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ABSTRACT

ESSAYS ON THE MACROECONOMICS OF

INCOMPLETE INFORMATION

Leonardo Melosi

Frank Schorfheide and Francis X. Diebold

In the �rst chapter, I develop and estimate a dynamic general equilibrium

model with imperfectly informed �rms in the sense of Woodford (2002). The

model has two aggregate shocks: a monetary policy shock and a technology

shock. Firms observe idiosyncratic noisy signals about these shocks and face

strategic complementarities in price setting. In this environment, agents�"fore-

casting the forecasts of others" can produce realistic dynamics of model vari-

ables, with associated highly persistent real e¤ects of monetary shocks and

delayed e¤ects of such shocks on in�ation. The paper provides a full Bayesian

analysis of the model, revealing that it can capture the persistent propagation

of monetary shocks only by predicting that �rms acquire less information about

monetary policy than about technology. To further investigate this �nding, I

augment the model to allow �rms to optimally choose how much information to

acquire about the two shocks, subject to an information-processing constraint

à la Sims (2003). This constraint sets the rate at which �rms can substitute

pieces of information about the two shocks. I �nd that, in the estimated model,
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�rms�marginal value of the information about monetary policy shocks is much

higher than that about technology shocks. I argue that this �nding admits

two alternative interpretations. First, �rms acquire implausibly too little in-

formation about the monetary shock in the estimated model. Second, the rate

of substitution implied by the information-processing constraint is inconsistent

with the data. In the third chapter, I develop a model where �rms have incom-

plete and dispersed information to study how monetary policy a¤ects agents�

beliefs. I estimate the model through Bayesian methods and �nd that dispersed

information has two main implications for monetary policy. First, it reduces

the real e¤ects of money. Second, it raises the output loss associated with a

monetary policy of disin�ation.
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Chapter 1

Introduction

I conduct a formal econometric analysis of dynamic stochastic general equilib-

rium models where �rms have incomplete information. In the �rst chapter, I

develop and estimate a dynamic general equilibrium model with imperfectly

informed �rms in the sense of Woodford (2002). I provide an econometric in-

vestigation of whether the model can be reliably used for studying the propaga-

tion of monetary disturbances to macroeconomic variables in the US economy.

The model has two aggregate shocks: a monetary policy shock and a technol-

ogy shock. Firms observe idiosyncratic noisy signals about these shocks and

face strategic complementarities in price setting. In this environment, agents�

"forecasting the forecasts of others" can produce realistic dynamics of model

variables, with associated highly persistent real e¤ects of monetary shocks and

delayed e¤ects of such shocks on in�ation. I provide a full Bayesian analysis
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of the model, revealing that, although it is highly-stylized, it provides a useful

laboratory for studying the e¤ects of monetary shocks. Furthermore, I �nd that

�rms acquire much less information about monetary policy than that about

technology in the estimated model.

In the second chapter, I investigate the plausibility of the �nding that �rms

acquire much less information about monetary policy than that about technol-

ogy. To this end, I augment the model to allow �rms to optimally choose how

much information to acquire about the two shocks, subject to an information-

processing constraint that is widely used in the literature of rational inattention

propelled by Sims (1998, 2003). This constraint sets the rate at which �rms

can substitute pieces of information about the two shocks. I �nd that, in the

estimated model, �rms�marginal value of the information about monetary pol-

icy shocks is much higher than that about technology shocks. Hence, I argue

that the estimated model predicts that �rms acquire implausibly too little in-

formation about monetary policy. This result calls for further research on the

substitution rate of information that �rms actually face.

The third chapter addresses the following question: does monetary policy

play a role in coordinating agents�in�ation expectations? To answer this ques-

tion the essay develops a dynamic stochastic general equilibrium (DSGE) model

where �rms have heterogenous in�ation expectations. In the model, monetary

2



policy can work as a focal point that helps coordinating expectations among

�rms. I will perform Bayesian estimation and evaluation of the model. The

main �ndings of this chapter are two. First, the presence of imperfect informa-

tion reduces the real e¤ects of monetary policy. Second, the output loss asso-

ciated with a monetary policy of disin�ation (i.e., a negative shock to central

bank�s in�ation targeting) is larger when one considers imperfect information.
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Chapter 2

A Model of Incomplete Common

Knowledge

A number of in�uential empirical studies of the U.S. economy have documented

that money disturbances have highly persistent real e¤ects and delayed im-

pacts on in�ation (Christiano, Eichenbaum, and Evans, 1999, Stock and Wat-

son, 2001). The conventional approach to explaining this evidence relies upon

sticky-price models (e.g., Galí and Gertler, 1999, Eichenbaum and Fisher, 2004,

Christiano, Eichenbaum, and Evans 2005, and Smets andWouters, 2007). These

models can generally account for the highly persistent e¤ects of monetary shocks

only with su¢ ciently large costs of price adjustment. Such sizable costs imply

a frequency of price adjustments that is inconsistent with some evidence from
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the micro-data on price changes (Bils and Klenow, 2004).1

Woodford (2002) proposes an alternative modeling approach: imperfect-

common-knowledge models. In his price-setting model, monopolistic produc-

ers set their prices under limited information and strategic complementarities.

Firms observe idiosyncratic noisy signals regarding the state of monetary policy

and solve a signal-extraction problem in order to keep track of the model vari-

ables. Since the signal is noisy, �rms do not immediately learn of the occurrence

of monetary disturbances. As a result, the price level fails to adjust enough to

entirely neutralize the real e¤ects of nominal shocks. Moreover, because of

the idiosyncratic nature of the signals, in the aftermath of a shock, �rms are

also uncertain about what other �rms know that other �rms know...that other

�rms know about that shock. Owing to strategic complementarities in price-

setting, a problem of forecasting the forecasts of others of the type envisioned

by Townsend (1983b) arises. This feature of the model has been shown to am-

plify the persistence in economic �uctuations (Townsend, 1983a, 1983b, Hellwig,

2002, Adam, 2008, Angeletos and La�O, 2008, and Lorenzoni, forthcoming A)

and in the propagation of monetary disturbances to real variables and prices

(Phelps, 1970, Adam, 2007, Gorodnichenko, 2008, and Lorenzoni, forthcoming

B).2 Moreover, it is worth emphasizing that in this model prices adjust fre-

1A modelling solution that preserves sticky prices and is not in con�ict with micro-data
on price-setting is developed by Altig, Christiano, Eichenbaum, and Linde (2005).

2See Mankiw and Reis (2002a, 2002b, 2006, 2007), and Reis (2006a, 2006b, 2009) for
models with information frictions that do not feature imperfect common knowledge but can
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quently, but move only gradually to their complete information levels. Thus

the resolution proposed by Woodford (2002) is appealing in that it can poten-

tially explain sluggish adjustments of macro variables without necessarily being

in discord with the micro evidence on price changes.

This chapter addresses the question: can a version of the imperfect-common-

knowledge model (ICKM) account for the persistent e¤ects of monetary shocks

we observe in the data? The answer to this question is yes but with one caveat

that will be addressed in the second chapter. To get this answer, the essay pro-

ceeds by constructing a dynamic stochastic general equilibrium (DSGE) model

with two shocks: a monetary policy shock and an aggregate technology shock.

Firms receive one idiosyncratic noisy signal about each of these two shocks and

face strategic complementarities in price-setting. The signal-extraction problem

and the price-setting problem are similar to Woodford (2002). I estimate the

ICKM and a vector autoregressive model (VAR) through Bayesian methods. I

consider the impulse response functions (IRFs) implied by this statistical model

as an accurate description of the propagation of monetary shocks in the data.

From a Bayesian perspective, this conjecture is sensible because the VAR turns

out to dominate the ICKM in terms of time series �t (Schorfheide, 2000). I then

compare the IRFs of output and in�ation to a monetary shock implied by the

ICKM to those implied by the VAR. I �nd that the ICKM successfully captures

generate sizable persistence.
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the sluggish and hump-shaped response of output and in�ation to monetary

shocks implied by the VAR. Moreover, the estimated signal-to-noise ratio of

monetary policy is smaller than that of technology by a factor of six. The rea-

son is that the ICKM generates highly sluggish responses to monetary shocks

only if �rms acquire so little information about monetary policy.

Finally, this chapter investigates what the imperfect-common-knowledge

mechanism of generating persistence adds to or takes away from a more popular

mechanism based on Calvo sticky prices (Calvo, 1983). To this end, I consider

a model (henceforth, Calvo model) that di¤ers from the ICKM in two main

respects: (1) �rms are perfectly informed, and (2) �rms can re-optimize their

prices only at random periods, as in Calvo (1983). I estimate the Calvo model

through Bayesian techniques. First, I �nd that, unlike the ICKM and the VAR,

the Calvo model fails to generate hump-shaped responses of output and in�a-

tion to monetary shocks. Second, the ICKM �ts the data moderately better

than the Calvo model.

2.1 The Model Economy

This chapter is organized as follows. First, I introduce the maintained assump-

tions of the ICKM. Second, I show the problems of agents in the model. Third,

I discuss how to detrend and log-linearize the model around the deterministic

steady state equilibrium. Fourth, I analyze the source of persistence in the log-
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linearized ICKM. Fifth, I brie�y discuss the challenges one faces when solving

models with imperfect common knowledge. Sixth, I describe how to modify the

ICKM so that the information frictions are replaced with nominal rigidities à

la Calvo (1983).

2.1.1 Maintained Assumptions

The economy is populated by perfectly competitive �nal-good producers (or,

more brie�y, producers), households, a �nancial intermediary, a monetary au-

thority (or central bank), and a continuum (0; 1) of intermediate-good �rms (or,

more brie�y, �rms). Households derive utility from consumption and disutility

from supplying labor to �rms. Furthermore, households face a cash-in-advance

(CIA) constraint, requiring that they must have su¢ cient cash available before

they can buy consumption goods. Firms set the prices of their intermediate

goods in a monopolistic competitive market. Firms do not bear any cost when

they change their prices and do not accumulate capital. Furthermore, there are

two shocks: an aggregate technology shock and a monetary policy shock.

The information structure of the model can be summarized as follows. First,

all information is publicly available to every agent. Second, �rms cannot attend

perfectly to all available information. Third, �rms face limitations on the overall

amount of information they can process. As in Woodford (2002), information-

processing frictions are modelled by assuming that �rms do not observe past

8



and current realizations of any model variables. They solely observe signals

about the two shocks. For tractability, it is assumed that the other agents (i.e.,

�nal-good producers, households, the �nancial intermediary, and the monetary

authority) perfectly observe the past and the current realizations of all the model

variables.

At the beginning of period t, the households inherit the entire money stock

of the economy, Mt�1. Shocks and signals realize. Households decide how much

moneyDt to deposit at the �nancial intermediary after observing current-period

innovations to technology and monetary shocks. These deposits yield interest

at a rate of Rt � 1. The �nancial intermediary receives households�deposits

and a monetary injection from the monetary authority, which it lends to �rms

at a �xed fee � . The �rms observe signals, set prices, hire labor service from

households, and then produce. They use the liquidity facilities provided by the

�nancial intermediary at the �xed fee � so as to pay wages WtHt, where Wt is

the nominal hourly wage, and Ht is hours worked. Households�cash balance

increases to Mt�1 � Dt +WtHt. The CIA constraint requires that households

pay for all consumption purchases with the accumulated cash balances. Firms

sell their goods to producers that integrate them into a �nal good that they sell

to households. Firms also pay back their loans, Li;t. Finally, households receive

back their deposits inclusive of interest and dividends from both �rms, �t, and

the �nancial intermediary, �bt .

9



2.1.2 Final-Good Producers

The representative �nal-good producer combines a continuum of intermediate

goods, Yi;t, by using the technology:

Yt =

�Z 1

0

(Yi;t)
��1
� di

� �
��1

where Yt is the amount of the �nal good produced at time t, the parameter �

represents the elasticity of demand for each intermediate good and is assumed

to be strictly larger than one. The producer takes the input prices, Pi;t, and

output price, Pt, as given. Pro�t maximization implies that the demand for

intermediate goods is:

Yi;t =

�
Pi;t
Pt

���
Yt

where the competitive price of the �nal good, Pt, is given by

Pt =

�Z
(Pi;t)

1�� di

� 1
1��

: (2.1)

2.1.3 The Representative Household

The representative household derives utility from consuming the �nal good, Ct,

and disutility from hours worked, Ht, and maximizes

10



max
fCt;Ht;Mt;Dtg

Et
1X
s=0

�s

"
lnCt+s � �

H1+�
t+s

1 + �

#
(2.2)

such that

PtCt �Mt�1 �Dt +WtHt (2.3)

0 � Dt (2.4)

Mt = (Mt�1 +WtHt �Dt � PtCt) +RtDt +�t +�
b
t (2.5)

where � is the discount factor, � > 0 is the Frisch labor elasticity, and � is a

parameter that a¤ects the marginal utility of leisure.

The �rst constraint is the CIA constraint requiring that the household has

to hold money up-front to �nance its consumption. The second constraint

prevents households from borrowing from the �nancial intermediary. The third

constraint is the Dixit-Stiglitz aggregator of consumption varieties. The fourth

constraint is the law of motion of households�money holdings.

2.1.4 The Financial Intermediary

The �nancial intermediary solves the trivial static problem:

11



max
fLt;Dtg

(1�Rt)Dt +Xt + � � I fLt > 0g (2.6)

such that

Lt � Xt +Dt (2.7)

where Lt is the aggregate amount of liquidity supplied to �rms Lt =
R
Li;tdi,

Xt = Mt+1 �Mt is the monetary injection, I f�g is an indicator function that

has the value one if the statement within curly brackets is true. � is a �xed fee

the intermediary receives from �rms.

The �nancial intermediary lends cash to �rms so that they can pay wages

before households consume. This timing assumption allows households to use

the cash from their current labor income to �nance current consumption. This

feature of the model makes the labor supply depend only on current variables

and substantially simpli�es the �rms�signal-extraction problem. Replacing the

�xed fee � with an equilibrium interest rate would introduce forward-looking

variables in the problem of �rms and would unnecessarily complicate the signal-

extraction problem.

2.1.5 The Monetary Authority

The monetary authority lets the money stock Mt grow at rate

12



� lnMt = (1� �m)M0 + �m� lnMt�1 + �m"m;t (2.8)

with "m;t v N (0; 1) and where � stands for the �rst-di¤erence operator, the

degree of smoothness in conducting monetary policy �m is such that �m 2 [0; 1).

M0 is a parameter that represents the long-run average growth rate of money.

Equation (2.8) can be interpreted as a simple monetary policy rule without

feedbacks. The innovations "m;t capture unexpected changes in the growth rate

of money. Finally, it is useful to denote:

mt � lnMt �M0 � t (2.9)

Finally, market clearing for the monetary market requires that:

lnMt = lnYt + lnPt (2.10)

2.1.6 Intermediate-Good Firms

The expected value of intermediate-good �rm i�s pro�t conditional on the history

of signals observed by �rm i at time t, zti, is given by:

E
�
�tQt (Pi;tYi;t �WtNi;t � �I fLi;tg) jzti

�
(2.11)
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where Qt is the time 0 value of one unit of the numeraire in period t to the

representative household. Yi;t is the amount of intermediate goods i demanded

by the �nal-good producers at time t:

Yi;t =

�
Pi;t
Pt

���
Yt (2.12)

Ni;t is the labor input demanded by �rm i at time t. The production function

is

Yi;t = AtN
�
i;t (2.13)

where � 2 (0; 1) and At is the level of technology that follows an exogenous

process:

lnAt = A0 + lnAt�1 + �a"a;t (2.14)

"a;t v N (0; 1). The technology shocks, "a;t, are assumed to be orthogonal to

monetary shocks, "m;t, at all leads and lags. I denote the loans of �rm i at time

t as Li;t. Firms borrow liquidity from the �nancial intermediary in order to pay

their nominal labor costs:

Li;t = WtNi;t (2.15)

They are charged with a �xed fee � for this service. Similar to Woodford (2002),

�rm i�s signals are de�ned as:

14



zi;t =

2664 mt

at

3775+
2664 ~�m 0

0 ~�a

3775 ei;t (2.16)

where zi;t � [zm;i;t; za;i;t]
0, at � lnAt � A0 � t, ei;t � [em;i;t; ea;i;t]

0 and ei;t
iidv

N (0; I2). Note that at and mt are the exogenous state variables of the model

and the signal noises em;i;t and ea;i;t are assumed to be iid across �rms and time.

Furthermore, I assume that the two signals are orthogonal. This may be consid-

ered a strong assumption. After all, �rms might learn about the state of mon-

etary policy mt from observing the signals concerning the state of technology

at (i.e., za;i;t). I �nd, however, that relaxing this assumption of orthogonality

of signals does not substantially a¤ect the main predictions of the estimated

model.

In every period t, �rms observe the history of their signals, zti, and choose

their prices, Pi;t, so as to maximize their expected current pro�ts (2.11) subject

to equations (2.12)-(2.16) by taking the stochastic discount factor, Qt, and the

nominal wage, Wt, as exogenous. The equilibrium laws of motion of all model

variables are assumed to be common knowledge among �rms.

I will log-linearize the price-setting equation around the deterministic steady

state to simplify the signal-extraction issues. Furthermore, it is important to

emphasize that I assume that at time 0 �rms are endowed with an in�nite se-

quence of signals, that is zti = fzi;�g
t
�=�1. This assumption simpli�es the analy-
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sis in that �rms will have the same Kalman gain matrix in their signal-extraction

problem. Furthermore, this matrix can be shown to be time-invariant. This as-

sumption makes the task of solving the model easier.

2.1.7 Detrending, Log-Linear Approximation

The exogenous processes (2.8) and (2.14) induce both a deterministic and a

stochastic trend to all endogenous variables, except labor. I will detrend the

non-stationary variables before log-linearizing the models. It is useful to de�ne

the stationary variables as follows:

yt �
Yt
At
; pi;t �

Pi;t
Pt

(2.17)

In order to log-linearize the model, I take the following steps. First, I de-

rive the price-setting equation by solving �rms�problem (2.11)-(2.16). Second,

I transform the variables according to the de�nitions (2.17). Third, I log-

linearize the resulting price-setting equation around the deterministic steady

state. Fourth, I aggregate the log-linearized price-setting equation across �rms

and obtain the law of motion of price level. Fifth, the law of motion of real

output can be easily obtained from combining the law of motion of price level

and equation (2.10).
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2.1.8 Source of Persistence in the ICKM

Let me introduce some notation. By convention, �rm i�s expectations of order

zero about the state of monetary policy are the state itself, that is,m(0)
t (i) � mt.

Firm i�s �rst-order expectations about the state of monetary policy are denoted

by m(1)
tjt (i) � E [mtjI it ]. Average �rst-order expectations about the state of

monetary policy can be computed as follows m(1)
tjt �

R
m
(1)
tjt (i) di. Firm i�s

second-order expectations are �rm i�s �rst-order expectations of the average

�rst-order expectations, or more concisely m(2)
tjt (i) � E

h
m
(1)
tjt jI it

i
. By rolling

this argument forward I obtain the average j-th order expectation, for any

j � 0;

m
(j)
tjt �

Z
m
(j)
tjt (i) di (2.18)

Moreover, �rm i�s (j + 1)-th order expectations about the state of monetary

policy, for any j � 0, are:

m
(j+1)
tjt (i) � E

h
m
(j)
tjt jI

i
t

i
(2.19)

The speed of adjustment of variables to a shock is a¤ected by the signal-

to-noise ratio associated with that shock and the strategic complementarity

in price-setting. The strategic complementarity in price-setting measures the

extent to which �rms want to react to the expected average price Pt. The

degree of strategic complementarity turns out to be determined by 1��, where
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� � (� + 1)��1=
�
�
�
��1 � 1

�
+ 1
�
. See Appendix A.

In Appendix A, the law of motion of price level is:

lnPt =

" 1X
j=0

(1� �)j �
�
m
(j+1)
tjt � a(j+1)tjt

�#
� ln �y +M0t� A0t (2.20)

where m(j)
tjt and a

(j)
tjt are the average j-th order expectations about the state of

monetary policy and technology at time t and �y is the steady-state value of

the detrended output, yt. From equation (2.10) and equation (2.20) and after

straightforward manipulations, it is easy to derive the law of motion of real

output:

lnYt =

"
mt �

1X
j=0

(1� �)j �m(j+1)
tjt

#
+

1X
j=0

(1� �)j �a(j+1)tjt � ln �y + A0t (2.21)

Note that both price level and output are a¤ected by weighted averages3 of the

in�nite hierarchy of higher-order expectations about the exogenous states.

Equation (2.21) shows that monetary shocks have real e¤ects as long as

they are not fully anticipated by the average higher-order expectations of �rms.

More speci�cally, if the realization of mt is common knowledge among �rms,

then m(j)
t = mt for all j and the terms inside the square brackets cancel out.

3I restrict � 2 (0; 2) so that weights (1� �)j � are absolutely summable.
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This shows that if monetary policy is common knowledge among �rms, money

is neutral in the model.

Equations (2.20)-(2.21) make it clear that the more sluggishly the weighted

averages adjust to shocks, the more persistent the e¤ects of shocks upon price

and output are. The sluggishness of the weighted averages to shocks depends

on the speed of adjustment of higher-order expectations. Sluggish adjustment

of higher-order expectations depends on the signal-to-noise ratios that in�uence

the precision of signals.4 The more imprecise the signals are, the more sluggishly

the average expectations of every order will respond to shocks. Thus, the signal-

to-noise ratios are a source of persistence in the model.

The strategic complementarity (i.e. 1� �) in�uences the persistence of out-

put and in�ation by a¤ecting the relative weights in the weighted averages of

higher-order expectations. More precisely, the larger the strategic complemen-

tarity is, the bigger the weights of the average expectations of higher order are.

The economic intuition is that the degree of strategic complementarity a¤ects

how strongly �rms want to react to prices set by other �rms. The stronger

�rms� reaction to other �rms�pricing behavior is, the more they care about

what other �rms think that other �rms think...about the exogenous state of the

economy. In other words, strategic complementarity is the factor triggering the

4Since, in the ICKM, �rms observe two orthogonal signals, the speed of propagation may
di¤er between the two shocks. Evidence that macroeconomic variables react at di¤erent speed
to monetary and to technology shocks is documented in Paciello (2009).
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mechanism of forecasting the forecasts of others.

It is important to emphasize that the signal structure (2.16) implies that sig-

nals provide less and less information about expectations of higher and higher

order. Therefore, the higher the order of average expectations, the more slug-

gishly they will adjust to shocks. Since larger strategic complementarity raises

the weights associated with the average expectations of higher order in equa-

tions (2.20)-(2.21), it boosts the persistence of output and in�ation responses

to shocks. Thus, for any given degree of information incompleteness, strate-

gic complementarity plays a crucial role in amplifying the persistence in the

propagation of shocks.

2.1.9 Model Solution

When one characterizes rational expectation equilibria (REE) in models with in-

complete information, a typical challenge is dealing with an in�nite-dimensional

state vector (in�nite regress)5 (Townsend, 1983b). The reason is that the laws

of motion of in�nitely many higher-order expectations have to be characterized

in order to solve the model. This task is clearly unmanageable. In my ICKM,

this problem arises when there is strategic complementarity in price-setting (i.e.,

1�� > 0). Yet, here, this issue can be elegantly resolved as in Woodford (2002),

since it is possible to re-de�ne the state vector of the model as a weighted av-

5See Nimark (2009) for a thorough explanation of this problem.
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erage of in�nitely many higher-order expectations.6 This leads to a state space

of very small dimension. A detailed description of the method that numerically

solves the model is in Appendix B. The solution method turns out to be fast and

robust so that I can evaluate the likelihood at several points of the parameter

space. This leads to accurate estimates of model parameters.

2.1.10 The Calvo Model

In the Calvo model all agents (i.e., �nal-good producers, households, the �nan-

cial intermediary, the monetary authority, the intermediate-good �rms) per-

fectly observe the past and current realizations of the model variables. More-

over, the price charged by each intermediate-good �rm is re-optimized only at

random periods. The key (simplifying) assumption is that the probability that

a given �rm will optimally adjust its price within a particular period is indepen-

dent of the state of the model, the current price charged, and how long ago it

was last re-optimized. Speci�cally, only a fraction (1� �p) of �rms re-optimize

their prices, while the remaining �p fraction adjusts them to the steady-state

in�ation ��. The problem of the �rms that are allowed to re-optimize their

prices at time t is:

6Di¤erent methods have been developed to solve dynamic models with incomplete infor-
mation. Following Townsend (1983b), the customary approach of solving this class of models
is to assume that the realizations of states at some arbitrary distant point in the past are
perfectly revealed. Rondina and Walker (2009) have challenged this approach by showing that
such a truncation reveals the entire history of the realizations of states to agents, regardless
of the point of truncation. See Nimark (2008) for a truncation-based method that preserves
the recursive structure.
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max
Pi;t

Et
1X
s=0

�
�sp�

t+sQt+sjt (�
s
�Pi;t �MCt+s)Yi;t+s � �I fLi;t > 0g

�
(2.22)

such that

Yi;t+s =

�
�s�Pi;t
Pt+s

���
Yt+s (2.23)

where Qt+sjt is the marginal utility of a unit of the numeraire at time t + s in

terms of the utility of the representative household at time t, �� is the steady-

state (gross) in�ation rate, andMCt+s stands for the nominal marginal costs in

period t+ s. The price level is given by:

P 1��t =
h
(1� �p)P �(1��)t + �p (��Pt�1)

1��
i

(2.24)

In the Calvo model, the speed of adjustment of variables to shocks is deter-

mined by the size of the Calvo parameter �p and the strategic complementar-

ity parameter, �. I detrend the non-stationary variables and log-linearize the

model around the deterministic steady state. I obtain the standard New Key-

nesian Phillips curve, whose slope, �pc, depends on a function of parameters:

�pc = (1� �p) (1� �p�)�=�p.
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2.2 Empirical Analysis

I �t the ICKM to observations on output and price level. I place a prior distri-

bution on parameters and conduct Bayesian inference. I present the data set,

the measurement equations, the prior distributions and the posterior distribu-

tions for model parameters. I then conduct a Bayesian evaluation of whether

the ICKM provides an accurate description of the propagation mechanism of

monetary shocks to output and in�ation. To do that, I introduce a largely para-

meterized VAR model. I conjecture that if the response of output and in�ation

to monetary shocks implied by the ICKM is similar to the one implied by the

VAR, then the ICKM provides an accurate description of the propagation of

monetary disturbances. From a Bayesian perspective, this conjecture is sensi-

ble as long as the VAR model attains a higher posterior probability than the

ICKM, as pointed out in Schorfheide (2000). I verify that this is indeed true by

comparing the marginal data densities of the ICKM and the VAR.

Finally, I also estimate the Calvo model and compare the response of output

and in�ation to monetary policy shocks implied by this model with that of the

ICKM. This comparison would allow me to assess what the ICK mechanism of

generating persistence adds to or takes away from the more popular mechanism

based on Calvo sticky prices.
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2.2.1 The Data

The data are quarterly and range from the third quarter of 1954 to the fourth

quarter of 2005. I use the U.S. per capita real GDP and the U.S. GDP de�ator

from Haver Analytics (Haver mnemonics are in italics). Per capita real GDP is

obtained by dividing the nominal GDP (GDP) by the population 16 years and

older (LN16N ) and de�ating using the chained-price GDP de�ator (JGDP).

The GDP de�ator is given by the appropriate series (JGDP).

2.2.2 Measurement Equations

Denote the U.S. per capita real GDP, and the U.S. GDP de�ator as Yt; and Pt,

respectively. The measurement equations are given by equations (2.20)-(2.21).

The Kalman �lter can be used to evaluate the likelihood function of the

models. Yet, the �lter must be initialized and a distribution for the state vector

in period t = 0 has to be speci�ed. As far as the vector of stationary state vari-

ables is concerned, I use their unconditional distributions. I cannot initialize the

vector of non-stationary state variables (i.e. mt; at) in the same manner, since

their unconditional variance is not de�ned. I follow the approach introduced

by Chang, Doh, and Schorfheide (2007), who propose to factorize the initial

distribution as p (s1;t) p (s2;t), where s1;t and s2;t are the vector of stationary and

non-stationary variables, respectively. They suggest setting the �rst compo-

nent p (s1;t) equal to the unconditional distribution of s1;t, whereas the second
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component p (s2;t) is absorbed into the speci�cation of the prior.

2.2.3 Prior Distributions

Given the observables presented in section 2.2.1, it is easy to show that the Frisch

labor elasticity, �, the demand elasticity, �, and the technology parameter, �,

cannot be separately identi�ed in the log-linearized ICKM. Nonetheless, I can

estimate the parameter � that a¤ects the strategic complementarity in price-

setting. Furthermore, the parameter, �, and the discount factor, �; drop out

when I log-linearize the ICKM7. After log-linearization, the set of identi�able

parameters in the ICKM is:

�I � (�m; A0;M0; �; �m; �a; ~�m; ~�a) (2.25)

Table 2.1 reports the prior medians and 90% credible intervals of the parameters

of the ICKM.

Since I do not have data on the degree of strategic complementarity8 and the

parameter � is very crucial for the persistence in the model (see section 2.1.8),

I will set a broad prior for this parameter with the aim of learning its value

from the likelihood function. If the Frisch labor-supply elasticity, �, is equal to

7See appendices A and B.
8There are studies (e.g., Rotemberg andWoodford, 1997) that quantify the degree of strate-

gic complementarity in the U.S. However, they use a data set that is likely to be collinear to the
one used in the paper. Using such information to formulate the prior would be controversial.
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Table 2.1: Prior Distributions

Name Range Density Median 90% Interval
�m [0; 1) Beta 0:50 [0:17; 0:0:82]
A0 R Normal 0:00 [�0:41; 0:41]
M0 R Normal 0:00 [�0:41; 0:41]
� [0; 1) Beta 0:41 [0:21; 0:60]

100�m R+ InvGamma 2:0 [0:43; 12:87]
100�a R+ InvGamma 0:7 [0:51; 0:87]
100~�m R+ InvGamma 5:01 [2:12; 7:91]
100~�a R+ InvGamma 1:06 [0:24; 1:87]

�pc R+ Gamma 0:12 [0:00; 0:22]
� [0; 1) Beta 0:99 [0:98; 0:99]

0:5 (Ríos-Rull, Schorfheide, Fuentes-Albero, Kryshko, and Santaeulàlia-Llopis,

2009) and the technology parameter, �, is equal to 0:65 (Cooley and Prescott,

1995), then the 90% credible interval for the parameter � includes mark-ups

ranging from 5% to 23%.

Market clearing for the monetary market implies that the stock of money

Mt is equal to nominal output. See equation (2.10). Hence, the autoregressive

parameter of monetary policy, �m, the standard deviation of the monetary policy

shock, �m, and the trendM0 can be estimated by using presample observations

of the (detrended) U.S. per capita real GDP and the (detrended) U.S. GDP

de�ator. This presample data set is obtained from Haver Analytics and ranges

from the �rst quarter of 1949 to the second quarter of 1954.

The prior of the standard deviation of the technology shock, �a, is centered

at 0:007. This value is the standard deviation of the Solow residual and is

standard in the real-business cycle literature (Kydland and Prescott, 1986).
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In absolute terms, I set the priors for standard deviations of signal noise, ~�m,

and ~�a, so as to ensure that signals are quite informative about the business-

cycle-frequency variations of model variables.9 In relative terms, these prior

speci�cations are chosen so as to make the two signals equally informative about

the corresponding exogenous state variables.10

Table 2.2 presents the implied prior distributions for the strategic comple-

mentarity, 1��, and the signal-to-noise ratios, �m=~�m and �a=~�a. As discussed

in section 2.1.9, these parameter values crucially in�uence the persistence in the

model. Priors for these parameters are very uninformative as I want to learn

their values from the likelihood. I �x the discount factor � is �xed so as to

match the long-run average real interest rate.

Table 2.2: Implied Prior Distributions (ICKM)
Name ICKM

Median 90% Interval
1� � strategic complementarity 0:59 [0:40; 0:79]
�m=~�m signal-to-noise ratio MP 0:53 [0:06; 3:15]
�a=~�a signal-to-noise ratio tech. 0:95 [0:17; 1:88]

As far as the log-linearized Calvo model is concerned, the parameter set is:

�C � (�m; A0;M0; �m; �a; �pc; �) (2.26)

9We achieve that by setting the prior medians of the coherences between the process of
the state variables, in �rst di¤erence, and their corresponding signals such that these are not
smaller than 0:50 at business-cycle frequencies (3-5 years). The coherence ranges from 0 to 1
and measures the degree to which two stationary stochastic processes are jointly in�uenced
by cycles of a given frequency (Hamilton, 1994).
10I quantify the amount of information that signals convey about the two exogenous states

as in Sims (2003). The formal de�nition of this measure is provided in section 4.1.
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In Table 2.1 the priors for these parameters are reported. I use the same prior

distributions for those parameters that are common to the ICKM. My priors

re�ect the beliefs that the slope of the Phillips curve, �pc, ranges from 0:00

to 0:22. This range includes values that are supported by several studies that

estimate the slope of the Phillips curve, as surveyed by Schorfheide (2008).

2.2.4 Posterior Distributions

Given the priors and the likelihood functions implied by the ICKM and the

Calvo model, a closed-form solution for the posterior distributions for para-

meters cannot be derived. However, I am able to evaluate the posteriors nu-

merically through the random-walk Metropolis-Hastings algorithm. How these

procedures apply to macro DSGE models is exhaustively documented by An

and Schorfheide (2007). I generate 1; 000; 000 draws from the posteriors. The

posterior medians and 90% credible sets are shown in Table 2.3.

The coe¢ cient (1� �) controls the degree of strategic complementarity in

price-setting. As shown in section 2.1.9, this coe¢ cient is very important, since

it a¤ects the persistence of the impulse response functions (IRFs) of output and

price level to shocks. The prior median of strategic complementarity (1� �)

was set at 0. Bayesian updating points toward more strategic complementarity

in price-setting. This ampli�es the persistence in the mechanism of shock prop-

agation for any �nite values of the signal-to-noise ratios. Figure 2-1 compares
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Table 2.3: Posterior Distributions
ICKM Calvo Model

Name Median 90% Interval Median 90% Interval
�m 0:34 [0:24; 0:45] 0:24 [0:15; 0:33]
100A0 0:45 [0:36; 0:55] 0:43 [0:11; 0:74]
100M0 1:34 [1:18; 1:49] 1:34 [1:20; 1:48]
� 0:32 [0:13; 0:50] 1:00 [0:00; 0:00]

100�m 0:88 [0:81; 0:95] 0:89 [0:82; 0:97]
100�a 0:88 [0:70; 1:04] 2:66 [2:04; 3:36]
100~�m 9:04 [4:97; 12:77] � �
100~�a 1:36 [0:69; 2:02] � �
�pc � � 0:01 [0:01; 0:02]
� � � 0:99 [0:99; 0:99]

1� � 0:69 [0:50; 0:87] � �
�m=~�m 0:10 [0:06; 0:14] � �
�a=~�a 0:66 [0:44; 0:94] � �

the prior and the posterior distributions11 for the strategic complementarity

(1� �).

It is apparent that the Bayesian updating clearly pushes the strategic com-

plementarity toward a larger value than what is conjectured in the prior. The

posterior median of � is 0:32. This estimate is plausible. This number is con-

sistent with a Frisch labor-supply elasticity, �, of 0:5 (Ríos-Rull et al., 2009), a

technology parameter, �, of 0:65 (Cooley and Prescott, 1995), and a mark-up

of about 9:5% (Woodford, 2003 and Rotemberg and Woodford, 1997).

Moreover, the posterior median of the signal-to-noise ratio regarding the

state of monetary policy, ~�m=�m, is large relative to that associated with the

state of technology, ~�a=�a. The signal-to-noise ratio concerning the state of

11They are non-parametric estimates of the prior and posterior distributions based on the
draws obtained from the simulator.
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Figure 2-1: Prior and Posterior Distribution for the Degree of Strategic Com-
plementarities

monetary policy is smaller by a factor of six.

As far as the Calvo model is concerned, the posterior median of the slope

of the Phillips curve, �pc is 0:012. The 90% posterior credible set ranges from

0:006 to 0:019. This number is in line with previous studies as surveyed by

Schorfheide (2008).

2.2.5 MDD-Based Comparisons

The essay addresses the question of whether the ICKM provides an accurate

description of the propagation mechanism of monetary shocks to output and

in�ation. To do that, I estimate a largely parameterized VAR model and obtain
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its IRFs of output and in�ation to monetary shocks. I then compare these IRFs

to those of the estimated ICKM. In this comparison, the VAR IRFs work as a

benchmark. From a Bayesian perspective, this comparison is sensible as long

as the VAR model attains a higher posterior probability than the ICKM, as

pointed out in Schorfheide (2000). In this section, I verify that this is indeed

true by comparing the marginal data densities (MDDs) of the ICKM and the

VAR (Kass and Raftery, 1995, Schorfheide 2000, and An and Schorfheide, 2007).

Let me denote the ICKM asMI and the data used for estimation as ~Y . The

MDD of the ICKM, P
�
~Y jMI

�
, is:

P
�
~Y jMI

�
=

Z
L
�
�I j ~Y ;MI

�
p (�I jMI) d�I

where L (�) stands for the likelihood function, and p (�j�) denotes the posterior

distribution, and �I is the parameter set of the ICKM, as de�ned in 2.2.3. I use

Geweke�s harmonic mean estimator (Geweke, 1999) to approximate the MDDs

of the ICKM.

I consider a VAR(4):

~Yt = �0 +�1
~Yt�1 +�2

~Yt�2 +�3
~Yt�3 +�4

~Yt�4 + �t (2.27)

where ~Yt = [lnYt; lnPt]
0 and �� � E (�t�0t). I �t this VAR(4) to the data set

presented in section 2.2.1. The Minnesota random walk prior (Doan, Litter-
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man, and Sims, 1984) is implemented in order to obtain a prior distribution

for the VAR parameters. Moreover, I obtain 100; 000 posterior draws through

Gibbs sampling. To compute the MDD of the VAR model, I apply the method

introduced by Chib (1995).

The log of the MDDs of the VAR and that of the ICKM are reported in

Table 2.4. The VAR outperforms the ICKM in �tting the data. This result

is not surprising, since the ICKM is very stylized compared to this statistical

model. From a Bayesian perspective, this result legitimates the use of the VAR

IRFs as a benchmark for studying whether the estimated ICKM can accurately

explain the propagation of monetary shocks.

Table 2.4: Logarithms of Marginal Datat Densities (MDDs)
Models

ICKM Calvo VAR(4)
log MDD 1548:70 1529:38 1727:04

Moreover, I also compute the MDD of the Calvo model and report the re-

sult in Table 2.4. The ICKM has a larger MDD than the Calvo model. This

implies that the ICKM �ts the data better than the Calvo model. From this

result, it follows that the ICKM is better than the Calvo model in approximat-

ing the true probability distribution of the data generating process under the

Kullback-Leibler distance (Fernández-Villaverde and Rubio-Ramírez, 2004). It

is important to emphasize that the fact that the Calvo model has one parameter

less than the ICKM is not problematic, since MDD-based comparisons penalize
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models for their number of parameters.

2.2.6 IRF-Based Comparisons

In order to identify the monetary shock in the VAR, I use the restriction that

monetary policy has no long-run real e¤ects (e.g., Blanchard and Quah, 1989).

Note that this identi�cation scheme is consistent with both the ICKM and the

Calvo model.

The IRFs of real output and in�ation to a monetary shock implied by the

VAR, the ICKM, and the Calvo model are plotted in Figures 2-2 and 2-3,

respectively. The size of the shock is normalized so that the reaction of variables

upon impact is the same in all models. As also found by other studies (e.g.,

Christiano et al., 2005), the VAR-based IRFs document highly persistent and

hump-shaped e¤ects of monetary disturbances upon output and in�ation.

The Calvo model does not seem to be well-suited to accounting for the

hump-shaped pattern of the VAR response, whereas the ICKM appears to be

successful in this respect. Moreover, it is worthwhile noticing that the IRF of

real output implied by the ICKM peaks three quarters after the occurrence of

the shock, exactly as suggested by the benchmark VAR. On the contrary, the

Calvo model predicts that the largest response of real output arises two quarters

after the occurrence of the shock.

Furthermore, the VAR IRF emphasizes the presence of delayed e¤ects of
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Figure 2-2: Impulse Response Function MP => Real GDP

monetary shocks on in�ation, which do not seem to be quite captured by the

two DSGE models. The IRF of in�ation implied by the VAR reaches its peak

after four quarters, while, according to the ICKM, this happens after three

quarters.

The estimated ICKM - albeit very stylized - successfully captures the per-

sistent and hump-shaped response of output and in�ation to monetary shocks

implied by the broadly parameterized VAR. This leads me to conclude that the

estimated ICKM provides an accurate description of the propagation mechanism

of monetary shocks.
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Figure 2-3: Impulse Response Function MP => In�ation

2.3 Concluding Remarks

I develop a DSGE model with imperfect common knowledge in the sense of

Woodford (2002). The model features two aggregate shocks: a monetary pol-

icy shock and a technology shock. I obtain Bayesian estimates for the model

parameters. I �nd that even though the model is very stylized, its impulse re-

sponse functions of real output and in�ation to a monetary policy shock closely

match those implied by a largely parameterized VAR. Quite remarkably for

such a stylized model, output and in�ation react in a hump-shaped and persis-

tent fashion to monetary shocks, as is widely documented by other in�uential

empirical studies (e.g., Christiano et al., 1999). Nonetheless, the estimated
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signal-to-noise ratio concerning monetary policy is smaller than that of technol-

ogy by a factor of six. This implies that �rms have far less information about

the state of monetary policy. This begs the question of whether such a �nding

is plausible or not. In the next chapter, I will shed some light on this issue.

36



Chapter 3

Optimal Allocation of Attention

In the �rst chapter, I show that a DSGE model with information frictions á

la Woodford (2002) can account for the highly persistent e¤ects of monetary

disturbances that are observed in the data. Nonetheless, the estimated signal-

to-noise ratio about monetary policy turns out to be smaller than that about

technology by a factor of six. The signal-to-noise ratio determines the accu-

racy of a signal and, hence, how much information the signal conveys to those

who receive it. Thus, this �nding raises a question: is it plausible that �rms

acquire so little information about monetary policy? The answer to this ques-

tion is no. I reach this conclusion by augmenting the model so as to allow

�rms to optimally choose the signal-to-noise ratios, subject to a constraint that

sets an upper-bound to the overall precision of the signals. This constraint is

widely used in the literature of rational inattention and is termed information-
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processing constraint (Sims, 2003 and Máckowiak and Wiederholt, 2009). It

speci�es the rate at which �rms can substitute pieces of information between

the two shocks of the model (i.e., monetary policy shock and technology shock).

Hence, the information-processing constraint de�nes a schedule along which

�rms can choose the optimal signal to noise ratios. I will call this augmented

ICKM rational inattention model.

I �nd that the �rms�marginal value of the information about monetary

shocks is much higher than that about technology shocks in the model I es-

timated in the previous chapter. Furthermore, when I solve for the optimal

signal-to-noise ratios, �rms �nd it optimal to acquire more information about

monetary shocks than about technology shocks. These results admit two al-

ternative interpretations. First, the signal-to-noise ratio relative to monetary

policy seems to be implausibly small in the estimated ICKM. Second, the likeli-

hood suggests that the rate at which �rms are allowed to substitute information

between the two shocks in rational inattention models may be wrong.

In the �rst section, I discuss how to construct the signal-to-noise schedule

that is consistent with the information-processing constraint used in the litera-

ture of rational inattention. In the second section, �rms�problem of allocating

their attention is presented. In the third section, I compare the marginal rates

of pro�t in the estimated ICKM. and in the rational inattention model. Finally,

I show the results of some robustness check.
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3.1 Signal-to-Noise Schedule

Rational-inattention models rely on an information-theoretic measure to quan-

tify the amount of processed information, as proposed by Sims (2003). This

measure quanti�es the reduction of uncertainty that occurs after having ob-

served the last realization of signals. More formally,

� � H
�
mt; atjzt�1m;i ; z

t�1
a;i

�
�H

�
mt; atjztm;i; zta;i

�
(3.1)

where H (�) denotes the conditional entropy, which measures the uncertainty

about a random variable, and the history of the two signals observed by �rm i

at time t is denoted by ztm;i and z
t
a;i. The conditional entropy is de�ned as

H
�
mt; atjz�m;i; z�a;i

�
=

Z Z
log2

�
p
�
mtatjz�m;i; z�a;i

��
p
�
mtatjz�m;i; z�a;i

�
dmtdat

where p
�
mtjz�1;i

�
is the conditional probability density function of mt.

Since signals and exogenous states are orthogonal, one can show that equa-

tion (3.1) can be re-written as

� = �m + �a (3.2)

where �m and �a stand for the information �ows regarding monetary policy and
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technology, respectively, and are de�ned as:

�m � H
�
mtjzt�1m;i

�
�H

�
mtjztm;i

�
�a � H

�
atjzt�1a;i

�
�H

�
atjzta;i

�

Here, the unit of measurement of the information �ows �, �m, �a is the bit.

To de�ne the signal-to-noise schedule, let me introduce the mappings gm and

ga that link the signal-to-noise ratios and the information �ows as follows:

�m = gm (�m; ~�m;�) ; �a = ga (�a; ~�a) (3.3)

where � is a vector of autocorrelations of mt. The mapping ga can be analyti-

cally derived, while the mapping gm can be computationally approximated. See

Appendix C.

For any given �, �m, �a, and �, the signal-to-noise schedule is de�ned by

equations (3.2) and (3.3). In other words, the signal-to-noise schedule is de�ned

as a set of pairs of signal-to-noise ratios (�m=~�m; �a=~�a) that imply the same

overall amount of processed information, �.
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3.2 The Optimal Allocation of Attention

In period zero,1 �rms allocate their available attention2 by solving:

max
�m;�a

E

" 1X
t=1

�t�̂t
�
p̂�i;t; p̂t; ŷt; q̂t

�
jz0i

#
; (3.4)

st

lnP �i;t � E
�
(1� �) lnPt + �mt � �atjzti

�
(3.5)

zi;t =

2664 mt

at

3775+
2664 ~�m 0

0 ~�a

3775 ei;t (3.6)

~�m = g
�1
m (�m; �m; �m) ; ~�a = g

�1
a (�a; �a) (3.7)

�m + �a = �; any t (3.8)

where �̂t (�) is the log-quadratic approximation of Qt�t, where �t is the period

pro�t function (2.11), p̂�i;t = ln
�
P �i;t=Pt

�
, q̂t is the log deviations of qt = MtQt

from its value at the deterministic steady state, and ei;t
iidv N (0; I2). The

1Firms are not allowed to reconsider the allocation of attention in any period after t = 0.
Since �rms�period pro�t function is quadratic and all shocks are Gaussian, it can be shown
that this assumption does not give rise to a problem of time inconsistency of �rms�policies.
See Máckowiak and Wiederholt (2009).

2Since [1] the period pro�t function is quadratic, [2] all shocks are Gaussian and [3] �rms
are assumed to have received an in�nite sequence of signals at time t = 0, the objective
function of the allocation-of-attention problem can be shown to be the same across �rms. See
Máckowiak and Wiederholt (2009). Thus, every �rm will �nd it optimal to choose the same
allocation of attention, (�m; �a). These three conditions are also su¢ cient to obtain that the
information �ows, �m and �a, do not vary over time in the information-processing constraint
(3.8).
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model economy is assumed to be at its deterministic steady state in period 0.

Moreover, I assume that �rms have received an in�nite sequence of signals at

time 0. Note also that the mappings g�1m (�) and g�1a (�) in equation (3.7) are the

inverse of the functions (3.3). The constraint (3.8) is the information-processing

constraint and sets an upper-bound to the overall amount of information �rms

can process in every period t.

In this problem, �rms decide how to allocate their overall available attention,

which is quanti�ed by the parameter �, between observing monetary policy and

technology. Solving the allocation-of-attention problem (3.4)-(3.8) delivers the

optimal allocation of attention (��m; �
�
a). Note that when �rms decide how to

allocate their attention, they are aware that their choice will a¤ect their optimal

price-setting policy (3.5) in any subsequent periods.

3.3 Marginal Rate of Pro�t

The marginal rate of pro�t is de�ned as:

mrp � @�=@�m
@�=@�a

where � is the sum of discounted pro�ts:

� � E
" 1X
t=1

�t�̂t
�
p̂�i;t; p̂t; ŷt; q̂t

�
jz0i

#
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It is very simple to see that the mrp at the optimal allocation of attention

(��m; �
�
a) is equal to unity. Interestingly, enough, this result does not require to

set the parameter values in the rational inattention model. In the estimated

ICKM, however, mrp may be di¤erent from one. The reason is that the esti-

mated allocation of attention (�m; �a) may di¤er from the optimal one (��m; �
�
a).

In fact, when one calibrates the parameters of the ICKM by using the poste-

rior medians, one �nds that the mrp in the ICKM is 47:19. This number is

hugely bigger than unity. In the estimated ICKM, �rms are willing to trade

more than 47 bits of information about technology to get one bit of information

about monetary policy. This number is too big to reconcile itself to the rational-

inattention theory. This result leads me to conclude that the estimated ICKM

implies that �rms acquire implausibly too little information about monetary

policy.

It is worthwhile noticing that the �nding above is a¤ected by the value of the

rate of substitution embedded into the information-processing constraint (3.8).

The signal-to-noise ratio picked by the likelihood would be consistent with an

information-processing constraint of the following type:

�m +
1

47:19
�a = � (3.9)

Therefore, one could also interpret the �nding above as evidence that the rate
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of substitution implied by the information-processing constraint (3.8) is incon-

sistent with the data.

3.4 A Robustness Check

By using tools provided by the rational-inattention theory, I �nd that �rms

acquire implausibly little information about monetary policy. Now the question

is: does the ICKM model really need to make such an implausible prediction to

match the persistent adjustment of variables to monetary shocks? To answer

this question, I compare the impulse response functions of output and in�ation

to monetary shocks at the optimal allocation of attention, (��m; �
�
a), and at the

estimated allocation of attention, (�m; �a). The goal is to assess to what extent

the persistence of output and in�ation falls if �rms are allowed to optimally

choose their allocation of attention as modelled in the problem (3.4)-(3.8).

I will �rst compute the estimated information �ows, (�m; �a), and the es-

timated overall amount of information processed, �, in the ICKM. Given the

mappings in (3.3) and the prior (posterior) draws for the parameter of the

ICKM, �I , I approximate the moments of the prior (posterior) distribution for

the information �ows �m and �a through standard Monte Carlo methods. Table

3.1 shows the prior and posterior medians for those parameters and their 90%

credible intervals in the estimated ICKM. The posterior medians of �m and �a

are 0:10 bits and 0:41 bits, respectively. The posterior median of the overall
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amount of information processed by �rms per quarter, �, is 0:51 bits.3 Figure

3-1 compares the prior and the posterior distributions4 of the fraction of the

overall �rms�attention paid to the technology shocks, that is, �a= (�m + �a).

Figure 3-1: Prior and Posterior Distribution for the Allocation of Attention to
Technology

This graphical comparison emphasizes that, starting from a very agnostic

prior for the allocation of attention, the posterior distribution attributes a large

portion of �rms�attention to technology (the posterior median is about 80%).

Hence, according to the data, the adjustment of output and in�ation to mon-

etary shocks is rather slow, as con�rmed by the IRFs in Figures 2-2 and 2-3.

3This is obtained by using the prior and posterior draws for �m and �a as long as equation
(3.2).

4They are non-parametric estimates of the prior and posterior distributions based on the
draws obtained from the simulator.
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Furthermore, in Figure 3-1 the posterior appears to be far tighter than the prior,

suggesting that the data are quite informative about the proportion of overall

attention paid to technology: �a= (�m + �a).

Table 3.1: Implied Prior and Posterior Distributions
Prior

Variables Descriptions Median 90% Interval
�m information �ow MP 0:54 [0:08; 1:87]
�a information �ow tech. 0:66 [0:12; 1:21]
� = �m + �a overall level of attention 1:31 [0:40; 2:72]
�a

�m+�a
allocation of attention to tech. 0:53 [0:15; 0:83]

Posterior
Variables Descriptions Median 90% Interval
�m information �ow MP 0:10 [0:06; 0:15]
�a information �ow tech. 0:41 [0:26; 0:60]
� = �m + �a overall level of attention 0:51 [0:34; 0:75]
�a

�m+�a
allocation of attention to tech. 0:80 [0:74; 0:86]

Now I have to solve the problem (3.4)-(3.8) for the optimal allocation of

attention (��m; �
�
a). Yet, I need �rst to pin down the information-processing

constraint (3.8). To do that, I need to �x one degree of freedom: the size of

the parameter �. I calibrate the value of this parameter by using its estimated

value in Table 3.1, that is � = 0:51 bits. I then solve5 the problem (3.4)-

(3.8) for the optimal allocation of attention and obtain that ��m is equal to 0:33

5The optimal allocation of attention can be computed in four steps. First, I guess the values
of the information �ows �m and �a and use the mappings in (3.7) to obtain the implied noise
variances, ~�m and ~�a. Second, given this guess, I numerically characterize the law of motion
of the price level exactly as I do when solving the ICKM (see section 2.9). Third, I numerically
solve the problem (3.4)-(3.8) to obtain the optimal allocation of attention, k�m and �

�
a. Fourth,

I check whether k�!� ��!� �k < ", for vectors �!� � (�m; �a)0 and �!� � � (��m; ��a)
0, with " > 0

and small. If this criterion is not satis�ed, I do another loop by setting the guess �!� = �!� �.
Otherwise, stop.
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and ��a is equal to 0:22. These �ndings show that the estimated allocation of

attention (�m; �a) (see Table 3.1) is very di¤erent from the optimal one (��m; �
�
a).

The optimal allocation of attention implies that �rms pay more attention to

monetary policy than to technology.

Figures 3-2 and 3-3 show the IRFs of output and in�ation to a monetary

shock implied by the ICKM at the estimated allocation of attention (EAA) and

at the optimal allocation of attention (OAA). These �gures also show the same

IRFs implied by the benchmark VAR, analyzed in section 2.2.6. Output and

in�ation adjust very fast to monetary policy shocks at the optimal allocation of

attention. This is not consistent with what is documented by the VAR. Hence,

I conclude that the ICKM requires that �rms acquire implausibly little infor-

mation about monetary policy in order to generate the persistent propagation

of monetary disturbances that is found in the data.

3.5 Conclusion

In this chapter, I argue that the estimated model predicts that �rms acquire

little information about monetary policy shocks to an extent that is not plau-

sible. I draw this conclusion from evaluating a simpli�ed rational-inattention

model à la Sims (2003). This model is an imperfect-common-knowledge model

in which �rms are allowed to choose the optimal information �ows about the

two shocks along a schedule that is commonly used in the literature of ratio-
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IRF: Money shock => Real output
(% deviations of output from its balanced-growth path)
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Figure 3-2: IRF: Money shock => Real Output

nal inattention. I show that the marginal value of information about monetary

policy is much higher than that about technology at the point on the schedule

predicted by the estimated imperfect-common-knowledge model. Furthermore,

I �nd that the imperfect-common-knowledge model requires that �rms acquire

implausibly little information about monetary policy to generate the persistent

propagation of monetary disturbances observed in the data. This result calls for

further research on the substitution rate of information that �rms actually face

when they allocate their attention. For instance, �nding evidence that can help

quantifying the relative di¢ culty of learning about di¤erent shocks for �rms

would be very useful.

Other leading studies based upon rational inattention models (e.g., Máckowiak

and Wiederholt 2009 ) put restrictions upon the choice set of signal processes so
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IRF: Money shock => Inflation
(deviations from balanced-growth path in units of percentage points at a quarterly rate)
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Figure 3-3: IRF: Money shock => In�ation

that the optimal signals are Gaussian and orthogonal to each others. This re-

striction leads to a rate of substitution that is equal to one. This study suggests

that this rate may not be sensible from an empirical perspective.

Finally, it is worthy noticing that in full-�edge rational inattention mod-

els (e.g., Sims, 2003, 2006) agents choose the stochastic process of the signal

under no parametric restrictions. In such models, optimal signals might not

be orthogonal and Gaussian. Hence, the rate of substitution is not said to be

equal to one and depends on the nature of the optimal signal. While this may be

seen as a possible resolution of the discrepancy between the likelihood estimates

and model predictions, this approach has the shortcoming of complicating the

economic interpretation of the implied rate of substitution.
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Chapter 4

Monetary Policy and Beliefs

That monetary policy in�uences output and in�ation by a¤ecting agents�ex-

pectations has come to a growing consensus among scholars and policy makers

(Woodford, 2005, Morris and Shin, 2007). Michael Woodford writes:

Central banking is not like steering an oil tanker, or even guiding a space-
craft, which follows a trajectory that depends on constantly changing factors, but
that does not depend on the vehicle�s own expectations about where it is head-
ing. Because the key decisionmakers in an economy are forward-looking, central
banks a¤ect the economy as much through their in�uence on expectations as
through any direct, mechanical e¤ects of central bank trading in the market for
overnight cash.

The aim of this chapter is to quantitatively assess the relevance of this new

transmission channel of monetary policy that relies on a¤ecting agents�beliefs.

I develop a DSGE model where agents take decisions under incomplete and

disperse information about aggregate state variables or fundamentals (e.g., in-

50



�ation and output). The model economy is populated by six classes of agents:

households, intermediate goods �rms, �nal goods producers, a monetary author-

ity (or central bank) and a government. There are three aggregate shocks: a

technology shock, a monetary-policy shock, and a government spending-shocks.

The monetary authority perfectly observes the history of aggregate shocks and

sets its monetary policy instrument (i.e., interest rate) by following a Taylor-

type reaction function. For tractability, I shall assume that households, �nal

goods producers, and government have perfect information. Each intermediate

goods �rm lives on an island. No information can be traded among islands.

Firms face nominal rigidities á la Calvo: there exists a lottery that establishes

which �rms are allowed to re-optimize their prices. Those �rms that are allowed

to re-optimize their prices have to forecast the dynamics of future marginal costs

that depend on output gap and in�ation. They perform this forecast by observ-

ing last period�s output and in�ation, the current island-speci�c technology

shock, and the current interest rate set by the central bank.

Firms observe the history of island-speci�c technology shocks but they do

not observe any of the aggregate shocks. The island-speci�c technology shock

is correlated with the aggregate technology shock. Hence, the island-speci�c

technology shocks are private signals that convey information about the current

aggregate technology. As a result of the idiosyncratic nature of these signals,

�rms�expectations about in�ation and output di¤er across islands.
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Firms also know the monetary policy reaction function and perfectly observe

the interest rate set by the monetary authority in every period. The salient

feature of this model is that the monetary authority holds superior information

about the aggregate shocks than �rms. In such a setup, the monetary policy

instrument works as a public signal that conveys novel information to �rms

about the aggregate shocks and can in�uence output and in�ation by a¤ecting

�rms�expectations.

An appealing feature of the model is that strategic complementarities in

price settings and disperse information lead to the inertial behavior of in�ation.

In the model, �rms face strategic complementarities in price-setting: they �nd it

optimal to raise (cut) their prices when the average price increases (decreases).

Private information is introduced into the price setting problem of the �rm

through the island-speci�c technology shocks that work as private signals. The

optimal price of an individual good depends positively on a �rm�s own marginal

cost and the price chosen by other �rms, but individual �rms cannot observe the

marginal cost of other �rms and therefore do not know the current price chosen

by other �rms with certainty. This set up may be referred to as �rms having

imperfect common knowledge. As shown in chapter 1, in such an environment, a

forecasting-the-forecasts-of-others type of problem arises and generates sluggish

responses of output and in�ation to nominal disturbances.

Furthermore, the model can be shown to be nested within a standard New
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Keynesian DSGE model where �rms are perfectly informed. If one assumes

that �rms�information sets are complete (i.e., �rms also observe current output

and in�ation), the dispersed information model boils down to a prototypical

three-equation New Keynesian DSGE model, where monetary disturbances af-

fect output by in�uencing the intertemporal allocation of consumption. This

traditional transmission channel of monetary policy still exists in the dispersed

information model. Yet, in the dispersed information model, there is another

transmission channel through which monetary impulses a¤ect model variables.

This channel relies on the role of interest rate as a public signal. More precisely,

changes in the interest rate are interpreted by �rms as realizations of a public

signal that provides unanticipated information on the dynamic of marginal costs.

Quite importantly, the nestedness of the dispersed information model within a

standard New Keynesian DSGE model allows me to assess the signi�cance of

this new transmission channel by running simple counterfactuals.

4.1 A Brief Overview of the Literature

From a theoretical perspective, the idea that publicly observed policy can coor-

dinate agents�expectations has been recently explored by the literature of global

games (Morris and Shin, 2003a). Morris and Shin (2003b) and Amato and Shin

(2003, 2006) derive normative implications for incomplete-information settings

and focus on the welfare e¤ects of disclosing public information. Hellwig (2002)
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derives impulse responses to a large range of shocks for an economy with mo-

nopolistic competition and incomplete information. These partial equilibrium

models, however, are too stylized to be used for empirically assessing central

banks�role for coordinating expectations.

My model is built on Nimark (2008) who introduces a model where �rms

hold private information about the dynamics of their future marginal costs, and

face both strategic complementarities in price setting and nominal rigidities.

The nice feature of this model is that the supply side of this economy can be

analytically worked out and turns out to be characterized by an equation that

resembles the standard New-Keynesian Phillips curve. One shortcoming of this

model is that the monetary policy framework is too stylized to have a chance to

capture the complexity of modern monetary policy practices. Furthermore, the

role of monetary policy in coordinating agents�expectations is completely absent

in that central bank�s actions only convey redundant information to agents.

The model that is presented in this chapter is also related to Lorenzoni

(forthcoming), who studies optimal monetary policy in a model where aggregate

�uctuations are driven by the private sector�s uncertainty about the economy�s

fundamentals. Information on aggregate productivity is dispersed across agents

and there are two aggregate shocks: a standard productivity shock and a noise

shock a¤ecting public beliefs about aggregate productivity. The nature of the

latter shock is related to public news about technological advances, aggregate
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statistics, and information re�ected in stock market prices and other �nancial

variables. The central bank does not perfectly observe the noise shocks. The

central question addressed by Lorenzoni (forthcoming) is whether the monetary

policy should accommodate those noise shocks that work as a coordination

device of agents�expectations.

4.2 The Model

There is a continuum of islands, indexed by j 2 (0; 1). In every island a con-

tinuum of households, indexed by i 2 (0; 1), lives along with one intermediate

goods �rm. There is a centralized entity that conducts monetary policy: the

central bank. Another centralized entity, the government, carries out the �scal

policy. Perfectly competitive �nal goods producers also populate the economy.

Households consume the �nal good and supply labor to the �rm located in the

same island. It is assumed that households cannot ship their labor services to

�rms that are located in other islands. A Calvo lottery establishes which islands

are allowed to re-optimize their prices. The outcome of the Calvo lotteries is

common knowledge among agents.

There are aggregate shocks and island speci�c shocks that hit the model

economy. The aggregate shocks are: a technology shock, a monetary-policy

shock, and a government-spending shock. The aggregate shocks can be decom-
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posed into a persistent and white noise component1. Every of these shocks is

orthogonal to others at all leads and lags. Island-speci�c shocks include the

island-speci�c technology, Aj;t, that determines the level of technology in the

island j at time t, and the outcome of the Calvo lottery for price-optimization.

The former shock is correlated with the aggregate technology shock. Both

island-speci�c shocks are orthogonal to each other at all leads and lags.

Any period t is divided into three stages. At stage 0 (t; 0), the market for

state-contingent claims opens and closes. At stage 1 (t; 1), island-speci�c shocks

realize, households and �rms observe island-speci�c shocks, and �rms set their

prices. At stage 2 (t; 2), state-contingent claims are settled and households learn

the state of the economy. At this stage, households choose consumption, money

holdings, bonds and their labor supplies. The �scal authority decides how much

to consume. Final goods producers demand intermediate goods across islands

and use them as inputs to produce the �nal good to be sold to the households

and to the government. Intermediate goods �rms hire labor and produce so as

to deliver the demanded quantity of their good at the price they set.

The market for state-contingent claims has three important features: �rst,

households can trade in this market only at the stage 0. Second, the claims

traded in the market pay out the numeraire at the stage 2. Hence, these claims

can be made contingent to the observed states at the stage 2. Third, �rms are

1Monetary shocks are decomposed into an in�ation-targeting shock and a white noise shock
to the Taylor rule.
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not allowed to trade these claims.

The market for state-contingent claims ensures that the wealth distribution

across islands is degenerate. Furthermore, this market also plays an informative

role in the model, since households learn the state of the economy when they

get the proceeds from their investments in this market at the stage 2. Since

households are not heterogenous in their information sets at the stage 2 and

wealth is the same across islands, then one can use the representative household

to solve the problem of households.

4.2.1 Technology and Intermediate Goods Firms

Consider an arbitrary island j. In this island, the �rm j produces according to

a linear technology:

Yj;t = Aj;tNj;t (4.1)

We assume that labor markets are segmented across islands. The real marginal

costs for �rm j are given by:

mcj;t =
Wj;t

Aj;tPt

whereWj;t is the competitive nominal wage in the island j and Pt is the price of

the �nal good. Aj;t is the island-speci�c technology shock that can be decom-

posed into (1) a trend component A0, (2) a persistent aggregate component, zt,
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(3) a white-noise aggregate component, �a;t, and (4) a white-noise idiosyncratic

component, �aj;t. More speci�cally, we have:

Aj;t = A
t
0Ate

�aj;t (4.2)

with A0 > 1 , and �aj;t
iidv N (0; �ja), and

At = e
zt+�a�a;t (4.3)

where �a;t
iidv N (0; 1) and

zt = �zzt�1 + �z"z;t

with "z;t
iidv N (0; 1).

Firms face a Calvo lottery with probability � of not adjusting their prices.

After having observed the outcome of the Calvo lottery, intermediate goods

�rms set the prices in their islands and they commit to satisfy any demanded

quantity at that price. Those �rms that are allowed to re-optimize their prices

solve:

max
P �j;t
E

" 1X
s=0

(��)s �j;t+s
�
�s�P

�
j;t �MCj;t+s

�
Yj;t+sjIj;t

#
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such that

Yj;t+s =

�
�s�P

�
j;t

Pt+s

���
Yt+s; Yj;t = Aj;tNj;t

Ij;t = fR� ; P��1; Y��1;�j;� ;� : � � tg

�j;t =
�
Aj;t; P

�
j;t; Yj;t�1;MCj;t�1; Nj;t�1;Wj;t�1;�j;t�1

	
whereMCj;t is the nominal marginal cost. �j;t stands for the stochastic discount

factor. The �rm�s speci�c demand Yj;t is standard and can be easily derived

from �nal goods producers�problem. Ij;t is the information set of �rm j at time

t.

If one solves the problem of those �rms that are allowed to re-optimize its

price, one obtains:

E

" 1X
s=0

(��)s �j;t+s

�
(1� �)�s� + �

MCj;t+s
P �j;t

�
Yj;t+sjIj;t

#
= 0

The price index is given by

P 1��t =

Z
P 1��j;t dj

and hence,

P 1��t = � (��Pt�1)
1�� + (1� �)

Z �
P �j;t
�1��

dj
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4.2.2 Preferences

Consumption Cj;t, labor Nj;t, and �nancial decisions (money Mj;t, and bonds

Bj;t) are taken at the second stage. We assume that the habit stock is given by

the level of technology At. This assumption ensures that the economy evolves

along a balanced growth path even if the utility function is additively separable

in consumption, real money balances, and leisure. Households solve2:

max
Cj;t;Bj;t;Mj;t;Nj;t

(Cj;t=A
t
0)
1� � 1

1�  +
�m

1� m

�
Mj;t

Pt

�1�m
� �Nj;t

such that

PtCj;t+Bj;t+Mj;t = Wj;tNj;t+Rt�1Bj;t�1+Mj;t�1+�j;t�Tt+ qt (!j;t) d�j;t (!j;t)

!j;t =
�
't; Aj;t; ICalvoj;t

	
where Rt is the interest rate paid out by the bond, �j;t is the dividend paid by

the �rm located in the island j, Tt is a lump-sum tax/transfer, and d�j;t (!j;t)

is the amount of state-contingent claims that pay one unit of the numeraire

at stage (t,2) if the state !j;t realizes. Note that by observing the price of

these claims, qt, households learn the state variables !j;t. 't is a vector that

2Note that the utility function is linear in labor. Relaxing this restriction would make the
marginal costs in the island j to be di¤erent from the structure: MCj;t =MCt + "j;t, where
"j;t is a linear functions of island speci�c shocks. This property of the island-speci�c marginal
costs is necessary to derive the imperfect-information Phillips curve as in Nimark (2008).
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includes the decomposed fundamentals, that is the technology shock (zt; �a;t),

monetary-policy shock (�̂�tjt; �r;t), government spending shocks (gt; �g;t).

The consumption Euler equation can be written as:

(Ct=A
t
0)
�

Pt
=
�

A0
Et

 �
Ct+1=A

t+1
0

��
Pt+1

!
Rt (4.4)

The demand for money is:

�m

 
Mt

A
t=m
0 Pt

!�m �
Ct
At0

�
=

�
Rt � 1
Rt

�
(4.5)

The supply for labor becomes:

�

�
Ct
At0

�
=

Wt

At0Pt
(4.6)

4.2.3 Monetary and Fiscal Policy

The monetary policy is modeled by specifying a Taylor-rule type reaction func-

tion:

Rt
R�

=

�
Rt�1
R�

��r "��t
��t

��� � Yt
Y �t

��y#(1��r)
e�r�r;t (4.7)

where �r;t
iidv N (0; 1). The monetary authority sets the interest rate Rt and

is perfectly informed (i.e., it observes the contemporaneous realizations of all

aggregate variables). ��t stands for the in�ation target that follows a stationary
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AR process:

ln ��t = (1� ��)�� + �� ln ��t�1 + ��"�;t

where "�;t
iidv N (0; 1). We �nally de�ne output gap Y �t � At0Aty� where y� is

the steady-state value of detrended output.

The government transfers resources to/from and issue bonds to households

at the stage 2. Furthermore, they decide their consumption of �nal goods. The

government budget constraint is:

PtGt +Rt�1Bt�1 �Bt +Mt�1 �Mt = Tt

where government spending Gt is

Gt = (1� 1=�t)Yt

We can decompose the government spending shock �t into:

�t = gte
�g�g;t

where "g;t v N (0; 1) and

ln gt =
�
1� �g

�
ln g0 + �g ln gt�1 + ~�g"g;t
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where �g;t v N (0; 1). We will denote �̂t = ln (�t=g0) and ĝt = ln gt � ln g0.

The resource constraint can be shown to be:

Yt = �tCt

4.2.4 Detrending

Let us denote the in�ation rate as �t � Pt=Pt�1. Moreover, de�ne:

yt �
Yt
At0
; ct �

Ct
At0
; p�j;t �

P �j;t
Pt
; yj;t �

Yj;t
At0

wj;t �
Wj;t

At0Pt
; at �

At
At0
; Rt �

Rt
R�
; mcj;t �

MCj;t
Pt

�j;t � At0�j;t

The Euler equation (4.4) becomes:

c�t =
�

A0
Et
�
c�t+1
�t+1

�
Rt (4.8)

The price setting equation becomes:

E
�
�t

�
(1� �) + �mcj;t

p�j;t

�
yj;tjIj;t

�
+ (4.9)

E

" 1X
s=1

(��)s �t+s

�
(1� �)�s� + �

mcj;t+s
p�j;t

(�s�=1�t+� )

�
yj;t+sjIj;t

#
= 0
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The resource constraint becomes:

yt = �tct (4.10)

4.2.5 Log-linearization

First, it is easy to show that the resource constraint (4.10) becomes:

ŷt = �̂t + ĉt (4.11)

Note that the consumption Euler equation becomes:

�ĉt = �Etĉt+1 � Et�̂t + R̂t

By substituting the resource constraint (4.11) we obtain the standard IS equa-

tion:

ŷt � �̂t = Et
�
ŷt+1 � �̂t+1

�
+
1


Et�̂t �

1


R̂t (4.12)

The Phillips curve is worked out in the appendix D:

�̂t = (1� �) (1� ��)
1X
k=0

(1� �)k cmc(k)tjt + �� 1X
k=0

(1� �)k b�(k+1)t+1jt

where cmc(k)tjt denotes the average k-th order expectations about the real aggre-
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gate marginal costs, cmct. For any k 2 f1; 2; : : :g one can show that:
cmc(k)tjt =  �ŷ(k+1)tjt � �̂(k+1)tjt

�
� z(k)tjt � �a�

(k)
a;tjt (4.13)

By using this result, we write:

�̂t = (1� �) (1� ��)
1X
k=0

(1� �)k
h

�
ŷ
(k+1)
tjt � �̂(k+1)tjt

�
� z(k)tjt � �a�

(k)
a;tjt

i
+ ��

1X
k=0

(1� �)k b�(k+1)t+1jt (4.14)

The Taylor rule can be easily linearized:

R̂t = �rR̂t�1 + (1� �r)
�
�� (�̂t � �̂�t ) + �y

�
ŷt � zt � �a�a;t

��
+ �r�r;t (4.15)

where

�̂�t = ���̂
�
t�1 + ��"

�
t

4.2.6 Perfect Information Model (PIM)

A nice feature of the model is that it nests standard three-equation New Key-

nesian DSGE model. If one assumes that �rms perfectly observe current output

and in�ation: Ipj;t = fR� ; P� ; Y� ;�j;� ;� : � � tg, then the model boils down to:

ŷt � �̂t = Et
�
ŷt+1 � �̂t+1

�
+
1


Et�̂t �

1


R̂t (4.16)
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�̂t =
(1� �) (1� ��)

�

h

�
ŷt � �̂t

�
� zt � �a�a;t

i
+ �Etb�t+1 (4.17)

R̂t = �rR̂t�1 + (1� �r)
�
�� (�̂t � �̂�t ) + �y

�
ŷt � zt � �a�a;t

��
+ �r�r;t (4.18)

4.3 Model Solution

The model is solved through a guess-and-verify strategy. Let�s guess the law of

motion of the endogenous variables:

�̂t = a0'
(0:k)
tjt + a1R̂t�1

ŷt = b0'
(0:k)
tjt + b1R̂t�1

R̂t = c0'
(0:k)
tjt + c1R̂t�1

where '(0:k)tjt is a column vector collecting the average expectations of the exoge-

nous variables up to the k-th order. More speci�cally,

'
(0:k)
tjt �

h
z
(s)
t ; �

(s)
a;t ; �̂

�(s)
tjt ; �

(s)
r;t ; g

(s)
t ; �

(s)
g;t : s 2 f0; 1; : : : ; kg

i0

The vector st includes the endogenous state variables of the model:

st =
h
�̂t; ŷt; R̂t

i0
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I will also guess that the vector of higher-order beliefs, '(0:k)tjt , and the state

variables, st, follows a VAR(1). Thus, we conjecture that �rms� state-space

model is the following3:

A

266666666664

'
(0:k)
tjt

st

'
(0:k)
t�1jt�1

st�1

377777777775
| {z }

Xt

= B

266666666664

'
(0:k)
t�1jt�1

st�1

'
(0:k)
t�2jt�2

st�2

377777777775
| {z }

Xt�1

+C�

26666666666666666664

"z;t

�a;t

"�;t

�r;t

"g;t

�g;t

37777777777777777775
| {z }

"t

(4.19)

266666666664

lnAj;t � lnA0t

�t�1 � ln ��

lnYt�1 � ln y� � lnA0t

R̂t � ln R̂�

377777777775
=

266666666664

L 0 0 0

0 0 0 1T1

0 0 0 1T2

0 1T3 0 0

377777777775
| {z }

D

Xt +

266666666664

�ja

0

0

0

377777777775
| {z }

Q

�aj;t|{z}
ej;t

:

3Note that we do not need to include the past island-speci�c nominal marginal costs into
the set of observables as they are just a linear combination of known variables, that is the
island-speci�c nominal wage and island-speci�c shock. Indeed,

lnMCj;t � lnA0 � t = lnWj;t�zt � �a�a;t � �aj;t| {z }
lnAj;t

The same is true for the output sold by �rm j, which is a linear combination of aggregate
output and price level.
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where 1Ti is a row vector with the i-th element equal to one and zero elsewhere,

and

A=

266666666664

I 0 0 0

�v0 I 0 0

0 0 I 0

0 0 0 I

377777777775
; B =

266666666664

M 0 0 0

0 v2 0 0

I 0 0 0

0 I 0 0

377777777775
; C =

266666666664

N

0

0

0

377777777775

where I is the identity matrix, L =
�
1; 1; 01�6k+4

�
, v0 = [a00;b

0
0; c

0
0]
0, and

v2 = [03�2;v1] ,

with v1 = [a1; b1; c1]
0.

The full characterization of the matrices M and N is obtained through

repeated applications of the Kalman �lter and is detailed in appendix F. The
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�rst six rows of the matricesM and N are known:

M(1:6;:) =

26666666666666666664

�z 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 �� 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 �g 0 0

0 0 0 0 0 0 0

37777777777777777775

; N(1:6;:)=

26666666666666666664

�z 0 0 0 0 0

0 �a 0 0 0 0

0 0 �� 0 0 0

0 0 0 �r 0 0

0 0 0 0 ~�g 0

0 0 0 0 0 �g

37777777777777777775
Solving the model, hence, requires to computationally �nd a �xed point over

the space of vectors [v0;v1] and matrices [M;N]. We verify the guess by using

the the three structural equations of the model: the IS equation (4.12), the

Phillips curve (4.14) and the Taylor rule (4.15).

In appendix E, we show that the Euler equation (4.12) implies that:

b0 = 1
T
5 + 1

T
6 + b0M+b1c0 �

�
1T5 + 1

T
6

�
M+

1


(a0M+a1c0)�

1


c0

b1 = b1c1 +
1


a1c1 �

1


c1
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The Phillips curve (4.14) can be rewritten as (see appendix E):

a0 = (1� �) (1� ��) �
"
�m1 �

 
k�1X
s=0

(1� �)s
�
(s+1)0g + (s)0a

�!#

+ ���m2 + ��

 
k�1X
s=0

(1� �)s
!
1T1 v11

T
3 v0

a1 = (1� �) (1� ��)
 
k�1X
s=0

(1� �)s
!
1T2 v1 + ��

 
k�1X
s=0

(1� �)s
!
1T1 v11

T
3 v1

where

(s)g =
�
01�6s; (0; 0; 0; 0; 1; 1) ;01�6(k�s)

�
(s)a =

�
01�6s; (1; 1; 0; 0; 0; 0) ;01�6(k�s)

�0
and

m1 �

2666666666666664

�
1T2 v0�

(1)T(1)
�

(1� �)
�
1T2 v0�

(2)T(2)
�

(1� �)2
�
1T2 v0�

(3)T(3)
�

...

(1� �)k�1
�
1T2 v0�

(k)T(k)
�

3777777777777775
; m2 �

2666666666666664

h
1T1 v0M�

(1)T
(1)
i

(1� �)
h
1T1 v0M�

(2)T
(2)
i

(1� �)2
h
1T1 v0M�

(3)T
(3)
i

...

(1� �)k�1
h
1T1 v0M�

(k)T
(k)
i

3777777777777775
;

� = 11�k
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The Taylor rule (4.15) imposes that (see appendix E)

c0 = (1� �r)
�
��
�
a0 � 1T3

�
+ �y

�
b0 �

�
1T1 + 1

T
2

���
+ 1T4

c1 = �r + (1� �r)
�
��a1 + �yb1

�

As shown in appendix F, the matricesM and N are pinned down by the map-

pings:

M =

2664 R1

0

3775+
2664 06�6 06�6k

06k�6 (I�KD)Wj(1:6k;1:6k)

3775+
2664 0

KDWj(1:6k;1:6(k+1))

3775

N =

2664 R2

0

3775+
2664 0

KDUj(1:6k;1:6)

3775
where

R1 =

26666666666666666664

�z 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 �� 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 �g 0 0

0 0 0 0 0 0 0

37777777777777777775
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R2 =

26666666666666666664

�z 0 0 0 0 0

0 �a 0 0 0 0

0 0 �� 0 0 0

0 0 0 �r 0 0

0 0 0 0 ~�g 0

0 0 0 0 0 �g

37777777777777777775
and K is the steady-state matrix of Kalman gains, which is well-known to be

equal to

K = PD0 [DPD0 +�e]
�1 (4.20)

where �e = QQ0. The variance and covariance matrix P solves the following

algebraic Riccati equation:

P =W
h
P�PD0 [DPD0 +�e]

�1
DP

i
W0 +UU0 (4.21)

and the matricesW and U are the reduced-form matrices of the system (4.19):

W = A�1B; U = A�1C.

4.3.1 Average Higher-Order Beliefs

Once one has solved the dispersed information model, the law of motion of the

average higher-order beliefs about the endogenous state variables, st, can be

72



characterized. In appendix E. I show that for 0 � s � k;

s
(s)
tjt �

26666664
�̂
(s)
tjt

ŷ
(s)
tjt

R̂
(s)
tjt

37777775 = v0�
(s)T(s)'

(0:k)
tjt + v1R̂t�1 (4.22)

where T(s) =
�
06(k+1�s)�6s; I6(k+1�s)

�
; and � (s) =

�
I6(k+1�s);06(k+1�s)�6s

�0
. The

average higher-order beliefs one-step-ahead beliefs follows:

s
(s)
t+1jt �

26666664
�̂
(s)
t+1jt

ŷ
(s)
t+1jt

R̂
(s)
t+1jt

37777775 = v0M�
(s)T

(s)
'
(0:k)
tjt + v11

T
3

�
v0'

(0:k)
tjt + v1R̂t�1

�
(4.23)

4.4 Empirical Analysis

I �t the model to observations of the growth rate of output, in�ation, and the

interest rate. I place a prior distribution on parameters and conduct Bayesian

inference. I solve the dispersed information model by truncating the higher

order beliefs at k = 10. I approximate the posterior distribution by means

of a random-walk Metropolis-Hastings method. In this section, I present the

data set, the measurement equations, the prior distributions and the posterior

distributions for model parameters. Finally, I will study the transmission of

monetary impulses to the macroeconomic aggregates implied by the estimated
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model.

4.4.1 The Data and the Measurement Equation

The data set ranges from the third quarter of 1954 to the fourth quarter of 2007.

Data are quarterly and are displayed in Table 4.1:

Table 4.1: Data
Observables Description Source
GDPt Gross Domestic Product BEA

POP�16t Civilian nonistitutional population, 16 yrs and over BLS

CPIt Consumer Price Index-Averages of Monthly Figures BLS

FEDRATEt E¤ective Fed. Funds Rate-Averages of Daily Figures Board of Gov.

The measurement equations are:

ln

�
GDPt

POP�16t

�
� ln

 
GDPt�1

POP�16t�1

!
= 100 (ŷt � ŷt�1 + lnA0)

100 ln
CPIt
CPIt�1

= 100 (�̂t + ln��)

100 ln(1 + FEDRATEt=100) = 100
�
4R̂t + lnR�

�

4.4.2 Priors

Solving the model takes 3-4 minutes for each parameter draw. So one might

not be able to generate a su¢ ciently large number of draws to accurately ap-

proximate the posterior moments. This concern is expected to be more severe

as the dimensionality of the parameter space is large. In order to address this
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concern, I restrict the value of seven out of the sixteen parameters of the model.

The parameters whose values are �xed are listed in table 4.2

Table 4.2: Fixed Parameter Values

�� �y �r �z �g �� � 
1.5 0.125 0.75 0.90 0.95 0.95 0.9971 2

These parameter values are quite standard in the empirical literature on

DSGE models (An and Schorfheide, 2007 and Smets and Wouters, 2007). I set

the priors for the remaining parameters as displayed by the table 4.3.

Table 4.3: Priors

Name Range Density Median 90% Interval
� [0; 1) Beta 0:50 0:06� 0:93
�a R+ Inv.Wishart 0:50 0:06� 4:00
�z R+ Inv.Wishart 0:50 0:06� 4:00
�ja R+ Inv.Wishart 1:50 0:85� 5:75
�� R+ Inv.Wishart 0:06 0:02� 0:12
�r R+ Inv.Wishart 0:12 0:05� 0:24
~�g R+ Inv.Wishart 0:85 0:42� 2:05
�g R+ Inv.Wishart 1:00 0:49� 2:41

The prior distributions are very di¤use as I do not hold precise information

about the decomposition of shocks. I aim at learning these parameter values

from the likelihood. The prior for the variance of the idiosyncratic technol-

ogy shock, �ja is centered so as to make the perfect information model able to

replicate the average absolute size of price changes that is documented by the

literature on the microdata on price changes (Bils and Klenow, 2004).
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4.4.3 Posteriors

Given the priors and the likelihood function implied by the model, a closed-

form solution for the posterior distributions for parameters cannot be derived.

However, one can evaluate the posteriors numerically through the random-walk

Metropolis-Hastings algorithm. How these procedures apply to macro DSGE

models is exhaustively documented by An and Schorfheide (2007). I generate

1; 500 draws from the posteriors. The posterior medians and 90% credible sets

are shown in Table 4.4.

Table 4.4: Posteriors

Name Median 90% Interval
� 0:88 0:86� 0:89
�a 0:28 0:22� 0:32
�z 0:35 0:27� 0:42
�ja 0:62 0:55� 0:73
�� 0:02 0:02� 0:03
�r 0:02 0:02� 0:03
�g 0:22 0:18� 0:25
~�g 0:28 0:19� 0:34

Figure 4-1 reports the recursive means of the posterior draws for the eight

parameters displayed in table 4.4.

The recursive means of the posterior draws for most of the parameters in

table 4.4 show that the Metropolis-Hastings algorithm converges. Slower con-

vergence is observed for �ja and ~�g.

The posterior median of the signal-to-noise ratio associated with the obser-
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Recursive Means

Figure 4-1: Recursive Means

vation equation (4.2) is 1:37. This quanti�es the amount of information �rms

learn about the aggregate level of the technology, At, from observing their own

productivity shock.

4.4.4 Transmission of Monetary Disturbances

Figure 4-2 shows the responses of real GDP (deviations from the steady state

at a quarterly rate), in�ation (deviations from the steady state in percentage

points at a quarterly rate), and interest rate (percentage deviations from the
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steady state at a quarterly rate) to a one-standard deviation temporary mon-

etary policy shock
�
�r;t
�
. Black squares denote the perfect information model,

while the solid lines refer to the dispersed information model. The impulse

response functions are computed at the posterior medians displayed in table

4.4.

Impulse Response Functions to a Monetary Policy Shock

Figure 4-2: Impulse Response Functions to a Monetary Policy Shock

The most striking �nding is that monetary policy appears to have weaker

real e¤ects when �rms are imperfectly informed. One can compute by how much

in�ation changes owing to a monetary policy shock that reduces output by 1%.

The imperfect information model predicts that a monetary policy shock that

reduces output by one percent causes in�ation to decrease by 1:01 percent. In

78



the perfect information model, the in�ation reacts only by 0:10 percent. These

numbers show that prices are relatively less sticky in the imperfect informa-

tion model. Moreover, both these numbers are in line with the survey study

conducted by Schorfheide (2008). In the light of that study, the imperfect in-

formation model can be regarded as having similar degree of price rigidity as

that of the New Keynesian DSGE models with quite �exible prices.

Why are the prices so �exible in the imperfect information model? As stan-

dard in NewKeynesian models, in�ation depends on a current component (CCIt )

and a forward-looking component (FCIt ) in the dispersed information model.

For the imperfect information model, these two components are de�ned in equa-

tion (4.14). They are:

CCit = (1� �) (1� ��)
1X
k=0

(1� �)k cmc(k)tjt (4.24)

FCit = ��
1X
k=0

(1� �)k b�(k+1)t+1jt (4.25)

with �̂t = CCi+FCi. In the perfect information model, these two components

are de�ned in equation (4.17):

CCpt =
(1� �) (1� ��)

�
cmct (4.26)

FCpt = �Etb�t+1 (4.27)
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with �̂t = CCp + FCp. Table 4.5 shows the value of these components at the

posterior medians for the two models.

Table 4.5: In�ation Response Decomposition

Imperfect Information Model (IIM)

100 @�̂t
@�r;t

100
@CCit
@�r;t

100
@FCit
@�r;t

Total �2:3546 �0:5157 �1:8389
In perc. 100:00% 21:90% 78:10%

Perfect Information Model (PIM)

100 @�̂t
@�r;t

100
@CCpt
@�r;t

100
@FCpt
@�r;t

Total �0:3932 �0:1303 �0:2629
In perc. 100:00% 33:13% 66:87%

Excess Response of In�ation in the IIM

100� @�̂t
@�r;t

100
�
@CCit
@�r;t

� @CCpt
@�r;t

�
100

�
@FCit
@�r;t

� @FCpt
@�r;t

�
Total �1:9614 �0:3854 �1:5760
In perc. 100:00% 19:65% 80:35%

In both models, monetary disturbances in�uence in�ation mainly through

in�ation expectations (i.e., the forward looking component). In the imperfect

information model, 78% of the in�ation adjustment upon the monetary shock

stems from the change in in�ation expectations. In the perfect information

model, this fraction is a bit smaller. In addition, in the imperfect information

model, the response of the forward-looking component to monetary shock is

about seven times bigger than that in the perfect information model. The

excess response of in�ation to a monetary shock in the imperfect information

model is -1.9614. The overreaction of the in�ation expectations in the imperfect

information model accounts for 80.35% for the excess responsiveness of the
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in�ation in the imperfect information model.

Why do in�ation expectations react so much in the imperfect information

model? Since the model nests the perfect information model, the excess re-

sponsiveness of in�ation in the imperfect information model comes from the

information frictions that alter the response of �rms beliefs to shocks. In �gure

4-3 I plot the impulse response functions of the average �rst-order beliefs about

the exogenous variables to a temporary monetary shocks.

Impulse Response Functions of Higher-Order Beliefs

Figure 4-3: Impulse Response Functions of Higher-Order Beliefs

We observe that the average �rst order expectations about the in�ation

target, ��t , and the persistent government spending shock, gt, are quite a¤ected

by the monetary policy shock. These beliefs deviate from the actual value

of the in�ation target and that of the persistent government-spending shock.
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Upon the monetary disturbance, these beliefs change roughly by about half

their conditional standard deviations, �g and ��.

Which average beliefs are the culprits for the overreaction of the in�ation

expectations? We denote the contributions of the six classes of average higher-

order beliefs '(0:k)tjt to the response of in�ation expectations as

�
Cfz;t; C

f
a;t; C

f
��;t; C

f
r;t; C

f
~g;t; C

f
g;t

�
:

Table 4.6 displays the result of this exercise:

Table 4.6: Decomposition of the Components CC and FC

Current Component CCdt
100

@CCit
@�r;t

100
@Ccz;t
@�r;t

100
@Cca;t
@�r;t

100
@Cc

��;t
@�r;t

100
@Ccr;t
@�r;t

100
@Cc~g;t
@�r;t

100
@Ccg;t
@�r;t

�0:5157 �0:0689 0:0006 �0:1791 �0:0820 �0:1803 �0:0060
100:00% 13:36% �0:12% 34:73% 15:90% 34:97% 1:16%

Forward-Looking Component FCdt

100
@FCit
@�r;t

100
@Cfz;t
@�r;t

100
@Cfa;t
@�r;t

100
@Cf

��;t
@�r;t

100
@Cfr;t
@�r;t

100
@Cf~g;t
@�r;t

100
@Cfg;t
@�r;t

�1:8389 �0:0056 0:0000 �0:7708 �0:2648 �0:7979 0:0002
100:00% 0:30% 0:00% 41:92% 14:40% 43:39% �0:01%

The table also reports the contributions of the six classes of average higher-

order beliefs to the change in the current component, CCit
4. One can observe

4How does one quantify these components? Recall that the current component of in�ation,
CCit , depends on cmc(0:k)tjt , and some deep parameters. Yet the hierarchy of average higher-order

beliefs about real marginal costs, cmc(0:k)tjt , depend on the hierarchy of average higher-order

beliefs about real output by(0:k)tjt , and some exogenous variables: �̂
(k+1)

tjt , z(k)tjt , and �
(k)
a;tjt. See

(4.13) equation. Equation (4.22) pins down the response of the beliefs by(0:k)tjt . Equation (4.19)
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that the change in the forward-looking component is mainly due to the response

of average beliefs about the in�ation-target and the persistent government-

spending shock. The excess response of in�ation in the imperfect information

model (table 4.5) is almost entirely explained by the response these two average

beliefs.

The results in table 4.6 suggest that upon a temporary monetary shock,

�r;t, �rms are unsure about whether the change in the interest rate is due to

a an in�ation-targeting shock or a government-spending shock. This confusion

causes in�ation expectations to react very much to a monetary policy shock and

reduces the real e¤ects of money.

4.4.5 Costs of Disin�ation

A fall in the in�ation target, ��t , is generally interpreted as a structural change in

policy aimed at reducing in�ation. Figure 4-4 shows the responses of real GDP

(deviations from the steady state at a quarterly rate), in�ation (deviations from

the steady state in percentage points at a quarterly rate), and interest rate

(percentage deviations from the steady state at a quarterly rate) to a structural

disin�ation policy ("�;t) that reduces in�ation by 5% in the long run. Black

squares denote the perfect information model, while the solid lines refer to the

determines how the average beliefs �̂
(k+1)

tjt , z(k)tjt , and �
(k)
a;tjt react to structural shocks. Equation

(4.23) sets the response of FCdt , which depends on b�(0:k)tjt , to exogenous state variables, 't.
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dispersed information model. These impulse response functions are computed

at the posterior medians displayed in table 4.4.

Impulse Response Functions to an In�ation-Targeting Shock

Figure 4-4: Impulse Response Functions to an In�ation-Targeting Shock

Figure 4-4 shows that GDP falls more in the imperfect information model,

suggesting that costs of disin�ation are larger. The cumulative e¤ect of the

policy upon real output is �56:54% for the imperfect information model, and

�8:34% for the perfect information model. This leads to conclude that the

imperfect information model predicts that the output loss associated to a dis-

in�ation policies is bigger than what is estimated by the perfect information

model.

The reasons for this �nding can be understood by looking at the responses
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of the average expectations to a disin�ation policy, which are shown in �gure

4-5.

Impulse Response Functions of Higher-Order Beliefs

Figure 4-5: Impulse Response Functions of Higher-Order Beliefs

It is clear that when the central bank raises the interest rate to disin�ate

the economy, �rms fail to interpret this as such. One can see this by observing

that the average expectations about ��t move very weakly upon a persistent

monetary policy shock. The plot also shows that �rms learn extremely slowly

about the nature of the shock in the subsequent periods.

Table 4.7 plots the in�ation response decomposition upon the in�ation-

targeting shock.

Table 4.7: In�ation Response Decomposition

In the perfect information model in�ation expectations react very strongly
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and fully anticipate the disin�ation policy. This curbs the cost of disin�ation.

In�ation expectations react so strongly that the central bank has to cut the

interest rate to disin�ate (see �gure 4-4). In the imperfect information model

in�ation expectations fail to anticipate the drop in in�ation and the central

bank has to forcefully raise the interest rate to disin�ate the economy. The last

row of table 4.7 shows that the lack of adjustment of in�ation expectations fully

account for the little response of in�ation in the imperfect information model.

4.5 Concluding Remarks

This chapter shows that modelling agents�expectations may have a great deal

of implications for the transmission mechanism of monetary policy. I obtain

two main results. First, the presence of imperfect information reduces the real

e¤ects of monetary policy. Second, the output loss associated with a monetary

policy of disin�ation is larger when one considers imperfect information. Both

of these results arise because imperfectly informed �rm cannot recognize the

exact nature of the shocks. More speci�cally, upon a monetary policy shock

�rms are not sure about whether the change in the interest rate is due to a

permanent monetary shock or a government-spending shock. This confusion

causes in�ation to react very much to a monetary policy shock and hence real

e¤ects of money are weak. After a disin�ation policy, the in�ation expectations

fail to anticipate the e¤ects of the policy on prices. Hence, this policy turns out
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to be very costly in terms of output loss.

Future work requires further model validation. In particular, it is key to

assess the capability of the model to capture the dynamics of the �rst moment

of the distribution of the survey of professional forecasters. From a Bayesian

perspective, this assessment can be done by using the date on expectations as

observables and run posterior predictive checks (An and Schorfheide, 2007).

The outcome of this check is by no means obvious. Del Negro and Eusepi

(2009) show that the imperfect information model in Erceg and Levin (2003)

does worse than a perfect information model in �tting observed expectations.

It is important to emphasize that in the imperfect information model dif-

ferent monetary policy rules a¤ect the information content of the monetary

policy instrument and hence how monetary disturbances a¤ect macroeconomic

variables. A fascinating extension of this project would be characterizing the

optimal monetary policy in such a framework.
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Appendices

Appendix A Deriving the law of motion of price
and output in the ICKM
The �rst-order necessary condition5 of the price-setting problem (2.11)-(2.16) in the
ICKM is:

Ei;t

"
�Qt

 
Yi;t � �P it

�
Pi;t
Pt

����1 Yt
Pt
+ ��

Wt

At

�
Yi;t
At

���1�Pi;t
Pt

����1 Yt
Pt

!#
= 0

From the solution to the representative household�s problem (2.2)-(2.5), the labor
supply can be easily shown to be Wt=Pt = �YtH

�
t . Substituting this result and using

the equation (2.12) into the equation above yield:

Ei;t

24Qt
0@(1� �)�Pi;t

Pt

���
+
�

�

�YtH
�
t

At

 �
Pi;t
Pt

��� Yt
At

!��1�1�
Pi;t
Pt

����11AYt
35 = 0

De�ne the stationary variables:

yt �
Yt
At
; yi;t �

Yi;t
At

; pi;t =
Pi;t
Pt
; ht = Ht (4.28)

With this notation, I can rewrite the price-setting equation as:

(1� �)Ei;t
�
QtYtp

��
i;t

�
1 + ���1�yth

�
t

�
p��i;t yt

���1�1
p�1i;t

��
= 0

It is easy to show that the expression within the round brackets is zero at the
deterministic symmetric steady-state. Hence, when one takes the log-linear approx-
imation of the equation above around the deterministic symmetric steady-state, one
does not need to care about what is outside those brackets. Hence the price-setting

5Note the slight change in notation from the main text. We denote E [�jzti] = Ei;t.
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condition can be approximated as follows:

0 = Ei;t
h
�ĥt �

�
�
�
��1 � 1

�
+ 1
�
p̂i;t + �

�1ŷt
i

Note also that from the production function ĥi;t = ��1ŷi;t and hence6 ĥt = ��1ŷt.
By substituting, this results into the equation above, one obtains:

0 = Ei;t
�
(� + 1)��1ŷt �

�
�
�
��1 � 1

�
+ 1
�
p̂i;t
�

and then

Ei;tp̂i;t =
(� + 1)��1

�
�
��1 � 1

�
+ 1

Ei;tŷt

and more compactly, by de�ning � � (� + 1)��1=
�
�
�
��1 � 1

�
+ 1
�
,

Ei;t [p̂i;t] = �Ei;t [ŷt]

In order to take �rm i�s price Pi;t out of the expectation operator, I need to recall
the de�nition of the transformed variables in (4.28) and then write:

Ei;t

264lnPi;t � lnPt| {z }
p̂i;t

375 = �Ei;t
264lnYt � lnAt � ln �y| {z }

ŷt

375
or equivalently,

lnPi;t = Ei;t [� lnYt + lnPt � � lnAt]� � ln �y

Recall equation (2.10):

lnPt + lnYt = lnMt ) lnYt = lnMt � lnPt

and thus,
lnPi;t = Ei;t [� (lnMt � lnPt) + lnPt � � lnAt]� � ln �y

and by rearranging:

lnPi;t = Ei;t [(1� �) lnPt + � lnMt � � lnAt]� � ln �y

This price-setting equation shows that the coe¢ cient 1 � � controls the strategic
complementarity in price-setting (i.e., the extent to which �rms want to react to
the expected average price Ei;t (Pt)). In order to have strategic complementarities in
price-setting (i.e., �rms want to raise (cut) their prices when the average price goes
up (down) ), one needs that � � 1.

If one log-linearizes equation (2.1) around the deterministic steady-state, one ob-

6Log-linearizing Yt =
�R 1

0
(Yi;t)

��1
� di

� �
��1

yields ŷt =
R
ŷi;tdi.
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tains p̂t =
R
p̂i;tdi. Hence, by integrating across �rms one obtains:

lnPt = (1� �) lnP (1)tjt + � lnM
(1)
tjt � � lnA

(1)
tjt � � ln �y

From this equation, repeatedly taking the conditional expectation and averaging
across �rms yield:

lnP
(j)
tjt = (1� �) lnP

(j+1)
tjt + � lnM

(j+1)
tjt � � lnA(j+1)tjt � � ln �y

for j 2 f1; 2; : : :g. By repeatedly substituting these results into the average-price
equation one obtains:

lnPt =

1X
j=0

(1� �)j � lnM (j+1)
tjt � (1� �)j � lnA(j+1)tjt � ln �y

By recalling that I de�ned mt � lnMt �M0t and at � lnAt �A0t and that �rms
know all the model parameters, I can re-write the equation above as:

lnPt =

24 1X
j=0

(1� �)j �
�
m
(j+1)
tjt � a(j+1)tjt

�35� ln �y +M0t�A0t

This is equation (2.20) in the main text. Furthermore, I can combine equations (2.20)
and (2.10) to get:

lnMt � lnYt| {z }
lnPt

=

24 1X
j=0

(1� �)j �
�
m
(j+1)
tjt � a(j+1)tjt

�35� ln �y +M0t�A0t

and by re-arranging, this yields:

lnYt =

24mt �
1X
j=0

(1� �)j �m(j+1)
tjt

35+ 1X
j=0

(1� �)j �a(j+1)tjt � ln �y +A0t

which is the equation (2.21) in the main text.

Appendix B Solving the ICKM
In general, �nding an equilibrium in models with incomplete informations requires
characterizing in�nitely many equilibrium laws of motion, which is absolutely unman-
ageable. In the present model, this issue can be elegantly resolved as in Woodford
(2002). More speci�cally, I need only to keep track of a speci�c linear combination of
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average expectations, appearing in equations (2.20)-(2.21). De�ne the vector Ft as

Ft �
1X
j=1

(1� �)j�1 �X(j)t (4.29)

where Xt � [mt;mt�1; at]
0 (4.30)

Finding an equilibrium for the ICKM requires characterizing the equilibrium law of
motion of the �nite-dimensional vector Ft. The transition equations of the ICKM
can be shown to be:

byt = bpt (4.31)bpt = r0Xt (4.32)

Xt = BXt�1 + but (4.33)

where

Xt �
�
X0t

... F0t

�0
, r� [�1; 0; 1; 1; 0;�1]0

B �
�
B3x3 03x3
G3x3 H3x3

�
; b =

�
b 0... d0

�0
(4.34)

B �

24 1 + �m ��m 0
1 0 0
0 0 1

35 ; b �

24 1 0
0 0
0 1

35 ; ut = ["m;t; "a;t]
0

ut
iidv N (0;�u) , for all t and �u =

�
�2m 0
0 �2a

�
where G, H, and d are matrices that are not known yet. Equation (4.31) stems from
the log-linearized version of equation (2.10), where I de�ned the log-linear deviations
of the stationary output, yt, and price, pt, from their deterministic steady-state, as
ŷt and p̂t, respectively. Equation (4.32) can be derived by equation (2.20) by simply
adding lnAt � lnMt � ln �p to both sides of this equation and by recalling that

p̂t = lnPt + lnAt � lnMt � ln �p

and
ln �p+ ln �y = 0;

because of equation (2.10).
Recall that the signal structure is speci�ed in equations (2.16). Thus, the �rms�

observation equations are
zi;t = DXt + ei;t (4.35)
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where

D �
h
D1

... 02x3

i
and D1 =

�
1 0 0
0 0 1

�
(4.36)

ei;t v N (0;�e) ; iid for all t, and i; �e =
�
~�2m 0
0 ~�2a

�
(4.37)

Finding an equilibrium for this economy amounts to characterize the unknown
matrices G, H, and d. This requires solving the following �xed point problem. Given
the conjectured law of motion (4.33), optimal �rms�behaviors must exactly aggregate
to the conjectured law of motion (4.33). Like in Woodford (2002), the method of
undetermined coe¢ cients can be used to pin down those matrices.

It is easy to see that the �rm i�s optimal estimate of the state vector evolves
according the so-termed kalman-�lter equation

Xtjt (i) = Xtjt�1 (i) + k
�
zt (i)�DXtjt�1 (i)

�
(4.38)

where k is the 6x2 Kalman gain matrix which is not yet speci�ed. It is easy to show
that the one-step-ahead forecast of the state vector is:

Xtjt�1 (i) = BXt�1jt�1 (i) (4.39)

I can plug the (4.39) into the (4.38) to get the law of motion for �rm i�s estimate of
the current state vector

Xtjt (i) = BXt�1jt�1 (i) + k
�
zt (i)�DXtjt�1 (i)

�
(4.40)

By integrating the (4.40) over �rms (i.e.
R
Xtjt (i) di � Xtjt) one gets

Xtjt = BXt�1jt�1 + kD
�
Xt �Xtjt�1

�
(4.41)

This result follows from the observing that on aggregate the signal noise washes out
(i.e.

R
et (i) di = 0) and henceZ

zt (i) di = DXt +

Z
et (i) diZ

zt (i) di = DXt

By using the transition equation (4.33) to get rid of Xt in the equation (4.41) I obtain

Xtjt = BXt�1jt�1 + kD
�
BXt�1 + but �Xtjt�1

�
Then by integrating the (4.39), which yields the average prior forecast (i.e. Xtjt�1 =
BXt�1jt�1), one notices that the above equation can be rewritten as

Xtjt = Xtjt�1 + kD
�
BXt�1 + but �Xtjt�1

�
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Gathering the common terms yields

Xtjt = [I� kD]BXt�1jt�1 + kD
�
BXt�1 + but

�
(4.42)

which can be regarded as the law of motion for the average estimates of the current
state vector.

It is convenient to de�ne the 6x3 vector ' such that

' �
�
� � I3

... (1� �) � I3
�0

Then one can note the following

'0X
(1)
t = Ft (4.43)

It is easy to prove that equation (4.43) is indeed true by working as follows

'0X
(1)
t =

�
(�) � I3

... (1� �) � I3
�
�

264 X(1)t� � �
F
(1)
t

375 (4.44)

'0X
(1)
t = �X

(1)
t + (1� �)F(1)t

Let me introduce the following notations:

x
(k�1)
tjt � x(k)t ; 8k � 1; x(0)t � xt (4.45)

where xt is an arbitrary random variable. Hence I can write

'0X
(1)
t = �X

(0)
tjt + (1� �)F

(0)
tjt

Moreover, it is easy to derive an equation for Ftjt from equation (4.29)

F
(0)
tjt =

1X
j=1

(1� �)j�1 �X(j)tjt

Combining the last two equations yields

'0X
(1)
t = �X

(0)
tjt + (1� �)

1X
j=1

(1� �)j�1 �X(j)tjt
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Some easy manipulations lead to

'0X
(1)
t = (�)X

(0)
tjt +

1X
j=1

(1� �)j �X(j)tjt

=
1X
j=1

(1� �)j�1 �X(j�1)tjt

Now recall equation (4.45) to �nally write

'0X
(1)
t =

1X
j=1

(1� �)j�1 �X(j)t

Comparing this equation with the (4.29) concludes the proof of (4.43). Now one can
plug equation (4.42) into equation (4.43) to get

Ft =
h
'0 � ekDiBXt�1jt�1 + ekD �BXt�1 + but� (4.46)

where ek � '0k. One can prove the following three facts:
FACT 1

'0B =

�
�B+(1� �)G

... ((1� �))H
�

FACT 2

DB =

�
D1B

... 02x3

�
(4.47)

=

�
By
... 02x3

�
where By �

�
B01 B03

�0
and Bj stands for the j-th row of B.

FACT 3

Db = D1b

=

�
1 0
0 1

�
= I (2)

Then note that the FACT 3 can be used to show that

ekDbut = ekut
The FACT 2 allows is to get the following results:

ekDBXt�1 = ekByXt�1
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and ekDBXt�1jt�1 = ekByXt�1jt�1
Then the FACT 1 can be used in order to prove the following result

'0BXt�1jt�1 = �BXt�1jt�1+(1� �)GXt�1jt�1+ (1� �)H � Ft�1jt�1

By collecting all these results one can rewrite equation (4.46) as follows

Ft =
h
�B+(1� �)G� ekByiXt�1jt�1+(1� �)HFt�1jt�1 + ekByXt�1 + ekut (4.48)

Next, I will work out the vector Ft�1 from Ft�1jt�1, since I want to rewrite equation
(4.48) in a form that is comparable to that conjectured in equation (4.33) so as I can
compare my initial guess. One should start from equation (4.43) to get

(1� �) � Ftjt = Ft � �Xtjt

By lagging the last equation by one period, one gets

(1� �) � Ft�1jt�1 = Ft�1 � �Xt�1jt�1 (4.49)

I can now plug equation (4.49) into equation (4.48) to get

Ft =
h
�B+(1� �)G� ekByiXt�1jt�1+H �Ft�1 � �Xt�1jt�1�+ ekByXt�1 + ekut

Ft =
h
�B+(1� �)G� ekBy � �HiXt�1jt�1+H � Ft�1 + ekByXt�1 + ekut (4.50)

Now equation (4.50) has the same form as the bottom rows of equation (4.33) because
Xt�1jt�1 does not depend on neither Xt�1 nor Ft�1. Thus I can make the following
identi�cations:

G=ekBy (4.51)

d = ek (4.52)

and h
�B+(1� �)G� ekBy � �Hi !

= 0

By substituting (4.51) into the last equation one obtainsh
B� ekBy �Hi !

= 0

H
!
= B� ekBy (4.53)

which identi�es the matrix H.
The matrix k is the steady-state matrix of Kalman gains which is well-known to
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be equal to
k = PD0 �DPD0 +�e

��1 (4.54)

with the matrix P that solves the following algebraic Riccati equation

P = B
h
P�PD0 �DPD0 +�e

��1
DP

i
B
0
+ b�ub

0
(4.55)

and where By �
�
B01 B03

�0
and Bj stands for the j-th row of B.

Since B and b turn out to be function of P, the ultimate goal is to �nd out
the �xed-point of a larger equation to solve for P, speci�ed solely in terms of model
parameters. Computationally, �nding this �xed point turns out to be fast and reliable.
This makes the ICKM suitable for estimation.

The loop to numerically �nd out a REE is the following: given a set of parameter
values and a guess for the Kalman-gain matrix k0, one has to characterize the matrices
G, H, and d through equations (4.51)-(4.53). Then one has to solve the algebraic
Riccati equation (4.55) for P and obtain a new Kalman-gain matrix k� through the
equation (4.54). Then if the new Kalman-gain matrix is su¢ ciently close to the guess,
one has just found the �xed point and stops, otherwise one goes through another loop
by using the matrix k� as a new guess for the Kalman-gain matrix. Once a �xed point
is found, one can use the resulting Kalman-gain matrix to fully characterize the state-
space system of the ICKM model described in (4.33)-(4.34) through (4.51)-(4.55),
which combined with the equations (4.31)-(4.32) delivers the equilibrium dynamics
of the log-deviations of real output and in�ation.

Appendix C Information �ows
As shown in the main text, the information �ow �a is measured as follows:

�a � H
�
atjzt�1a;i

�
�H

�
atjzta;i

�
(4.56)

Since at and za;i;t are Gaussian, I can write:

H
�
atjzta;i

�
� 1

2
log2

�
2�e � V AR

�
atjzta;i

��
(4.57)

First, let me focus on the mapping

V AR
�
atjzta;i

�
= g (~�a; �a)

The mapping ga (:) can be implicitly characterized through the Kalman �lter. The
standard Kalman-equation for updating conditional variances is:

V AR
�
atjzta;i

�
= V AR

�
atjzt�1a;i

�
�

V AR
�
atjzt�1a;i

�2
V AR

�
atjzt�1a;i

�
+ ~�2a
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One can show that V AR
�
atjzt�1a;i

�
= V AR

�
at�1jzt�1a;i

�
+ �2a. Plugging this result

into the equation above and some straightforward manipulations yield

V AR
�
atjzta;i

�
=

h
V AR

�
at�1jzt�1a;i

�
+ �2a

i
~�2a

V AR
�
at�1jzt�1a;i

�
+ �2a + ~�

2
a

Note that

~�2a = 0 =) V AR
�
atjzta;i

�
= 0

~�2a �!1 =) V AR
�
atjzta;i

�
= V AR (at) �!1

where the last result follows from the fact that at follows a random walk. After
manipulating a bit I obtain the quadratic equation:

V AR
�
atjzta;i

�2
+ V AR

�
atjzta;i

�
�2a = �

2
a~�
2
a

This admits two solutions. There exists a unique acceptable solution (V AR
�
atjzta;i

�
�

0) though, that is

V AR
�
atjzta;i

�
=
��2a +

p
�4a + 4�

2
a~�
2
a

2

Note that I can write:q
�4a + 4�

2
a~�
2
a = 2V AR

�
atjzta;i

�
+ �2a

~�2a =

h
2V AR

�
atjzta;i

�
+ �2a

i2
4�2a

� �
2
a

4

and �nally,

~�2a =

h
2V AR

�
atjzta;i

�
+ �2a

i2
4�2a

� �
2
a

4
(4.58)

Now I need to �nd an expression for V AR
�
atjzta;i

�
in terms of the information �ow

�a and the variance �a.
Combining the equations (4.56) and (4.57) yields

�a = H
�
atjzt�1a;i

�
�H

�
atjzta;i

�
�a =

1

2
log2

 
V AR

�
atjzt�1i

�
V AR (atjzti)

!

Since �rms observe in�nitely many signals, V AR
�
atjzt�1i

�
= V AR

�
atjzti

�
+�a. Hence
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I obtain:

�a =
1

2
log2

 
V AR

�
atjzti

�
+ �2a

V AR (atjzti)

!
If one inverts this equation, one obtains:

V AR
�
atjzti

�
=

�2a
22�a � 1 (4.59)

Plugging this result into equation (4.58) leads to:

�a =
1

2
log2

264 1�
~�2a
�2a
+ 1

4

� 1
2 � 1

2

+ 1

375 (4.60)

This is the mapping ga in equation (3.3).
An analytical closed-form solution for the mapping gm in equation (3.3) cannot

be derived. I computationally approximate this mapping. To do that, I need to

compute the conditional entropies H
�
mtjzt�1m;i

�
and H

�
mtjztm;i

�
. Since the state mt

and signals zm;i;t are Gaussian, one can show that the conditional entropy is:

H
�
mtjz�1;i

�
=
1

2
log2

�
2�e � V AR

�
mtjz�1;i

��
(4.61)

Hence, I have to characterize the conditional variances of V AR
�
mtjz�1;i

�
, � 2 ft� 1; tg.

Let me de�ne the variance-covariance matrices:

Ptj� � E
h�
Xt � E

�
Xtjz�i

�� �
Xt � E

�
Xtjz�i

��0 jz�i i
for � 2 ft� 1; tg, where Xt �

�
X0t

... F0t

�0
, Xt � [mt;mt�1; at]

0, and

Ft �
1X
j=1

(1� �)j�1 �X(j)t

as de�ned in appendix B. It is easy to see that V AR
�
mtjzt�11;i

�
= Ptjt�1 [1; 1] and

V AR
�
mtjzt1;i

�
= Ptjt [1; 1], where the numbers within square brackets denote the

matrix component of interest. The matrix Ptjt�1 is nothing but the matrix P in
appendix B. See equation (4.55). The matrix Ptjt is de�ned as:

Ptjt � Ptjt�1 �Ptjt�1D0 �DPtjt�1D0 +�e
��1

DPtjt�1 (4.62)

where the matrices D and �e have been de�ned in (4.36) and in (4.37), respectively.
Thus, after one has characterized the �xed point as discussed in appendix B,
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one can use the resulting matrix P and equation (4.62) to pin down the conditional

variances V AR
�
mtjz�1;i

�
, for � 2 ft� 1; tg, the condition entropies H

�
mtjz�m;i

�
,

for � 2 ft� 1; tg, through equation (4.61), and �nally the information �ow �m �
H
�
mtjzt�1m;i

�
�H

�
mtjztm;i

�
.

Appendix D The Imperfect CommonKnowledge
Phillips Curve
The linearized price index can be written as:

0 = ���̂t + (1� �)
Z
p̂�j;tdj

By rearranging: Z
p̂�j;tdj =

�

1� � �̂t

Recall that we de�ned p̂�j;t = lnP
�
j;t � lnPt and �̂t = lnPt � lnPt�1 � ln��,Z

lnP �j;tdj � lnPt =
�

1� � (lnPt � lnPt�1 � ln��)

and then Z
lnP �j;tdj =

1

1� � lnPt �
�

1� � (lnPt�1 + ln��)

By rearranging:

lnPt = � (lnPt�1 + ln��) + (1� �)
Z �

lnP �j;t
�
dj (4.63)

The price-setting equation is:

E

"
�t

"
(1� �) + �mcj;t

p�j;t

#
yj;tjIj;t

#
+

+ E

" 1X
s=1

(��)s �t+s

"
(1� �)�s� + �

mcj;t+s
p�j;t

(�s�=1�t+� )

#
yj;t+sjIj;t

#
= 0

We can write

E
�
�t

h
1� � + �mcj;�ecmcj;t�bp�j;ti yj;tjIj;t�+

+ E

 1X
s=1

(��)s �t+s

h
(1� �)�s� + �mcj;�ecmcj;t+s�bp�j;t+Ps

�=1 �̂t+�
i
yj;t+sjIj;t

!
= 0

where the variables denoted withbare the log-linear deviations from the steady state.
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First realize that the square brackets are equal to zero at the steady state and hence
we do not care about the terms outside them. Taking the derivatives yields:

E

"�
�mcj;�

�cmcj;t � bp�j;t��+ 1X
s=1

(��)s
"
�mcj;�

 cmcj;t+s � bp�j;t + sX
�=1

�̂t+�

!#
jIj;t

#
= 0

We can take the term bpj;t out of the sum operator in the second term and gather the
common term to obtain:

E

"
�mcj;�cmcj;t � �mcj;� 1

1� �� bp�j;t + �mcj;�
1X
s=1

(��)s
 cmcj;t+s + sX

�=1

�̂t+�

!
jIj;t

#
= 0

Recall that bp�j;t = lnP �j;t � lnPt and cannot be taken out of the expectation operator.
We need to take two steps to do that. First, we write:

E
��
�mcj;�cmcj;t � �mcj;� 1

1� ��
�
lnP �j;t � lnPt

�
jIj;t

��
+

+ E

"
�mcj;�

1X
s=1

(��)s
 cmcj;t+s + sX

�=1

�̂t+�

!
jIj;t

#
= 0

and then

�mcj;�
1� �� lnP

�
j;t = E

��
�mcj;�cmcj;t + �mcj;� 1

1� �� lnPt
�
jIj;t

�
+

+E

"
�mcj;�

1X
s=1

(��)s
 cmcj;t+s + sX

�=1

�̂t+�

!
jIj;t

#

By simplifying the common coe¢ cients:

lnP �j;t = (1� ��)E
"cmcj;t + 1

1� �� lnPt +
1X
s=1

(��)s
 cmcj;t+s + sX

�=1

�̂t+�

!
jIj;t

#
(4.64)

Rolling this equation one step ahead yields:

lnP �j;t+1 = (1� ��)E
�cmcj;t+1 + 1

1� �� lnPt+1jIj;t
�
+

+E

" 1X
s=1

(��)s
 cmcj;t+s+1 + sX

�=1

�̂t+�+1

!
jIj;t

#

Take �rm j�s conditional expectation at time t on both sides and apply the law of
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iterated expectations:

E
�
lnP �j;t+1jIj;t

�
= (1� ��)E

�cmcj;t+1 + 1

1� �� lnPt+1jIj;t
�
+

+E

" 1X
s=1

(��)s
 cmcj;t+s+1 + sX

�=1

�̂t+�+1

!
jIj;t

#

We can take cmcj;t+1 inside the sum operator and write:

E
�
lnP �j;t+1jIj;t

�
= (1� ��)E

�
1

1� �� lnPt+1jIj;t
�
+

+E

"
1

��

1X
s=1

(��)s cmcj;t+s + 1X
s=1

(��)s
sX
�=1

�̂t+�+1jIj;t

#

Therefore,

1X
s=1

(��)s E [cmcj;t+sjIj;t] =
��

1� ��
�
E
�
lnP �j;t+1jIj;t

�
� E (lnPt+1jIj;t)

�
+(4.65)

���
1X
s=1

(��)s
sX
�=1

E [�̂t+�+1jIj;t]

The equation (4.64) can be rewritten as:

lnP �j;t = (1� ��)
�
E [cmcj;tjIj;t] + 1

1� ��E [lnPtjIj;t]
�
+

+ (1� ��)
1X
s=1

(��)s E [cmcj;t+sjIj;t] +
+ (1� ��)

1X
s=1

(��)s
sX
�=1

E [�̂t+� jIj;t] (4.66)

By substituting the result in equation (4.65) we obtain:

lnP �j;t = (1� ��)
�
E [cmcj;tjIj;t] + 1

1� ��E [lnPtjIj;t]
�
+

+ ��
�
E
�
lnP �j;t+1jIj;t

�
� E (lnPt+1jIj;t)

�
+

� (1� ��)
1X
s=1

(��)s+1
sX
�=1

E [�̂t+�+1jIj;t] +

+ (1� ��)
1X
s=1

(��)s
sX
�=1

E [�̂t+� jIj;t] (4.67)
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Consider the last term:

(1� ��)
1X
s=1

(��)s
sX
�=1

E [�̂t+� jIj;t] = (1� ��)��E [�̂t+1jIj;t] +

+ (1� ��)
1X
s=2

(��)s
sX
�=1

E [�̂t+� jIj;t]

and then

(1� ��)
1X
s=1

(��)s
sX
�=1

E [�̂t+� jIj;t] = (1� ��)��E [�̂t+1jIj;t] +

+ (1� ��)
1X
s=1

(��)s+1
 

sX
�=1

[(E [�̂t+�+1jIj;t])] + E [�̂t+1jIj;t]
!

Therefore we can write that

(1� ��)
1X
s=1

(��)s
sX
�=1

E [�̂t+� jIj;t] = (1� ��)��E [�̂t+1jIj;t] +

+ (1� ��)
1X
s=1

(��)s+1
sX
�=1

E [�̂t+�+1jIj;t] +

+ (1� ��)
 1X
s=1

(��)s+1
!
E [�̂t+1jIj;t]

Note that  1X
s=1

(��)s+1
!
=
(��)2

1� ��

Hence,

(1� ��)
1X
s=1

(��)s
sX
�=1

E [�̂t+� jIj;t] = (1� ��)��E [�̂t+1jIj;t] +

+ (1� ��)
1X
s=1

(��)s+1
sX
�=1

E [�̂t+�+1jIj;t] +

+ (��)2 E [�̂t+1jIj;t]

and by simplifying:

(1� ��)
1X
s=1

(��)s
sX
�=1

E [�̂t+� jIj;t] = ��E [�̂t+1jIj;t] +

+ (1� ��)
1X
s=1

(��)s+1
sX
�=1

E [�̂t+�+1jIj;t]
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We substitute this result into the original equation to get:

lnP �j;t = (1� ��)
�
E [cmcj;tjIj;t] + 1

1� ��E [lnPtjIj;t]
�
+

+ ��
�
E
�
lnP �j;t+1jIj;t

�
� E (lnPt+1jIj;t)

�
+

� (1� ��)
1X
s=1

(��)s+1
sX
�=1

E [�̂t+�+1jIj;t] +

+ ��E [�̂t+1jIj;t] +

+ (1� ��)
1X
s=1

(��)s+1
sX
�=1

E [�̂t+�+1jIj;t] (4.68)

After simplifying we get:

lnP �j;t = (1� ��)
�
E [cmcj;tjIj;t] + 1

1� ��E [lnPtjIj;t]
�

+ ��
�
E
�
lnP �j;t+1jIj;t

�
� E (lnPt+1jIj;t)

�
+ ��E [�̂t+1jIj;t] (4.69)

We can rearrange:

lnP �j;t = (1� ��)E [cmcj;tjIj;t] + E [lnPtjIj;t]
+ ��

�
E
�
lnP �j;t+1jIj;t

�
+ E [�̂t+1jIj;t]� E (lnPt+1jIj;t)

�
(4.70)

Note that by de�nition �̂t+1 � lnPt+1 � lnPt � ln��. Hence we can show that

lnP �j;t = (1� ��) � E [cmcj;tjIj;t] + (1� ��)E [lnPtjIj;t]
+ �� � E

�
lnP �j;t+1jIj;t

�
� �� ln�� (4.71)

We denote the �rm j0s average k-th order expectation about an arbitrary variable
x̂t as

E(k) (x̂tjIj;t) �
Z
E
�Z

E
�
: : :

�Z
E (x̂tjIj;t) dj

�
: : : jIj;t

�
djjIj;t

�
dj

where expectations and integration across �rms are taken k times.
Let us denote the average reset price as lnP �t =

R
lnP �j;tdj. We can integrate

equation (4.71) across �rms to obtain an equation for the average reset price:

lnP �t = (1� ��) � cmc(0)tjt + (1� ��) lnP (1)tjt

+ �� lnP
�(1)
t+1jt � �� ln�� (4.72)

where we use the claim of the proposition above. Keep in mind that the price index
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equation can be manipulated to get equation (4.63)

lnPt = � (lnPt�1 + ln��) + (1� �) lnP �t (4.73)

Let us plug the equation (4.72) into the equation (4.73):

lnPt = � lnPt�1 + (� � (1� �)��) ln�� (4.74)

+ (1� �)
h
(1� ��) � cmc(0)tjt + (1� ��) lnP (1)tjt + �� lnP

�(1)
t+1jt

i
It is easy to show that for any k 2 f1; 2; : : :g:

lnP
(k)
tjt = � lnPt�1 + (� � (1� �)��) ln�� (4.75)

+ (1� �)
h
(1� ��) � cmc(k+1)tjt + (1� ��) lnP (k+1)tjt + �� lnP

�(k+1)
t+1jt

i
Substituting the equation (4.75) associated with k = 1 into the equation (4.74):

lnPt = � lnPt�1 + (� � (1� �)��) ln�� (4.76)

+ (1� �)
h
(1� ��) � cmc(1)tjt + �� lnP �(1)t+1jt

i
+ (1� �) (1� ��) [� lnPt�1 + (� � (1� �)��) ln��]

+ (1� �) (1� ��)
h
(1� �)

h
(1� ��) � cmc(2)tjt + �� lnP �(2)t+1jt

ii
+ (1� �)2 (1� ��)2 lnP (2)tjt

Plugging the equation (4.75) associated with k = 2 into the equation (4.76):

lnPt = � lnPt�1 + (� � (1� �)��) ln��
+ (1� �)

h
(1� ��) � cmc(0)tjt + �� lnP �(1)t+1jt

i
+ (1� �) (1� ��) [� lnPt�1 + (� � (1� �)��) ln��]

+ (1� �)2 (1� ��)
h
(1� ��) � cmc(1)tjt + �� lnP �(1)t+1jt

i
+ (1� �)2 (1� ��)2 [� lnPt�1 + (� � (1� �)��) ln��]

+ (1� �)3 (1� ��)2
h
(1� ��) � cmc(2)t + �� lnP

�(2)
t+1jt

i
+ (1� �)3 (1� ��)3 lnP (3)tjt

Keeping on substituting the equation (4.75) associated with larger and larger k up to
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in�nity into the resulting equation yields:

lnPt =
lnPt�1 + (1� (1� �)�) ln��

(1 + (1� �)�)

+ (1� �) (1� ��)
1X
k=0

(1� �)k (1� ��)k cmc(k)tjt
+ (1� �)��

1X
k=0

(1� �)k (1� ��)k lnP �(k+1)t+1jt

Use the fact that lnPt = b�t + lnPt�1 + ln�� and from the price index (4.63):

lnPt = � (lnPt�1 + ln��) + (1� �) lnP �t (4.77)

b�t + lnPt�1 + ln�� = � (lnPt�1 + ln��) + (1� �) lnP �t (4.78)b�t+1 = (� � 1) (lnPt + ln��) + (1� �) lnP �t+1 (4.79)

lnP �t+1 =
�̂t+1
1� � + lnPt + ln��

By using these results we obtain:

b�t + lnPt�1 + ln�� = lnPt�1 + (1� (1� �)�) ln��
(1 + (1� �)�)

+ (1� �) (1� ��)
1X
k=0

(1� �)k (1� ��)k cmc(k)tjt
+ (1� �)��

1X
k=0

(1� �)k (1� ��)k lnP (k+1)tjt

+ ��

1X
k=0

(1� �)k (1� ��)k �̂(k+1)t+1jt

+
(1� �)��

1� (1� �) (1� ��)| {z }
(1��)�

1+(1��)�

ln��
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By simplifying and rearranging:

b�t = � (1� �)�
1 + (1� �)� (lnPt�1 + ln��)

+ (1� �) (1� ��)
1X
k=0

(1� �)k (1� ��)k cmc(k)tjt
+ (1� �)��

1X
k=0

(1� �)k (1� ��)k lnP (k+1)tjt

+ ��

1X
k=0

(1� �)k (1� ��)k �̂(k+1)t+1jt

Let us focus on the �rst term on the rhs:

� (1� �)��
� (1 + (1� �)�) (lnPt�1 + ln��) =

� (1� �)��
1� (1� �) (1� ��) (lnPt�1 + ln��)

= � (1� �)��
1X
k=0

(1� �)k (1� ��)k (lnPt�1 + ln��)

By using this result in the equation above we can write:

b�t = (1� �) (1� ��) 1X
k=0

(1� �)k (1� ��)k cmc(k)tjt
+ (1� �)��

1X
k=0

(1� �)k (1� ��)k

0BBBB@lnP (k+1)tjt � lnPt�1 � ln��| {z }
�
(k+1)
tjt

1CCCCA
+ ��

1X
k=0

(1� �)k (1� ��)k �̂(k+1)t+1jt

and hence:

b�t + lnPt�1 + ln�� = (1� �) (1� ��) 1X
k=0

(1� �)k (1� ��)k cmc(k)tjt
+ (1� �)��

1X
k=0

(1� �)k (1� ��)k �(k+1)tjt

+ ��
1X
k=0

(1� �)k (1� ��)k �̂(k+1)t+1jt
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We use the assumption of common knowledge in rationality to obtain:

�̂t = (1� ��) (1� �)
1X
k=0

(1� �)k cmc(k)t + ��
1X
k=0

(1� �)k �̂(k+1)t+1jt :

Appendix E Verifying the Guess
The transition equations of the model can be written as:

ŷt � �̂t = Et
�
ŷt+1 � �̂t+1

�
+
1


Et�̂t �

1


R̂t (4.80)

�̂t = (1� �) (1� ��)
1X
k=0

(1� �)k
h

�
ŷ
(k+1)
tjt � �̂(k+1)tjt

�
� z(k)tjt � �a�

(k)
a;tjt

i
+ ��

1X
k=0

(1� �)k b�(k+1)t+1jt (4.81)

R̂t = �rR̂t�1 + (1� �r)
�
�� (�̂t � �̂�t ) + �y

�
ŷt � zt � �a�a;t

��
+ �r�r;t (4.82)

To solve the model we need the following assumption (see also Nimark, 2007).

Assumption of common knowledge in rationality: It is true thatZ
Ej;t : : :

Z
Ej;t| {z }

s

'
(0:k)
t+hjt+h =M

h'
(s:k+s)
tjt

.

This assumption implies that agents use the actual law of motion of higher-order
beliefs to forecast the dynamics of the higher-order beliefs. The following claims turn
out to be useful:

CLAIM: s(s)tjt = v0�
(s)T(s)'

(0:k)
tjt + v1R̂t�1, where

� (s) =
�
I6(k+1�s);06(k+1�s)�6s

�0
T(s) =

�
06(k+1�s)�6s; I6(k+1�s)

�
and for any 0 � s � k.

Proof. We conjectured that st = v0'
(0:k)
tjt + v1R̂t�1.

s
(s)
tjt = v0'

(s:k+s)
tjt + v1R̂t�1
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Since we truncate beliefs after the k-th order we have that

s
(s)
tjt = v0�

(s)T(s)'
(0:k)
tjt + v1R̂t�1; for any 0 � s � k

CLAIM: s(s)t+1jt = v0M�
(s)T

(s)
'
(0:k+s)
tjt + v11

T
3 st, where

� (s) =
�
I6(k+1�s);06(k+1�s)�6s

�0
T(s) =

�
06(k+1)�6s; I6(k+1)

�
and for any 0 � s � k.

Proof. We conjectured that st+1 = v0'
(0:k)
t+1jt+1 + v1R̂t. Common knowledge in

rationality implies that

s
(s)
t+1jt = v0M'

(s:k+s)
tjt + v1R̂

(s)
tjt

Since R̂t 2 Ij;t, all j, then we can write:

s
(s)
t+1jt = v0M'

(s:k+s)
tjt + v11

T
3

�
v0'

(0:k)
tjt + v1R̂t�1

�
Since we truncate beliefs after the k-th order we have that

s
(s)
t+1jt = v0M�

(s)T
(s)
'
(0:k)
tjt + v11

T
3

�
v0'

(0:k)
tjt + v1R̂t�1

�
= v0M�

(s)T
(s)
'
(0:k)
tjt + v11

T
3 st

The Euler equation (4.80) implies:

b0'
(0:k)
tjt + b1R̂t�1 �

�
1T5 + 1

T
6

�
'
(0:k)
tjt = b0M'

(0:1)
tjt + b1

�
c0'

(0:k)
tjt + c1R̂t�1

�
�
�
1T5 + 1

T
6

�
M'

(0:1)
tjt

+
1



h
a0M'

(0:1)
tjt + a1

�
c0'

(0:k)
tjt + c1R̂t�1

�i
� 1



�
c0'

(0:k)
tjt + c1R̂t�1

�
and hence,

b0 = 1
T
5 + 1

T
6 + b0M+b1c0 �

�
1T5 + 1

T
6

�
M+

1


(a0M+a1c0)�

1


c0

b1 = b1c1 +
1


a1c1 �

1


c1
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The Phillips curve (4.81) can be rewritten as:

a0'
(0:k)
tjt + a1R̂t�1 =

= (1� �) (1� ��) 
k�1X
s=0

(1� �)s 1T2
h
v0�

(s+1)T(s+1)'
(0:k)
tjt + v1R̂t�1

i
+

+ (1� �) (1� ��)
k�1X
s=0

(1� �)s
h
�
�
(s+1)0g + (s)0a

�
'
(0:k)
tjt

i
+

+��
k�1X
s=0

(1� �)s 1T1
h
v0M�

(s+1)T(s+1)'
(0:k)
tjt + v11

T
3

�
v0'

(0:k)
tjt + v1R̂t�1

�i
where

(s)g =
�
01�6s; (0; 0; 0; 0; 1; 1) ;01�6(k�s)

�
and

(s)a =
�
01�6s; (1; 1; 0; 0; 0; 0) ;01�6(k�s)

�0
:

Therefore we obtain:

a0 = (1� �) (1� ��) �
"
�m1 �

 
k�1X
s=0

(1� �)s
�
(s+1)0g + (s)0a

�!#

+ ���m2 + ��

 
k�1X
s=0

(1� �)s
!
1T1 v11

T
3 v0

a1 = (1� �) (1� ��)
 
k�1X
s=0

(1� �)s
!
1T2 v1 + ��

 
k�1X
s=0

(1� �)s
!
1T1 v11

T
3 v1

where

m1 �

2666664

�
1T2 v0�

(1)T(1)
�

(1� �)
�
1T2 v0�

(2)T(2)
�

(1� �)2
�
1T2 v0�

(3)T(3)
�

...
(1� �)k�1

�
1T2 v0�

(k)T(k)
�

3777775 ;

m2 �

26666666664

h
1T1 v0M�

(1)T
(1)
i

(1� �)
h
1T1 v0M�

(2)T
(2)
i

(1� �)2
h
1T1 v0M�

(3)T
(3)
i

...

(1� �)k�1
h
1T1 v0M�

(k)T
(k)
i

37777777775
;

� = 11�k
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Finally the Taylor rule (4.82):

c0'
(0:k)
tjt +c1R̂t�1 = �rR̂t�1+

+ (1� �r)��
�
a0'

(0:k)
tjt + a1R̂t�1 � 1T3 '

(0:k)
tjt

�
+ (1� �r)�y

�
b0'

(0:k)
tjt + b1R̂t�1 �

�
1T1 + 1

T
2

�
'
(0:k)
tjt

�
+ 1T4 '

(0:k)
tjt

and then

c0 = (1� �r)��
�
a0 � 1T3

�
+ (1� �r)�y

�
b0 �

�
1T1 + 1

T
2

��
+ 1T4

c1 = �r + (1� �r)
�
��a1 + �yb1

�
Appendix F The Law of Motion of the Average
Beliefs
This section shows how to derive the law of motion of the average expectation. This
step is required in order to solve the model. Firms�reduced-form state-space model
is

Xt =W �Xt�1 +U � "t (4.83)

The average expectations of Xt follows

X
(1)
tjt = (I�KD)WX

(1)
t�1jt�1 +KDWXt�1 +KDU"t

where the steady-state matrix of Kalman gains is well-known to be equal to

K = PD0 �DPD0 +�e
��1 (4.84)

where�e = QQ0. The variance and covariance matrixP solves the following algebraic
Riccati equation:

P =W
h
P�PD0 �DPD0 +�e

��1
DP

i
W0 +UU0 (4.85)
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Note that '(0:1)tjt =
h
't; '

(1:1)
tjt

i0
and that:

't =

26666664

�z 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 �� 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 �g 0 0

0 0 0 0 0 0 0

37777775
| {z }

R1

'
(0:k)
t�1jt�1 +

26666664

�z 0 0 0 0 0
0 �a 0 0 0 0
0 0 �� 0 0 0
0 0 0 �r 0 0
0 0 0 0 ~�g 0
0 0 0 0 0 �g

37777775
| {z }

R2

� "t

So we can fully characterize the matrices M and N:

M =

�
R1
0

�
+

�
06�6 06�6k
06k�6 (I�KD)Wj(1:6k;1:6k)

�
+

�
0

KDWj(1:6k;1:6(k+1))

�
N =

�
R2
0

�
+

�
0

KDUj(1:6k;1:6)

�
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