: Normalized contribution to thermal conductance (top row), differential contribution to thermal 

conductance (middle row) and combined phonon transmission of extensional and torsion phonon branches 

(bottom row).  Each column corresponds to the cases boxed in Figure 6.18. Contribution to thermal 

conductance is normalized by the mode that is the maximum contributor to thermal conductance in the 

straight nanowire at temperature of interest (T=17 K). For the case shown, the maximum contributors are 

the longest wavelength modes belonging to the extensional branch. N=1, DI=1.72 nm and DII=2.37 nm. 
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Figure 6.20: Normalized contribution to thermal conductance (top row), differential contribution to thermal 

conductance (middle row) and combined phonon transmission of extensional and torsion phonon branches 

(bottom row).  Each column corresponds to the cases boxed in Figure 6.18. For this case, N=2, DI=1.72 nm 

and DII=2.37 nm. The phonon suppression effect is stronger than for the N=1 case.  Inspection of the 

differential contribution to thermal conductance plot for each case demonstrates that d can be chosen to 

target the dominant band of phonon modes at this temperature.  

6.6 Proposed Framework for a Simple Phonon Transmission Model 

It was noted in section 6.4.2 that the dependence of the total phonon transmission 

on frequency is dominated by the number of modes at a given frequency rather than 

being characterized by any strong wavenumber or mode type dependence.  This results 

from the fact that there are, in general, a very large number of modes present at a given 

frequency such that the total phonon transmission at each frequency manifests itself as an 
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average over many modes.  The most important exception to this type of behavior occurs 

for the zeroth order phonons modes whose long wavelength behavior is adequately 

described by the beam theory model developed in Chapter 5.  These two observations 

provide inspiration for a simplified model for phonon transmission whereby the phonon 

transmission is approximated by: 

 
,

,

1
  for  

2

1
      for  

2

beam

c
simple

c c

 

 
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
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


 
 


  (67) 

Here ,

simple

  is approximated by the transmission, ,

beam

  , as estimated by the simple beam 

theory model developed in Chapter 5 for phonons with frequencies less than or equal to 

one half the cutoff frequency of the first higher order mode, c .  The transmission 

coefficients of all other modes are modeled by a constant phonon transmission, 
c .  

Since the classical conductance ratio, 
C
 , can be thought of as a frequency dependent 

number of modes weighted average transmission (see Eq. (65)) it serves as an appropriate 

choice for 
c .  For illustration of this simplified model, ,

simple

  is plotted with the actual 

phonon transmission as calculated using the LD-SBM method in Figure 6.21.  The total 

phonon transmission associated with the simple model is obtained by multiplying ,

simple

 

by the number of modes, N .  As shown in Figure 6.21(a) the simple model is able to 

capture most of the character of the more rigorously calculated phonon transmission 

curve.  
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Figure 6.21 (a) total phonon transmission as a function of frequency for both the LD-SBM model and the 

simple model which is described in Eq. (67). (b) average phonon transmission as a function of frequency 

for both models.  Simple model uses a constant value for all modes greater than one half the cutoff 

frequency of the first higher order mode.  Beam theory is used to model the low frequency transmission.  

Since the transmission is plotted as a function of ordinary frequency, f, the number of phonon modes and 

the transmission coeffiecients are indexed using ordinary frequency. 

  To demonstrate the application of the simple model toward the calculation of the 

thermal conductance, the thermal conductance versus temperature is plotted for three 

different example geometries in Figure 6.22. In all three cases, the result from the simple 

model gives a good approximation for the full calculation obtained from the detailed LD-

SBM calculations of the phonon transmission of every mode. A more expansive survey 

of how well the simple model matched the conductance results was performed for the 71 
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different geometric combinations of DI, DII, d, and N presented herein.  The conductance 

results were compared over a temperature range of 1 to 400 K and the average error, 
ave  

, and maximum error, max , over the temperature range as a percentage of the 

unmodulated nanowire’s thermal conductance (of equivalent DI) was calculated.  The 

average value of 
ave for the 71 geometries surveyed was 3.7% and the average value of 

max  for the 71 geometries surveyed was 9%.  The maximum error always occurred at 

lower temperatures (T<30K) and coincided with the transition between the regime that 

can be adequately modeled using beam theory and the classical regime which is 

effectively characterized by 
C
 . 

 
Figure 6.22: Comparison of simple transmission model with LD-SBM for the calculation of thermal 

conductance.  The results for three different example geometries are presented. 

The advantage of this simple model is that the thermal conductance can be 

estimated for all temperatures without the need to calculate the phonon transmission of 

every mode.  Since the beam model has been clearly presented in Chapter 5, all that is 

needed to estimate the conductance are appropriate models for the phonon spectra of the 

nanowire leads and an understanding of how 
C
 varies with geometry. Phonon spectra, 
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which are required to calculate N , , and 
c can be found using harmonic lattice 

dynamics and the methods described in Chapter 2 of this dissertation.  Harmonic lattice 

dynamics calculations of nanowire phonon spectra, while still computationally 

demanding, are considerably less complicated calculations to perform than the SBM 

calculations that are required to determine the modal transmission coefficients. Open 

source computer programs are also available to aid in the determination of phonon 

spectra [108].  While additional future research is required to develop a comprehensive 

description of how the key geometric parameters affect 
C
 , the trends that emerged from 

the study undertaken in this chapter suggest that empirical/analytical models relating  ID

, IID , d , and N to 
C
  are probably within reach.   

6.7 Summary 

In this chapter, the LD-SBM computational model that was described in Chapters 2 

and 3 of this dissertation was used to calculate phonon transmission and thermal 

conductance through a modulated nanowire system.  Detailed results were presented for a 

baseline constricted nanowire and the effect of structural relaxation was investigated.  

Higher relaxation temperatures resulted in greater reorganization of the atomic 

configuration, enhanced suppression of higher frequency phonon modes, and reduced 

conductance relative to the base unrelaxed structure.  However, structural relaxation was 

shown to have little effect on the transmission of low frequency phonons and low 

temperature overall thermal transport.  The model was then used to explore the effect of 
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several geometric parameters on the overall suppression of the phonon transport.  The 

results show that the most important parameter influencing phonon transport in these 

systems is the size ratio between the modulated section and the nanowire lead.  The 

number of modulations is also a dominant parameter in the governance of phonon 

transport.  Consistent with the previously published results of Zianni and an analysis of 

phonon transmission using a simple beam theory model, the LD-SBM results showed that 

multiple modulations result in reduced aggregate phonon transmission and that the 

reduction saturates for larger values of N.  While varying the modulation length can be 

used to tune the transmission behavior of individual phonon branches, its effect on 

overall thermal transport is negligible except at low temperatures where only the zeroth 

order branches are strong contributors to the modal specific heat.  This study 

demonstrated that thermal conductance is slightly tunable at low temperatures by 

manipulation of modulation length through the selected targeting of dominant 

wavenumber modes.  In addition to surveying geometrical effects on phonon transport in 

the diameter modulated nanowire, a framework for a simple model for phonon 

transmission was proposed that could be useful by eliminating the need to perform 

detailed phonon transmission calculations while still providing an adequate description of 

how geometry affects aggregate phonon transport. 
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7 Conclusion 

7.1 Contributions 

The following is a summary of the most important contributions made by this 

dissertation. 

This dissertation presented an implementation of an atomistic and mode-dependent 

computational model for calculating phonon transmission in geometrically irregular 

confined silicon nanostructures.  Prior to this work, the LD-SBM approach had only been 

used to calculate modal phonon transmission across bulk material interfaces and 

nanotube junctions.  The vast majority of previous computational and theoretical 

investigations on coherent phonon-geometry interactions in confined nanostructures and 

their implications to thermal transport have either relied on MD simulation or 

transmission results based on continuum elastic wave theory.  The computational 

approach implemented for this dissertation is an improvement over conventional MD in 

that it can analyze specific mode behavior and it is an improvement over the continuum 

approach since the effects of the discrete lattice are taken in account.  While similar work 

had been done before via an “Atomistic Green’s Functions” (AGF) formulation, the AGF 

approach only produces frequency dependent phonon transmission and is thus unable to 

isolate the wavenumber/wavelength or mode type dependent behavior of individual 

modes.  The computational model implemented for this dissertation enabled the 

investigation of how individual modes interact with irregular geometric features.  This 
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new computational capability aids in understanding fundamental phonon-geometry 

scattering processes, and has implications to nanostructure design by linking the 

properties and transmission behavior of individual modes to the size and shape of 

individual geometric features. In addition, the mode dependent capability of the model 

allowed for mode-level comparisons with alternative computational methods.  

This dissertation, along with a corollary work (Ref. [93]), presented the first ever 

comparison of atomistic and continuum models for the calculation of mode-dependent 

phonon transmission in geometrically irregular nanostructures. The comparison of 

methods enabled the critical evaluation of a computational approach that has been used 

by many previous researchers to predict phonon transport in nanoscale systems.  The 

comparison confirmed the accuracy of the continuum models for the analysis of long 

wavelength acoustic phonons, but indicated that continuum models should only be used 

to model phonons with wavelengths greater than around 4-8 nm.  This dissertation also 

presented a detailed accounting of the various wavelength and nanostructure size 

dependent atomistic effects that can cause deviations between an atomistic and 

continuum model and proposed an original simple model that can be used to estimate an 

upper bound on continuum model error due to dimensional uncertainty when modeling a 

nanoscale system.  

Another key contribution of this work was the creation of an original simple 

analytical model based on long wavelength beam theory that can be used to estimate 

modal phonon transmission coefficients in geometrically irregular nanowires.  The model 
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was generalized so that it may be applied for systems with an arbitrary number of abrupt 

geometric or material discontinuities.  In addition to the general formulation, some closed 

form analytical expressions for modal phonon transmission were derived for systems of 

reduced geometric complexity.  The simple model provides a pathway for other 

researchers and engineers to investigate the effect of material and geometric 

discontinuities on thermal transport without requiring complicated and computationally 

expensive atomistic transmission calculations. 

 Lastly, this dissertation presented a focused investigation of the geometric 

parameter space that governs phonon transport in diameter modulated silicon nanowires.  

In addition to presenting and analyzing detailed transmission and thermal conductance 

results, a general framework was proposed that can be used to estimate temperature 

dependent thermal conductance through a geometrically irregular nanowire without the 

need for tedious and computationally expensive atomistic calculations.  Such an approach 

could be used as a guideline for future analysis and characterization of geometrical 

effects on phonon transport in modulated nanowire systems.  The analytical framework 

could also be applied to other related nanoscale systems such as nanowire superlattices. 

7.2 Suggestions for future work 

The lattice dynamics - scattering boundary method computational tool, as currently 

written and utilized for the writing of this dissertation, can only analyze phonon transport 

and predict thermal properties in very small nanostructures.  The largest nanowires that 
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can currently be investigated in a reasonable amount of time (i.e. calculating phonon 

transmission for enough modes to determine the thermal conductance in less than a week) 

have diameters between 3 and 5 nm depending on the length and complexity of the 

irregular geometry and the desired level of frequency or wavenumber dependent 

resolution.   Because of the computational savings associated with the additional 

periodicity of plate-like nanostructures, plates with confined height between 15 and 20 

nm can currently be simulated.  While these sizes are large enough to capture most of the 

relevant physics, perform comparisons with continuum theory, and gain general insight 

regarding phonon transmission and thermal conductance, they are probably not large 

enough to be compared with experimental results.  Optimizing the code and executing on 

tens or hundreds of processors could enable validation of the computations via 

comparison with experimental results and open the possibility to simulate mode 

dependent phonon scattering in larger, more elaborate nanoscale systems.  

Because the focus of this dissertation was to develop and compare computational 

tools, not exhaustively use them to investigate geometries, only a narrow portion of the 

possible geometry design space was investigated.  Since much of the interest in the 

geometrical investigation thus far was in the concurrent development and comparison 

with simple analytical models, the geometries investigated thus far have all had abrupt 

interfaces with intermediate sections that had constant cross-section.  Investigating 

smoothly varying geometries, nanostructures with randomly rough boundaries, and 

nanostructures with amorphous layers would provide a better match to nanostructures 
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currently attainable in the laboratory and expand the structural-geometry design space.  

Fortunately, because of the atomistic nature of the computational method, additional 

geometric and material complexity could easily be included in the model. 

The focus of this dissertation was on creating a computational model for geometry 

dependent phonon transport in nanostructures.  However, the LD-SBM model that was 

deployed for geometrically irregular nanostructures could easily be adapted to investigate 

phonon transmission in nanowire systems comprised of more than one material such as 

nanowire superlattices.   Nanowire superlattices are nanowires comprised of alternating, 

periodic layers of different materials.  Thermal conductivity measurements of Si-SiGe 

nanowire superlattices were performed by Li, et. al [109] , and because of their low 

thermal conductivities relative to nanowires comprised only of silicon, have been 

proposed for use in higher efficiency thermoelectric materials.  The phonon thermal 

conductivity of superlattice nanowires has been investigated theoretically through 

incoherent phonon particle models [110] and through non-equilibrium molecular 

dynamics simulation [111].  Greater insight concerning their potential to serve as a 

medium for tuned thermal transport could be found through a LD-SBM based 

computational study whereby the transmission of individual modes could be calculated.  

Such an approach would fully account for confined phonon spectra (not included in the 

particle approach) and low temperature phonon occupation (not accounted for in the MD 

approach).  Additionally, the beam theory model developed in Chapter 5 of this work 

could also be easily applied to nanowire superlattice systems.  Expanding the 
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nanostructure design space to include the possibility for varying material properties as 

well as boundary geometry may enable increased tunability of phonon transport and 

could result in structures that suppress phonon transport even more than nanowires 

comprised of single materials.   
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