
Resources in Process Algebra

Insup Lee a , Anna Philippou b,∗, Oleg Sokolsky a

aDepartment of Computer and Information Science, University of Pennsylvania,
200 South 33rd Street, Philadelphia, PA, USA

bDepartment of Computer Science, University of Cyprus, P.O. Box 20537,
Nicosia, Cyprus

Abstract

The Algebra of Communicating Shared Resources (ACSR) is a timed process al-
gebra which extends classical process algebras with the notion of a resource. It takes
the view that the timing behavior of a real-time system depends not only on de-
lays due to process synchronization, but also on the availability of shared resources.
Thus, ACSR employs resources as a basic primitive and it represents a real-time sys-
tem as a collection of concurrent processes which may communicate with each other
by means of instantaneous events and compete for the usage of shared resources.
Resources are used to model physical devices such as processors, memory modules,
communication links, or any other reusable resource of limited capacity. Addition-
ally, they provide a convenient abstraction mechanism for capturing a variety of
aspects of system behavior.

In this paper we give an overview of ACSR and its probabilistic extension,
PACSR, where resources can fail with associated failure probabilities. We present
associated analysis techniques for performing qualitative analysis (such as schedu-
lability analysis) and quantitative analysis (such as resource utilization analysis)
of process-algebraic descriptions. We also discuss mappings between probabilistic
and non-probabilistic models, which allow us to use analysis techniques from one
algebra on models from the other.

Key words: Process algebra, real-time systems, schedulability analysis, resource
modeling

? This research was supported in part by ARO DAAD19-01-1-0473, ARO W911NF-
05-1-0182, NSF CCR-0209024, NSF CNS-0509327, and NSF CNS-0509143.
∗ Corresponding author.

Email addresses: lee@cis.upenn.edu (Insup Lee), annap@cs.ucy.ac.cy (Anna
Philippou), sokolsky@saul.cis.upenn.edu (Oleg Sokolsky).

Preprint submitted to Elsevier Science 8 January 2007

1 Introduction

Modeling timing aspects of system behavior has a long history in process-
algebraic formalisms. In this paper, we advocate the use of resources in the
modeling of real-time systems as a means of arriving at simpler and more
faithful models.

Process algebras, such as CCS [26], CSP [17], and ACP [6], have been devel-
oped to describe and analyze communicating, concurrently-executing systems.
They are based on the premises that the two most essential notions in under-
standing complex dynamic systems are concurrency and communication [26].
The Algebra of Communicating Shared Resources (ACSR [21]) introduced by
Lee et. al., is a timed process algebra which can be regarded as an exten-
sion of CCS. The timing behavior of a real-time system depends not only on
delays due to process synchronization, but also on the availability of shared
resources. Most real-time process algebras adequately capture delays due to
process synchronization; however, they abstract out resource-specific details
by assuming idealistic operating environments. On the other hand, scheduling
and resource-allocation algorithms used for real-time systems ignore the ef-
fect of process synchronization except for simple precedence relations between
processes. The ACSR algebra provides a formal framework that combines the
areas of process algebra and real-time scheduling and, thus, can help us to
reason about systems that are sensitive to deadlines, process interaction and
resource availability.

The computation model of ACSR is based on the view that a real-time sys-
tem consists of a set of communicating processes that use shared resources
for execution, and synchronize with one another. The notion of real time in
ACSR is quantitative and discrete, and is accommodated using the concept
of timed actions. Executing a timed action requires access to a set of serially-
reusable resources and takes one unit of time. Idling of a process is treated as
a special timed action that consumes no resources. The execution of a timed
action is subject to the availability of the resources used in it. The contention
for resources is arbitrated according to the priorities of competing actions.
To ensure the uniform progression of time, processes execute timed actions
synchronously. Similar to CCS, the execution of an event is instantaneous
and never consumes any resource. The notion of communication is modeled
using events through the execution of complementary events, which are then
converted into an internal event. Processes execute events asynchronously ex-
cept when two processes synchronize through matching events. Priorities are
also used to direct the choice when several events are possible at the same
time. Thus, the concurrency model of ACSR includes interleaving semantics
for events as well as lock-step parallelism for timed actions.

2

Naturally, the proposed framework inherits all the attractive fea-
tures of process-algebraic approaches. To begin with, it facilitates
the modular and hierarchical specification of real-time systems. It
provides a small set of operators that can be used to build a large
specification in a bottom-up fashion. It supports a number of con-
structs that are unique to ACSR which provide the exception, time-
out and interrupt features and abstraction mechanisms for resource-
related information. Furthermore, ACSR is accompanied by equiv-
alence relations that are congruence relations. This feature enables
on one hand the hierarchical and stepwise development of large-
scale systems and, on the other hand, the verification of complex
systems by reasoning about their parts.

The notion of a resource, which is already important in the specification of
real-time systems, additionally provides a convenient abstraction mechanism
for probabilistic aspects of system behavior. A major source of behavioral vari-
ation in a process is failure of physical devices, such as processors, memory
units, and communication links. These are exactly the type of objects that are
captured as resources in ACSR specifications. Therefore, it is natural to use
resources as a means of exploring the impact of failures on a system’s perfor-
mance. This direction of work was investigated in the context of the process
algebra PACSR [30], where the ACSR framework was extended with the pos-
sibility of resource failures which happen with a given probability. Then, for
each execution step that requires access to a set of resources, we can compute
the probability of being able to take the step. This approach allows us to
reason quantitatively about a system’s behavior. An interesting effect of asso-
ciating probabilities with resources, is that the specification of a process does
not involve probabilities directly. Failure probabilities of individual resources
are defined separately and are used only during analysis. This makes specifi-
cations simpler and ensures a more systematic way of applying probabilistic
information. In addition, this approach allows one to explore the impact of
changing probabilities of failures on the overall behavior, without changing
the specification.

In addition to PACSR, ACSR has been extended into a family of other pro-
cess algebras. Extensions and variations include GCSR [5] that allows the
visual representation of ACSR processes, Dense-time ACSR [9] that includes
a more general notion of time, ACSR-VP [19] that includes a value-passing ca-
pability, and P2ACSR [35] that allows to specify power-constrained systems.
MCSR [23], an extension of ACSR with multi-capacity resources, allows us
to consider memory constraints. The PARAGON toolset [34] provides tool
support for modeling and analysis using these formalisms.

In this paper we review some of the main results obtained in this line of
work and we demonstrate the methodologies obtained for the specification

3

and analysis of real-time systems. In particular, we provide a comprehen-
sive presentation of ACSR and its probabilistic descendant PACSR from the
perspective of modeling and reasoning about resource-constrained real-time
systems. In doing this, we highlight the design choices behind the
main language features and subtle interactions that exist between
them which are important for system specification and verification.
In the context of ACSR, we discuss bisimulation-checking and we introduce
an HML logic with until featuring regular expressions over observables as
parameters. Furthermore, we discuss a methodology for performing schedu-
lability analysis of real-time systems and we provide a compositional result
which allows us to trace the source of undesirable deadlocks in system mod-
els. In the context of PACSR, we give emphasis on performing quantitative
analysis of process-algebraic descriptions by model-checking logical proper-
ties. Finally, we propose property-preserving mappings between ACSR and
PACSR. These mappings highlight the natural relationship between the two
process algebras and allow us to apply analysis techniques of one to the other.
Interestingly, these mappings preserve bisimulation equivalence, which implies
that two probabilistic systems are equivalent if their nonprobabilistic projec-
tions exhibit bisimilar behavior, and vice versa.

Related work in the area of resource handling in embedded real-time systems
falls into two categories. On the one hand, the importance of the issue has
been long realized by practitioners and a number of model-based, albeit infor-
mal, approaches have been published. We mention [25,33,18,4,2] among many
others. This modeling approach is primarily concerned with high-level perfor-
mance evaluations. Models in this category address concrete resources, such
as processors, communication channels and shared data. Modeling is done in
terms of formulae that relate the rate of resource use to the response time of
a real-time task. The models are used either in a simulation environment to
predict quality-of-service properties of the real-time system or dynamically as
part of access control mechanisms. For example, the authors of [25] consider
the system that coordinates the use of real-time communication channels with
the availability of processor resource.

By contrast, several formal approaches have emerged that aim at scheduling
of sets of tasks under constraints. Models in this category aim at a much more
detailed behavioral representation of the system behavior, and are intended to
be analysed using state-space exploration techniques such as model checking.
For the most part, these approaches consider only timing constraints and do
not introduce the notion of a resource, implicitly considering the processor
as the only shared resource in the system. For example, the authors of [15]
propose a formalism that allows us to model preemption in asynchronous real-
time systems. In [7], the authors limit themselves to fixed-priority scheduling
approaches, which allow them not to consider preemption directly, accounting
for it in the worst-case computation time. The formalism of [10] provides a gen-

4

eral scheme for handling preemption of processes due to resource contention,
but the scheduling rules have to be encoded by modifying transition rules
in the formalism (effectively creating a custom formalism for each schedul-
ing policy). A different approach is taken in [1], where the authors view the
scheduling activity as control and use controller synthesis techniques to model
scheduled real-time systems. Another approach based on timed automata is
presented in [3], where priorities are encoded using bounded integer variables.
In all of these approaches, adding other kinds of resources requires a major
extension to the formalism. PAMR [28] and PARS [27] are process algebras
that, like the ACSR family, employ resources as language primitives. In [27],
a dense-time process algebra is defined for performing schedulability analy-
sis of real-time systems where two separate theories are given for specifying
resource-consuming processes (e.g. tasks) and resource providers (schedulers).
Compared to our approach, the need to specify schedulers explicitly and en-
code process priorities into schedulers in PARS results in lower-level models,
which we expect will be harder to analyze. To the best of our knowledge, no
tool support exists for PARS. In a radically different approach, PAMR [28]
does not consider the timing aspects of resource sharing. Instead, the process
algebra captures utility that processes derive from resource use. Processes
with different utility functions can exchange resources with each other in or-
der to maximize the overall utility of the system. The authors of [12] approach
sharing of consumable resources, such as power, from a game-theoretic per-
spective. The notion of a resource interface captures resource consumption by
a process and assumptions about resource consumption by the environment
of the process. Compatible interfaces can operate together without violating
each other’s assumptions. In this case, as well, timing of resource use is not
explicitly considered.

The rest of the paper is organized as follows. Section 2 describes the basic
computation model of ACSR and overviews its syntax and semantics. It also
describes a simple scheduling example. Section 3 explains PACSR and extends
the same scheduling example with probabilistic resource failure. Section 4 dis-
cusses mappings between ACSR and PACSR, and, finally, Section 5 concludes
the paper.

2 ACSR

In the ACSR algebra there are two types of actions: those which consume time
and those which are instantaneous. The time-consuming actions represent one
“tick” of a global clock. These actions may also represent the consumption of
resources, e.g., CPUs, devices, memory, batteries in the system configuration.
In contrast, the instantaneous actions provide a synchronization mechanism
between concurrent processes.

5

Timed Actions. We consider a system to be composed of a finite set of
serially-reusable resources, denoted by R. An action that consumes one “tick”
of time is drawn from the domain PP (R × NN) with the restriction that each
resource be represented at most once. As an example, the singleton action
{(r, p)} denotes the use of some resource r ∈ R running at the priority level p.
The action ∅ represents idling for one time unit since no resource is consumed.

We use DR to denote the domain of timed actions, and we let A, B, C range
over DR. We define ρ(A) to be the set of resources used by the action A; e.g.,
ρ({(r1, p1), (r2, p2)}) = {r1, r2}.

Instantaneous Events. Instantaneous actions, called events, provide the ba-
sic synchronization mechanism in the process algebra. We assume a set of chan-
nels L. An event is denoted by a pair (a, p), where a is the label of the event, and
p ∈ NN is its priority. Labels are drawn from the set L = {a?, a! | a ∈ L}∪{τ}.
We say that a? and a! are inverse labels. As in CCS, the special identity label
τ arises when two events with inverse labels are executed in parallel.

We use DE to denote the domain of events, and let e range over DE. We
use l(e) to represent the label of the event e. The entire domain of actions is
Act = DR ∪ DE, and we let α and β range over Act.

2.1 Syntax and Semantics

We let P , Q range over ACSR processes and we assume a set of process

constants each with an associated definition of the kind C
def
= P . The

following grammar describes the syntax of ACSR processes.

P ::= NIL | (a, n). P | A:P | P + P | P‖P | P\F | [P]I

| P 4a

t (P, P, P) | b � P | C

We write Proc for the set of ACSR processes. The above operators are given
precise meaning via a family of rules that define the labeled transition re-
lations on processes. The semantics is defined in two steps. First, we de-
velop the unconstrained transition system, where a transition is denoted as
P

α−−−→ P ′. Within “→” no priority arbitration is made between actions. We
subsequently refine “→” to define the prioritized transition system, “→π”.
The non-prioritized transition relation is given in Table 1. (Note that the
symmetric rules of (Sum1), (Par1) and (Par2) have been omitted.)

We proceed to discuss each of the operators and their associated rules. The
process NIL represents the inactive process. It has no rules associated with it

6

Table 1
The non-prioritized relation

(Act1) e.P
e−→ P (Act2) A : P

A−→ P

(Sum1) P1
α−→ P

P1 + P2
α−→ P

(Par1) P1
e−→ P ′

1

P1‖P2
e−→ P ′

1‖P2

(Par2) P1
(a?,n)−→ P ′

1, P2
(a!,m)−→ P ′

2

P1‖P2
(τ,n+m)−→ P ′

1‖P ′
2

(Cond) P
α−→ P ′

true � P
α−→ P ′

(Par3) P1
A1−→ P ′

1, P2
A2−→ P ′

2

P1‖P2
A1∪A2−→ P ′

1‖P ′
2

, ρ(A1) ∩ ρ(A2) = ∅

(Res1) P
e−→ P ′, l(e) 6∈ F

P\F e−→ P ′\F
(Res2) P

A−→ P ′

P\F A−→ P ′\F

(Cl1) P
A1−→ P ′, A2 = {(r, 0) | r ∈ I − ρ(A1)}

[P]I
A1∪A2−→ [P ′]I

(Cl2) P
e−→ P ′

[P]I
e−→ [P ′]I

(Sc1) P
e−→ P ′, l(e) 6= b!, t > 0

P 4b

t (Q,R, S) e−→ P ′ 4b

t (Q,R, S)
(Sc2) P

(b!,n)−→ P ′, t > 0

P 4b

t (Q,R, S)
(τ,n)−→ Q

(Sc3) P
A−→ P ′, t > 0

P 4b

t (Q,R, S) A−→ P ′ 4b

t−1 (Q,R, S)
(Sc4) R

α−→ R′, t = 0
P 4b

t (Q,R, S) α−→ R′

(Sc5) S
α−→ S′, t > 0

P 4b

t (Q,R, S) α−→ S′
(Rec) P

α−→ P ′, C
def= P

C
α−→ P ′

thus it cannot perform any steps. The process (a, n). P executes the instanta-
neous event (a, n) and proceeds to P . The process A:P executes a resource-
consuming action during the first time unit and proceeds to P . The process
P + Q represents a nondeterministic choice between the two summands. The
process P‖Q describes the concurrent composition of P and Q: the compo-
nent processes may proceed independently or interact with one another while
executing events, and they synchronize on timed actions. Specifically, rule
(Par2) represents event synchronization that transforms matching observable
events into an internal event τ . Note that priorities of both events are involved
in computing the priority of the τ event. Different functions can be used to
compute the resulting priority. This function has to be symmetric in its argu-
ments to reflect that synchronization is symmetric; further, the function has
to be monotonic in both arguments and satisfy f(m, n) ≥ m,n. The function

7

max(m, n) could have been also used instead of addition. As stipulated by
rule (Par3), for a timed action to take place, all concurrent components must
simultaneously engage in a timed action thereby ensuring the uniform passage
of time. Note that the side condition of the rule requires that at most one pro-
cess may use a resource during any time step. In P\F , where F ⊆ L, the scope
of channels in F is restricted to process P and, thus, components of P may
use these labels to interact with one another but not with P ’s environment.

The resource closure operator, [P]I , I ⊆ R, describes a method for restricting
the scope of resources in I, within process P . Specifically, when a process P is
embedded in a closed context such as [P]I , we ensure that there is no further
sharing of the resources in I. For every time-consuming action A performed by
P utilizing less than the full resource set I, the action is augmented with (r, 0)
pairs for each resource r ∈ I−ρ(A). Instantaneous events are not affected. As
we will discuss below the use of this operator in system models is important
for the correct application of the prioritized transition relation. As an example

consider process P
def
= ∅ : P1 + {(cpu, 1)} : P2, I = {cpu}. Then:

[P]I
{(cpu,0)}−→ [P1]I , [P]I

{(cpu,1)}−→ [P2]I

The scope construct, P 4a

t (Q,R, S), binds process P by a temporal scope and
incorporates the notions of timeout and interrupts. We call t the time bound,
where t ∈ NN ∪{∞}, and require that P may execute for a maximum of t time
units. The scope may be exited in one of three ways: First, if P terminates
successfully within t time-units by executing an event labeled a!, where a ∈ L,
then control is delegated to Q, the success-handler. Else, if P fails to terminate
within time t then control proceeds to R. Finally, throughout execution of this
process, P may be interrupted by process S. As an example consider the task

specification T
def
= R4a

10 (SH,EH, IN) where

R
def
= (in?, 1). (a!, 2). NIL + ∅ : R

SH
def
= (ack!, 1). T

EH
def
= (nack!, 1). T

IN
def
= (kill?, 3). NIL

This task awaits for an input request to arrive for a 10 time-unit period. If
such an event takes place the process signals the arrival on channel a and,
subsequently, the success handler process, SH, acknowledges the event. If the
deadline elapses without the appearance of the event, the task signals the lack
of input on channel nack. Finally, at any point during its computation, the
task may receive a signal on channel kill and halt its computation. According
to the rules for scope, process R4a

10(SH,EH, IN) may engage in the following

8

actions:

R4a

10 (SH,EH, IN)
∅−→ R4a

9 (SH,EH, IN)

R4a

10 (SH,EH, IN)
(in?,1)−→ ((a!, 2). NIL)4a

10 (SH,EH, IN)

R4a

10 (SH,EH, IN)
(kill?,3)−→ NIL

Furthermore, note that:

R4a

0 (SH,EH, IN)
(nack!,1)−→ T

((a!, 2).NIL)4a

10 (SH,EH, IN)
(τ,2)−→ SH

Process b � P represents the conditional process: it performs as P if boolean
expression b evaluates to true and as NIL otherwise. Process constant C with

process definition C
def
= P allows standard recursion.

As a syntactic convenience, we allow ACSR processes to be parameterized by
a set of index variables. Each index variable is given a fixed range of values.
This restricted notion of parameterization allows us to represent collections of
similar processes concisely. For example, the parameterized process

Pt = t < 2 � (at, t). Pt+1, t ∈ {0..2}

is equivalent to the following three processes:

P0 = (a0, 0). P1, P1 = (a1, 1). P2, P2 = NIL

The prioritized transition system is based on preemption, which incorporates
our treatment of priority. This is based on a transitive, irreflexive, binary
relation on actions, ≺, called the preemption relation. If α ≺ β, for two actions
α and β, we say that α is preempted by β. Then, in any process, if there is a
choice between executing either α or β, β will always be executed. We refer
to [8] for the precise definition of ≺. Here, we briefly describe the three cases
for which α ≺ β is deemed to be true by the definition.

• The first case is for two timed actions α and β which compete for common
resources. Here, it must be that the preempting action β employs all of its
resources at priority level at least the same as α. Also, β must use at least one
resource at a higher level. It is still permitted for α to contain resources not
in β but all such resources must be employed at priority level 0. Otherwise,
the two timed actions are incomparable. Note that β cannot preempt an

9

action α consuming a strict subset of its resources at the same or lower level.
This is necessary for preserving the compositionality of the parallel operator.
For instance, {(r1, 2), (r2, 0)} ≺ {(r1, 7)} but {(r1, 2), (r2, 1)} 6≺ {(r1, 7)}
and {(r1, 2)} 6≺ {(r1, 7), (r2, 1)}.

• The second case is for two events with the same label. Here, an event may
be preempted by another event with the same label but a higher priority.
For example, (τ, 1) ≺ (τ, 2), (a, 2) ≺ (a, 5), and (a, 1) 6≺ (b, 2) if a 6= b.

• The third case is when an event and a timed action are comparable under
“≺.” Here, if n > 0 in an event (τ, n), we let the event preempt any timed
action. For instance, {(r1, 2), (r2, 5)} ≺ (τ, 2), but {(r1, 2), (r2, 5)} 6≺ (τ, 0).
This case ensures that interactions happen as soon as both parties are ready.
The case of zero priority is treated as a special case to enable the modeling
of timing uncertainty.

We define the prioritized transition system “→π,” which simply refines “→”
to account for preemption.

Definition 1 The labeled transition system “→π” is defined as follows: P
α−→π

P ′ if and only if (1) P
α−→ P ′ is an unprioritized transition, and (2) there is

no unprioritized transition P
β−→ P ′′ such that α ≺ β. 2

We conclude this section by discussing some important characteristics of the
language:

Concurrency Semantics. Beginning with instantaneous events, we may
see that ACSR adopts the CCS-style of communication, that is, processes may
execute such events asynchronously and independently with the exception of
two processes synchronizing on complementary events, leading to an internal
event taking place. On the other hand, to ensure the uniform progress of time,
timed transitions are synchronous, that is, for a timed action to take place in a
composition of parallel processes, all components must simultaneously engage
in a timed action (possibly idling). This is made explicit in rule (Par3). Note
that the side condition of the rule requires that at most one process may
use a resource during any time step. A consequence of this side condition is
that whenever two, or more, concurrent processes are competing for the use
of the same resource and neither is willing to engage in alternative behaviour,
then the system is deadlocked. This is because, by (Par3), no timed action is
allowed to take place. This fact plays a significant role in the algebra as it is
exploited for performing schedulability analysis.

Deadlock vs successful termination. In timed process algebras it is often
convenient to distinguish between a completed process and a deadlocked pro-
cess. The semantic difference between the two is that the completed process

10

cannot perform any actions but allows time to progress whereas the deadlocked
process does not. The ACSR process NIL corresponds to the deadlocked pro-

cess, whereas the completed process can be defined as Idle
def
= ∅ : Idle.

By using the deadlocked process NIL, it is possible to model abnormal con-
ditions. Note that presence of the deadlocked process as a component of a
parallel composition causes a timelock in the system due to the synchronous
nature of the parallel composition with respect to time passing.

Time passage. An important observation to make about the semantic rules
is that the only “source” of time progress in the language is the action-prefix
operator. That is, time progress has to be explicitly encoded into the model
by the designer. This feature forces the designer to think carefully about time
progress and may result in fewer unexpected behaviors in a complex model.
For example, consider two tasks competing for the use of a resource cpu, and,
suppose that the first needs to urgently employ the resource (or else it misses
its deadline) while the second is willing to wait indefinitely until the resource
becomes available. These two tasks can be modeled as follows

T1
def
= {(cpu, 1)} : Idle, T2

def
= {(cpu, 1)} : Idle + ∅ : T2

and, by rule (Par3), T1‖T2
{(cpu,1)}−→ Idle‖T2. On the other hand, if both tasks

were urgent in using the resource, then the idling option ∅ : T2 would be absent
from the definition of T2, and the composition of the two processes would be a
deadlocked system. This close correspondence between the presence of dead-
locks and tasks missing their deadline is taken advantage of for schedulability
analysis of ACSR processes.

Maximal Progress. It is often the case that a process has the option be-
tween idling indefinitely or performing some other instantaneous or timed
step. Although such idling behaviors may emerge in system models, they are
generally considered unrealistic and should be avoided. Most timed process
algebras include some means of ensuring progress in an execution. In ACSR,
this is achieved by a combination of the closure operator and priority-based
preemption relation. In particular, we may see that by closing a system by the
set of its resources we enforce progress to be made.

For example, consider process T2 above. We may observe that this process
can choose to idle indefinitely even if resource cpu becomes available. This
behavior, however, does not comply with our intention of defining a pro-
cess that may delay until resource cpu becomes available in which case it

makes progress by consuming the resource. If we consider the system Sys
def
=

[T1 ‖ T2]{cpu} we initially obtain the behavior Sys
(cpu,1)−−−→π [Idle ‖ T2]{cpu},

11

and, although [Idle ‖ T2]{cpu}
(cpu,0)−→ [Idle ‖ T2]{cpu} and [Idle ‖ T2]{cpu}

(cpu,1)−→
[Idle ‖ Idle]{cpu}. In the prioritized transition system, the former transition is
pruned by the preemption relation, allowing only the latter progress-making
transition.

2.2 Analysis of Real-Time Systems in ACSR

ACSR models can be analyzed in several ways. Similar to other behavioral
formalisms, equivalence checking and model checking are common ways of
establishing functional and timing correctness. In the former case, a detailed
model is checked for equivalence with a more abstract model that represents
system requirements. In the latter case, system requirements are expressed as
formulae in a temporal logic and a model-checking algorithm is used to verify
that the model satisfies these formulae.

In addition, ACSR allows us to perform schedulability analysis of a real-time
system model. Resource-sharing execution of concurrent processes or threads
in a real-time system is typically controlled by a scheduler that follows a
particular scheduling discipline, such as Rate Monotonic, RM, and Earliest
Deadline First, EDF. Different properties of scheduling algorithms may result
in violations of timing constraints of a system under one scheduling discipline,
while another scheduling discipline may succeed. Schedulability analysis de-
termines whether the set of processes in a real-time system can be scheduled,
by any scheduler, or with respect to a given scheduling discipline.

2.2.1 Resource-sensitive process equivalences

Equivalence between ACSR processes is based on the concept of bisimula-
tion [29,26] which compares the computation trees of two processes. Two
processes are bisimilar if, for each step of one, there is a matching, possibly
multiple, step of the other, leading to bisimilar states. Below, we introduce
three well-known such relations on which we base our study. First, we re-
call some useful definitions. We say that Q is a derivative of P , if there are
α1, . . . , αn ∈ Act, n ≥ 0, such that P

α1−→π . . .
αn−→π Q, in which case we also

write P
α1...αn−→ π Q. Moreover, given α ∈ Act we write ⇒π for the reflexive and

transitive closure of
τ−→π,

α⇒π for the composition ⇒π
α−→π⇒π, and

α̂⇒π for
⇒π if α = τ and

α⇒π otherwise.

Definition 2

(1) Strong bisimilarity is the largest symmetric relation, denoted by ∼, such
that, if P ∼ Q and P

α−→π P ′, there exists Q′ such that Q
α−→π Q′ and

12

P ′ ∼ Q′.
(2) Weak bisimilarity is the largest symmetric relation, denoted by ≈, such

that, if P ≈ Q and P
α−→π P ′, there exists Q′ such that Q

α̂⇒π Q′ and
P ′ ≈ Q′.

(3) Branching bisimilarity is the largest symmetric relation, de-
noted by ', such that, if P ' Q and P

α−→π P ′, either (1) α = τ

and P ′ ' Q, or (2) there exist Q′, Q′′ such that Q ⇒π Q′′ α̂−→π Q′

and P ' Q′′, P ′ ' Q′. 2

Strong bisimilarity is an equivalence relation and a congruence with respect
to the ACSR operators [8]. Weak and branching bisimilarities are equivalence
relations though not congruences for ACSR. We may obtain a weak bisimu-
lation congruence and a branching bisimulation congruence in the usual way
by appropriately handling initial actions of processes [26].

Algorithms for checking strong and weak bisimulation for finite-state ACSR
processes have been implemented in the VERSA toolset, thus allowing the ver-
ification of ACSR specifications. We refer the interested reader to [22] for
examples of using weak bisimulation for the verification of railroad-
crossing systems.

2.2.2 Model checking of ACSR processes

We have defined a temporal logic for expressing properties of ACSR processes
and a model-checking algorithm to determine whether a finite-state ACSR
process satisfies a given formula.

We use an extension of the Hennessy-Milner logic (HML) with until, which
was proposed in [14]. The until operator of [14] is parameterized by a single
observable event. When one wants to express a complex temporal behavior
that involves a number of events, it is necessary to resort to multiple nested
until operators, which makes the formula hard to read. In order to improve
the usability of the logic, we introduce an extended until operator that is
parameterized by a regular expression. The regular expression represents the
set of observable behaviors that are admissible along a path within the scope of
the until operator. Discussion in Section 3 revisits the design decisions made in
the definition of this logic and provides additional justification for the regular
expressions in the until operator. We point out that the introduced logic,
similarly to the logic of [14], characterizes branching bisimulation. However,
we do not go into the details in this paper.

Observables. Formulae of the logic will be interpreted over labeled transition
systems generated by ACSR processes. Formulae, therefore, will refer to the
labels of the transition systems, that is, events and actions. However, events

13

and actions carry with them the values of their dynamic attributes, which are
not meaningful in the logical context. Therefore, primitive constructs used in
the logical formulae are event labels, and sets of resources, as action labels.
Given an event e, we write obs(e) = `(e) and, given a timed action A =
{(r1, p1), . . . (rn, pn)}, we write obs(A) = {r1, . . . , rn}.

Regular expressions. We use the standard definition of regular expressions
using the following grammar

Φ ::= l | V | ΦΦ | Φ + Φ | Φ∗,

where l ∈ L, V ⊆ R. As usual, we understand a regular expression as a set of
strings in the alphabet of event and action labels. Operators are concatenation,
union, and Kleene star. A derivative of Φ is a regular expression Φ′ such that
whenever a string σ′ ∈ Φ′, there exists a string σ such that σσ′ ∈ Φ.

The logic. The syntax of the logic LHMLu is given by the following grammar.

f ::= tt | ¬f | f ∧ f ′ | f〈Φ〉f ′ | f〈Φ〉tf ′

The atomic proposition tt represents a trivial property that is always true.
Logical connectives have classical interpretations. The logic introduces two
kinds of until operators which are used to specify properties of a path through a
transition system. Both operators are parameterized with a regular expression
that specifies the observable behavior expected along the path. In addition,
the second until operator introduces a time bound on the length of the path
to enable us to specify quantitative timing properties of the system.

The semantics for LHMLu is given with respect to a given labeled transition
system T = (S,Act,−→π, s0). In order to define the semantic function, we
introduce the following definitions. A computation in T is a sequence c =
s0 α1 s1 . . . αn sn, such that si ∈ S, αi+1 ∈ Act and (si, αi+1, si+1) ∈−→π,
for all 0 ≤ i < n. We define trace (c) = obs(α1) . . . obs(αn)|̀ (L ∪ 2R − {τ}),
states (c) = {s0, . . . sn}, time (c) = #(α1 . . . αn|̀ DR), first (c) = s0, init (c) =
s0 . . . sn−1, and last (c) = sn. The operator w|̀ W denotes a projection of the
sequence w that retains only those elements of w that belong to the set W .
Thus, trace (c) is the observable content of a path, states (c) are the states
traversed by c, time (c) is the duration of the path, that is, the number of
timed actions along the path, and init (c) is the path truncated by the last
transition.

The semantic function |= ⊆ S × LHMLu is defined inductively as follows:

14

s |= tt always

s |= ¬f iff s 6|= f

s |= f ∧ f ′ iff s |= f and s |= f ′

s |= f〈Φ〉f ′ iff there is a path c such that trace (c) ∈ Φ, first (c) =
s, ∀s′ ∈ states (init (c)) |= f , and last (c) |= f ′.

s |= f 〈Φ〉tf ′ iff there is a path c such that trace (c) ∈ Φ, first (c) =
s, ∀s′ ∈ states (init (c)) |= f , last (c) |= f ′ and
time (c) ≤ t.

We have developed a model-checking algorithm that determines whether a
finite-state ACSR process P satisfies a given LHMLu formula f . The algorithm
follows the approach of [13] for CTL model checking. We label the states of P
with the values of each syntactic subformula of f according to the semantic
function for the logic. The only non-trivial case is the until operator f1〈Φ〉f2,
which, effectively, computes the product of P with the regular expression Φ
and explores it in a depth-first manner, traversing nodes (P ′, Φ′) where P ′

is already labeled with f2, and Φ′ is a derivative of Φ. Traversal of a path
terminates when a node (P ′′, Φ′′) is reached, such that P ′′ is labeled with f2

and Φ′′ accepts the empty string.

Compared to the original definition of HML with until [14], parameterized
until operators can express a property of an execution that contains a series
of events, rather than only one event. We believe that this extension makes
the logic easier to use. As an example, consider a process that receives mes-
sages from a communication channel, processes them for one time unit, and
sends acknowledgements back to the sender. The nominal execution pattern,
then, is Φnom = (recv?{cpu}ack!∅∗)∗. In addition, the process would have to
be concerned with exceptional conditions such as timeouts, preemptions from
higher-priority processes, etc. Reasoning about the nominal behavior of such
process would involve formulas of the form f〈recv?{cpu}ack!〉f ′. Such a for-
mula can of course be rewritten to use single-event until operators by nesting:
f〈recv?〉(f〈{cpu}〉(f〈recv?〉f ′), which is significantly harder to comprehend
visually.

Furthermore, the use of Kleene star in regular expressions allows us to in-
crease the expressive power of the logic. The formula f〈Φnom〉f ′ reasons about
continuous nominal behavior, and cannot be expressed using a finite formula
in the original HML with until.

At the same time, the number of derivatives of Φ that need to be explored dur-
ing model checking is, in the worst case, exponential in the size of Φ, whereas
checking the original HML with until is linear in the size of the formula. We
note, however, that a LHMLu formula can be exponentially smaller than the

15

equivalent formula with single-event nested until operators.

2.3 Example: EDF Scheduling

In the sequel, we will use a simple example from the area of schedulability
analysis. The example describes a set of periodic tasks scheduled according to
the Earliest-Deadline-First [24] scheduling policy. This policy assigns dynamic
priorities to the tasks according to the proximity of their deadlines. We assume
here that the deadline of each task is equal to its period. That is, once a task
is dispatched, it needs to complete its execution before it is dispatched again.
The ACSR representation of the EDF scheduling algorithm was first presented
in [11].

An instance of the scheduling problem contains a set of tasks ti, with period
pi and worst-case execution time ei. The task set is modeled as a collection of
processes Task 1, . . . ,Taskn, one for each periodic task in the set. The process
Task i contains two concurrent subprocesses: Ti and Dispatch i. The auxiliary
process Dispatch i handles periodic invocations of the task ti and detects missed
deadlines. The process Ti captures the state of the task ti, which can be
awaiting the next invocation, be executing on the processor resource, or be
preempted by a higher priority task. Both tasks share the same processor,
modeled by the resource cpu. No other tasks use the processor.

The process Ti idles until it is awakened by the start i event and then starts
competing for the processor. At each time unit, the task may either get access
to the processor or, if it is preempted by a higher-priority task, it idles until
the next time unit. Once the necessary amount (i.e., ei) of execution time is
accumulated, the task returns to the initial state and waits for the next period.
The process Dispatch i sends the start i event to Ti every pi time units. If Ti

has not completed its execution by then, meaning that the deadline is missed,
it cannot accept the start i event and the dispatcher deadlocks.

The complete specification is shown in Figure 1, where, for simplicity, we em-
ploy the notation An : P for the process that makes n consecutive executions
of action A before proceeding to process P . In the specification of a task, i is
the task number and j the accumulated execution time. The priority of task
i after having accumulated j units of execution time is dmax − (pi − j), where
dmax = max1≤i≤n (pi). Note that closure of the resource cpu is applied. This
is for ensuring progress in the model, as discussed in the context of the ACSR
prioritized transition system.

Let us make some important observations regarding this specification. We
begin by noting that process System is composed of a number of sequential
processes Ti and Dispatchi. Process Ti can be considered to be a patient

16

System
def
= [Task 1‖ . . . ‖Taskn]{cpu}

Task i
def
= (Ti‖Dispatch i)\{start i} i = {1..n}

Dispatch i
def
= (start i!, i).∅pi : Dispatchi i = {1..n}

Ti
def
= (start i?, 0).Pi,0 + ∅ : Ti i = {1..n}

Pi,j
def
= j < ei � (∅ : Pi,j

+{(cpu, dmax − (pi − j))} : Pi,j+1)

+ j = ei � Ti i = {1..n}, j = {0..ei}

Fig. 1. ACSR specification of an EDF scheduling problem

process, in that all its derivatives enable an idling action, thus are willing
to allow time to pass, if necessary. On the other hand, process Dispatchi is
patient in all its derivatives, expect the initial state which is urgent to perform
event (start!i, i), that is, to dispatch an instance of the task every pi time units.
If process Ti is in its initial state, then the task dispatch will successfully take
place, otherwise, process Ti is still executing a previous task invocation and
the system will deadlock signifying that the deadline of an invocation has
been missed. In other words, the model of the system is constructed so that a
missed deadline induces a deadlock. This is achieved by associating an urgent
event at the time of each task deadline. This approach can be applied in a
variety of contexts for the purpose of performing schedulability analysis.

ACSR analysis techniques allow us to verify the schedulability of a system of
tasks for fixed values of parameters ei and pi. According to the philosophy of
ACSR modeling, the correctness criterion for a system to be schedulable is that
the corresponding process executes forever, in other words, it does not dead-
lock. The following result pinpoints the source of deadlocks in a special class
of systems, including process System above. Specifically, it states that,
given a parallel composition of a set of sequential processes, some
of which being patient in their execution while others occasionally
firing urgent events, a deadlock occurs exactly when an urgent event
cannot be executed due to a participating process being unable to
engage in it. This result can be applied to the ACSR models of a
wide range of real-time systems, since it captures the essence of the
ACSR design and verification methodology and, in particular, the
association of schedulability analysis with deadlock detection.

First, let us introduce some useful notation. In the sequel, we will
write P

α−→π if there is some process P ′ such that P
α−→π P ′ and

P 6 α−→π if there is no process P ′ such that P
α−→π P ′. Finally, we write

Πi∈IPi, where I = {i1, . . . , in}, for Pi1‖ . . . ‖Pin.

17

Theorem 3 Consider a process P such that P
def
= [(Πi∈IPi)\F]U for

F ⊆ L, U ⊆ R and where, for all i, Pi contains no parallel composition
operator, and I = I1 ∪ I2 where,

• for all i ∈ I1 and for all derivatives Qi of Pi, Qi
∅−→π or Qi

α−→π, α ∈ DE,
`(α) 6∈ F , and

• for all i ∈ I2 and for all derivatives Qi of Pi, either (1) Qi
∅−→π or (2)

Qi
αi−→π, `(αi) ∈ F , and Qi 6

β−→π for all β ∈ Act− {αi}.

Then, for all derivatives Q of P , if Q 6−→π then Q = [(Πi∈IQi)\F]U and
Qi

αi−→π for some i ∈ I2.

Proof: Consider a process P
def
= [(Πi∈IPi)\F]U satisfying the conditions

of the theorem. We will prove that any derivative Q of P is such that Q =
[(Πi∈IQi)\F]U , where no Qi contains a parallel composition operator, and I
can be partitioned into sets I1 and I2 satisfying the conditions of the theorem.
The proof will be carried out by induction on the length, n, of the transition
P

w−→π Q, w ∈ Act∗.

Clearly, the claim holds for n = 0. Suppose that it holds for n = k−1 and that
P

w−→π Q′ α−→π Q is a transition of size n. By the induction hypothesis, Q′ =
[(Πi∈IQ

′
i)\F]U satisfies the conditions of the theorem. Consider the transition

Q′ α−→π Q. Three cases exist:

• α ∈ DR. This implies that, for all i ∈ I, Q′
i

Ai−→π Qi, for some Qi,
Q = [(Πi∈IQi)\F]U and α =

⋃
i∈I Ai. It is straightforward to see that no

Qi contains a parallel composition operator and that, since each Qi is a
derivative of Q′

i, the conditions of the theorem are satisfied.

• α = τ . This implies that there exist j, k ∈ I, such that Q′
j

αj−→π Qj and

Q′
k

αk−→π Qk, where `(αj) and `(αk) are inverse labels, and

Q = [(Πi∈I−{j,k}Q
′
i ‖ Qj ‖ Qk)\F]U .

It is straightforward to see that no Q′
i, Qi, contains a parallel composition

operator and to check that conditions of the theorem are satisfied.

• α ∈ DE. This implies that there exists j ∈ I, such that Q′
j

αj−→π Qj,
Q = [(Πi∈I−{j}Q

′
i ‖ Qj)\F]U and the proof follows easily.

So consider an arbitrary derivative Q of P and suppose that Q 6−→π. Since
Q = [(Πi∈IQi)\F]U satisfies the conditions of the theorem, and Q 6 α−→π, α ∈
Act, it must be that some Qi 6

∅−→π, i ∈ I2. This implies that Qi
αi−→π and the

result follows. 2

We now return to the schedulability of system System above. The main step
in reaching the desired result is to associate the source of deadlocks, as char-

18

acterized by the previous theorem, to the violation of task deadlines.

Proposition 4 System is schedulable if and only if it contains no deadlocks.

Proof: First, we observe that if System contains no deadlocks then the asso-
ciated real-time system is schedulable: task activations take place as planned
and no deadlines are missed.

To prove the opposite direction, we show that if the system contains a dead-
lock then System is not schedulable. Consider system System. Note that,
although in its current form this process does not satisfy the condi-
tions of Theorem 3, by using the ACSR axiom system [8], we may
easily rewrite this process to an equivalent process which does, that
is,

System = [(Πi=1...n (Ti ‖ Dispatch i)) \ F]{cpu}

where F = {start i | 1 ≤ i ≤ n}.

It is straightforward to verify that the above process satisfies the condi-
tions of Theorem 3, and, further, I2 contains all processes Dispatchi, with
αi = (start i, i). Consequently, by the same theorem, if a deadlock arises in
System, the event start i is enabled in some process Dispatchi but not in the
respective Ti process. This implies that the task has not yet accumulated the
required execution time while its deadline has elapsed. Thus, the system is
not schedulable which completes the proof. 2

Consequently, the presented model can be instantiated to a specific task set,
and its schedulability can be checked by performing reachability analysis on
the state space of the process to search for deadlock states.

As a concrete instance of this problem, we consider a set of three tasks with
p1 = 8, p2 = 10, p3 = 14, e1 = 3, e2 = 3, e3 = 1. Theoretical results
from [24] show that a set of tasks is schedulable if the utilization of the task
set, Ui = Σi∈{1..n}ei/pi does not exceed 1. The task set from our example
satisfies this criterion and, by checking the resulting process for the absence
of deadlocks, we can indeed verify that all deadlines are met. On the other
hand, the set e1 = 2, p1 = 3, e2 = 1, p2 = 2 has a deadlock and thus is not
schedulable.

The same type for analysis can be applied for any task model no matter the
scheduling discipline or the presence of offsets, task dependencies and other
behavioral variations, including scenaria for which no schedulability tests exist.
Once the model is faithfully captured as an ACSR process, schedulability
analysis can be automatically decided by searching for deadlocks within the

19

system. For example, consider a set of periodic tasks as introduced in Figure 1,
extended with data dependencies. When a task T1 supplies data for T2, an
instance of T2 cannot begin its execution until a preceding instance of T1

completes its execution, producing fresh data. To the best of our knowledge,
there is no exact schedulability test for this task model. Encoding of this task
model into ACSR has been introduced in [31]. It satisfies the conditions of
Theorem 3, and all results of this section are immediately applicable for the
schedulability analysis of such task sets.

Schedulability analysis of systems such as the one above can be
alternatively carried out by bisimulation checking or model check-
ing. For bisimulation checking, one needs to construct the specifi-
cation of the system as an ACSR process. In the example above,
the requirement being that the process executes forever, we would

write Spec
def
= ∅ : Spec and check that System\\{cpu} ≈ Spec. Of

course, compared to deadlock-detection this approach is inefficient.
Nonetheless, the general approach is viable in the context of value-
passing ACSR, where bisimulation plays a central role for perform-
ing schedulability analysis: system models may contain a number of
unspecified parameters, and the purpose of the analysis performed is
to specify values for these parameters that make the system schedu-
lable. To achieve this, symbolic bisimulation is employed between
the parameterized system and the process that idles forever, and,
with the aid of integer programming, appropriate ranges for the
parameters that make the system schedulable are computed.

On the other hand, model checking the schedulability of a system
can be carried out by the inclusion of special actions in the model
that signify missed deadlines. Consequently, one may check whether
these actions may eventually take place, and, if so, conclude that the
system is not schedulable. In the example above, this would involve
rewriting the dispatcher process as follows:

Dispatch i
def
= (start i!, i).∅pi : Dispatchi

+ (τ, 0).(miss !, i).NIL i = {1..n}

The new summand involves an internal action taking place at prior-
ity 0. As specified by the preemption relation, this action may take
place only if no other action is enabled within the system. That is,
if the deadline of process Ti is missed and the start i even cannot
be accepted, this second summand is enabled and the miss event is
fired. Thus, the correctness requirement in the new system is the
property ¬(true〈{cpu}∗ miss !〉true).

20

3 Probabilistic ACSR

PACSR (Probabilistic ACSR) extends the process algebra ACSR by associ-
ating each resource with a probability. This probability captures the rate at
which the resource may fail. Instantaneous events in PACSR are identical to
those of ACSR; timed actions can now account for resource failure, as dis-
cussed below.

Timed Actions. As in ACSR, we assume that a system contains a finite set
of serially-reusable resources drawn from the set R. We also consider set R
that contains, for each r ∈ R, an element r representing the failed resource
r. We write R for R ∪ R. Actions are constructed as in ACSR, but now can
contain both normal and failed resources. So, in PACSR, the action {(r, p)},
r ∈ R, cannot happen if r has failed. On the other hand, action {(r, q)} takes
place with priority q given that resource r has failed. This construct is useful
for specifying recovery from failures.

Resource Probabilities. In PACSR we associate each resource with a prob-
ability at which the resource may fail. In particular, for all r ∈ R we denote
by p(r) ∈ [0, 1] the probability of resource r being up, while p(r) = 1−p(r) de-
notes the probability of r failing. Thus, the behavior of a resource-consuming
process has certain probabilistic aspects to it which are reflected in the opera-
tional semantics of PACSR. For example, consider the process {(cpu, 1)}:NIL,
where resource cpu has probability of failure 1/3, i.e., p(cpu) = 1/3. Then,
with probability 2/3, resource cpu is available and thus the process may con-
sume it and become inactive, while with probability 1/3 the resource fails and
the process deadlocks.

Probabilistic Processes. The syntax of PACSR processes is the same as that
of ACSR. The only extension concerns the appearance of failed resources in
timed actions. Thus, it is possible on one hand to assign failure probabilities to
resources of existing ACSR specifications and perform probabilistic analysis
on them, and, on the other hand, to ignore failure probabilities and apply
non-probabilistic analysis of PACSR specifications.

Before we present the semantics we have some useful definitions. The function
imr(P), defined inductively below, associates each PACSR process with the
set of resources on which its behavior immediately depends:

imr(NIL) = ∅ imr(P1 + P2) = imr(P1) ∪ imr(P2)
imr(a. P) = ∅ imr(P1‖P2) = imr(P1) ∪ imr(P2)

imr(A:P) = ρ(A) imr(C) = imr(P), if C
def
= P

imr(P\F) = imr(P) imr([P]I) = imr(P) ∪ I

21

imr(P 4a

t (Q,R, S)) =

 imr(P + S), if t > 0

imr(R), if t = 0

Definition 5 Let Z = {r1, . . . , rn} ⊆ R. We write

• Z = {r | r ∈ Z},
• p(Z) = Π1≤i≤np(ri),
• W(Z) = {Z ′ ⊆ Z ∪ Z | r ∈ Z ′ iff r 6∈ Z ′}, and
• res(Z) = {r ∈ R | r ∈ Z or r ∈ Z}. 2

We say that W(Z) contains the set of all possible worlds involving the set of
resources Z, that is, the set of all combinations of the resources in Z being
up or down. For example, W({r1, r2}) = {{r1, r2}, {r1, r2}, {r1, r2}, {r1, r2}}.
Note that p(∅) = 1 and W(∅) = {∅}.

3.1 Operational Semantics

As with ACSR, the semantics of PACSR processes is given in two steps. At the
first level, a transition system captures the nondeterministic and probabilistic
behavior of processes, ignoring the presence of priorities. Subsequently, this
is refined via a second transition system which takes action priorities into
account.

We begin with the unprioritized semantics. A configuration is a pair of the form
(P, W), representing a PACSR process P in world W . We write S for the set of
configurations. The semantics is given in terms of a labeled transition system
whose states are configurations and whose transitions are either probabilistic
or nondeterministic. The intuition for the semantics is as follows: for a PACSR
process P , we begin with the configuration (P, ∅). As computation proceeds,
probabilistic transitions are performed to determine the status of resources
which are immediately relevant for execution (as specified by imr(P)) but for
which there is no knowledge in the configuration’s world. Once the status
of a resource is determined by some probabilistic transition, it cannot change
until the next timed action occurs. Timed actions erase all previous knowledge
of the configuration’s world (see law (PAct2)). Nondeterministic transitions
may be performed from configurations that contain all necessary knowledge
regarding the state of resources. With this view of computation in mind, we
partition S as follows:

Sn = {(P, W) ∈ S | res(imr(P))− res(W) = ∅}, the set of nondeterministic
configurations, and
Sp = {(P, W) ∈ S | res(imr(P)) − res(W) 6= ∅}, the set of probabilistic
configurations.

22

Let −�p⊂ Sp × [0, 1]× Sn be the probabilistic transition relation. A triple in

−�p, written (P, W)
π
−�p (P ′, W ′), denotes that process P in world W may

become P ′ and enter world W ′ with probability π. Furthermore, let −�n⊂
Sn × Act × S be the nondeterministic transition relation. A triple in −�n is

written as (P, W)
α
−�n (P ′, W ′), capturing that process P in world W may

nondeterministically perform α and become (P ′, W ′).

The probabilistic transition relation is given by the following rule:

(PROB)
(P, W) ∈ Sp, Z1 = res(imr(P))− res(W), Z2 ∈ W(Z1)

(P, W)
p(Z2)

−�p (P, W ∪ Z2)

Thus, given a probabilistic configuration (P, W), with Z1 the immediate re-
sources of P for which the state is not yet determined in W , and Z2 ∈ W(Z1),
P enters the world extended by Z2 with probability p(Z2). Note that configura-
tion (P, W) evolves into (P, W ∪Z2) which is, by definition, a nondeterministic
configuration.

For example, given resources r1 and r2 such that p(r1) = 1/2 and p(r2) = 1/3,

P
def
= {(r1, 2), (r2, 3)}:Q has exactly the following transitions:

(P, ∅)
1/6

−�p (P, {r1, r2}) (P, ∅)
1/6

−�p (P, {r1, r2})

(P, ∅)
1/3

−�p (P, {r1, r2}) (P, ∅)
1/3

−�p (P, {r1, r2})

Lemma 6 For all s ∈ Sp, Σ{|p | (s, p, s′) ∈ −�p |} = 1, where {| and |} are
multiset brackets and the summation over the empty multiset is 1. 2

The nondeterministic transition relation for PACSR is given similarly to ACSR.
Note, however, that states in the transition system are now configurations, that
is, pairs of processes and associated worlds, and not simple processes. In Ta-
ble 2, we present some representative rules. (PAct1) and (PAct2) contain the
essence of the semantics extension specifying the usage of failed and non-failed
resources and the treatment of resource worlds. In (PAct1) we may see that in-
stantaneous events preserve the world of a configuration, while (PAct2) speci-
fies that timed actions re-initialize the world to ∅. Further, for an action to take
place, all its resources must be available in the configuration’s world. Thus,

by rule (PAct2), in the example above we have (P, {r1, r2})
{(r1,2),(r2,3)}
−�n (Q, ∅),

whereas (P, {r1, r2}), (P, {r1, r2}), and (P, {r1, r2}) have no transitions. The
remaining rules can be obtained from those of ACSR by simply assigning
worlds to processes in the style of rules (PSum1) and (PPar1). Finally, the
prioritized nondeterministic relation of PACSR,−�π, is derived by application
of the preemption relation ≺ as for ACSR.

23

Table 2
PACSR nondeterministic relation

(PAct1) (e.P, W)
e
−�n (P,W)

(PAct2) (A:P,W)
A
−�n (P, ∅) if ρ(A) ⊆ W

(PSum1) (P1,W)
α
−�n (P,W ′)

(P1 + P2,W)
α
−�n (P,W ′)

(PPar1) (P1,W)
e
−�n (P ′

1,W
′)

(P1‖P2,W)
e
−�n (P ′

1‖P2,W
′)

Note that the probabilistic resource failure mechanism implemented in PACSR
can be used to describe a number of probabilistic phenomena. For example,
we may model persistent failure of a resource using modes as shown in the

process P
def
= {(r, 1)}:P ′ + {(r, 1)}:Q, where, upon the failure of resource r,

the process enters mode Q where resource r is replaced by a failed resource. It
is also straightforward to model delays following the geometric distribution,
with the aid of a single resource, and event arrival following the binomial
distribution, with the aid of n resources, where n is the size of the support
of the distribution. However, it is much more complicated to model/simulate
other discrete distributions such as the Poisson distribution. This is due to the
fact that the only available tool for producing probabilistic behavior are the
Bernoulli distributions associated with resources, the two possible outcomes
being alive and failed. A dense-time PACSR variant, where we may be able to
introduce more complicated probability distributions directly, is a promising
direction of future research.

3.2 Probabilistic Analysis Techniques

In this section we discuss possible analysis that can be performed on PACSR
specifications. We begin by presenting the formal model underlying PACSR
processes which is that of labeled concurrent Markov chains [36].

Definition 7 A labeled concurrent Markov chain (LCMC) is a tuple 〈Sn, Sp,
Act,−�π,−�p, s0〉, where Sn is the set of nondeterministic states, Sp is the set
of probabilistic states, Act is the set of labels, −�π⊂ Sn×Act×(Sn∪Sp) is the
nondeterministic transition relation, −�p⊂ Sp× (0, 1]×Sn is the probabilistic
transition relation, satisfying Σ(s,p,t)∈−�p

p = 1 for all s ∈ Sp, and s0 ∈ Sn ∪ Sp

is the initial state. 2

24

We may see that the operational semantics of PACSR yields transition systems
that are LCMCs. Analysis of PACSR processes is carried out on the underlying
LCMC. In what follows, we let ` range over Act∪ [0, 1] and write S for Sn∪Sp.

A computation in T = 〈Sn, Sp,Act,−�π,−�p, s0〉 is either a finite sequence
c = s0 `1 s1 . . . `k sk, or an infinite sequence c = s0 `1 s1 . . . `k sk . . ., such that
si ∈ Sn ∪ Sp, `i+1 ∈ Act ∪ [0, 1] and (si, `i+1, si+1) ∈ −�p ∪ −�π, for all

0 ≤ i. Given a computation c = s0 `1 s1 . . . `k sk, we write s0

w
−� sk, where

w = `1 . . . `k.

To define probability measures on computations of an LCMC the nondeter-
minism present must be resolved. To achieve this, the notion of a scheduler
has been employed [36,16]. A scheduler σ is an entity that, given a compu-
tation ending in a nondeterministic state, chooses the next transition to be
executed. This gives rise to computation trees that can be viewed as labeled
Markov chains. Each path through a computation tree is a scheduled compu-
tation of the LCMC and can be assigned a probability by taking a product of
the probabilistic labels along the path. See [30] for the details.

3.2.1 Equivalence checking.

Equivalence between PACSR is based on the concept of probabilistic bisimu-
lation [20,16]. First, we introduce a useful notation.

Definition 8 For s ∈ S and M⊆ S, we define

µ(s,M) =

Σs′∈M{|p | (s, p, s′) ∈ −�p |}, if s ∈ Sp

1, if s = s′, s ∈ Sn

0, otherwise

2

Thus, µ(s,M) denotes the cumulative probability of state s probabilistically
reaching states in M, taken to be 1 if s is a nondeterministic state in M.

Strong probabilistic bisimulation is then defined as follows:

Definition 9 Probabilistic strong bisimulation is the largest symmetric re-
lation denoted by ∼p, such that, whenever s ∼p t,

(1) for all α ∈ Act, if s, t ∈ Sn and s
α

−�π s′ then t
α

−�π t′ and s′ ∼p t′;
(2) for all M ∈ S/ ∼p, µ(s,M) = µ(t,M), where S/ ∼p is the set of equiv-

alence classes of S over ∼p.

25

2

Thus, two states are strongly bisimilar to each other if they can reach all
equivalence classes of strong bisimilarity with the same probability and they
can simulate each other’s behavior. The above definition is almost identical to
the one proposed in [16], where an alternating model is considered, However,
with a slight reformulation of the definition of µ(s,M), Definition 9 allows for
pairs of probabilistic and nondeterministic systems to be considered bisimu-
lation equivalent.

It can be shown that ∼ is a congruence with respect to the PACSR operators.

We have also defined a probabilistic weak bisimulation [32] and a proba-
bilistic branching bisimulation for the model, which allows us to compare
observable behaviors of PACSR processes similarly to the case of ACSR. In
addition, probabilistic information embedded in the probabilistic transitions
allows us to perform quantitative analysis of PACSR specifications. In partic-
ular, we can compute the probability of reaching a given state or a deadlocked
state.

3.2.2 Model checking of PACSR processes.

We are also interested in being able to specify and verify high-level require-
ments for a PACSR specification. Temporal logics are commonly used to ex-
press such high-level requirements. In the probabilistic setting, the require-
ments usually include probabilistic criteria that apply to large fragments of
the system’s execution. We define a probabilistic version of the logic LHMLu

defined in Section 2.2. The two until operators are extended with probabilistic
conditions, thus providing for quantitative analysis of a PACSR specification.
The condition takes the form of ≤ p or ≥ p for a constant p. Thus, until
expresses a property of an execution of the system, which we expect to hold
with a probability satisfying the condition of the operator.

The addition of probabilistic constraints is in fact the source of the need to
parameterize the until operators with regular expressions, which we have in-
troduced in LHMLu. Compared to the original definition of HML with until
defined in [14], parameterized until operators can express a property of an
execution that contains a series of events, rather than only one event. Unlike
the non-probabilistic setting, where one can often express the same property
by using several nested until operators, in the probabilistic setting such ex-
tension appears to be necessary. Nesting of until operators would preclude us
from associating a single probabilistic condition with the whole execution. For
example, consider a communication protocol in which a sender inquires about
the readiness of a receiver, obtains an acknowledgement, and sends data. A
reasonable requirement for the system would be that this exchange happens

26

with a certain probability. To express this property, one usually needs two
nested temporal until operators. Since probabilistic constraints are associated
with temporal operators, the single constraint has to be artificially split in
two to apply to each of the operators. With the proposed extension, we need
only one temporal operator, and the property is expressed naturally. It can be
shown that the resulting logic characterizes probabilistic branching bisimula-
tion.

PACSR observables are taken to range over the observable content of PACSR
events and timed actions, and regular expressions are then defined in the
expected manner. The syntax of Lpr

HMLu is defined by the following grammar,
where f, f ′ range over Lpr

HMLu-formulae, Φ is a regular expression over the set
of PACSR observables, and ./∈ {≤,≥}:

f ::= tt | ¬f | f ∧ f ′ | f〈Φ〉./pf
′ | f〈Φ〉t./pf

′

Lpr
HMLu-formulae are interpreted over states of LCMCs. Informally, formulae

of the form f〈Φ〉f ′ state that there is some execution and some integer l such
that f holds for the first l − 1 steps and f ′ becomes true in the l-th step
and the observable behavior of the l-step execution involves some behavior
from Φ. The subscript ./ p denotes that the probability of paths fulfilling the
formula is ./ p and the use of superscript t denotes that the paths of interest
are only those that achieve the goal in at most t time units. For instance,
formula tt〈(L ∪ 2R)∗〉4≥1f expresses that there is some execution of the system
for which f becomes true within the first 4 time units, with probability 1.

In order to present the semantics of the two until operators, we need to com-
pute the probabilities that certain behaviors occur. Consider for example the
formula f〈Φ〉t./pf

′. Given two sets of states A and B of an LCMC T and a
scheduler σ we consider the following set of computations of T . The compu-
tations are scheduled by σ and lead to a state in B via a trace with observ-
able content in Φ, with intermediate states in A, and take at most time t.
It can be shown that this set of computations is measurable in the proba-
bility space of T . We denote its probability PrA(T, Φ, B, t, σ). Similarly, we
define PrA(T, Φ, B, σ) as the probability measure of computations scheduled
by scheduler σ that lead to a state in B via intermediate states in A and
observable content in Φ. Both of these probabilities can be computed as the
solution of a set of linear equations. See [30] for the details.

The satisfaction relation |= ⊆ (Sn ∪ Sp) × Lpr
HMLu, stating when an LCMC

state s satisfies a given formula, is defined inductively as follows, where we
write Sched(s) for the set of schedulers of the LCMC s.

27

s |= tt always

s |= ¬f iff s 6|= f

s |= f ∧ f ′ iff s |= f and s |= f ′

s |= f〈Φ〉./pf
′ iff there is σ ∈ Sched(s) such that PrA(s, Φ, B, σ, s)

./ p, where A = {s′ | s′ |= f}, B = {s′ | s′ |= f ′}

s |= f 〈Φ〉t./pf
′ iff there is σ ∈ Sched(s) such that PrA(s, Φ, B, t, σ, s)

./ p, where A = {s′ | s′ |= f}, B = {s′ | s′ |= f ′}

A model-checking algorithm for Lpr
HMLu, suitable for finite-state PACSR spec-

ifications, was proposed in [30]. It follows the outline of the algorithm for
LHMLu, with the exception that labeling for the until operators requires us to
solve a linear programming problem. We refer the reader to the same pa-
per for an application of the model-checking technique to a telecom-
munications application.

3.3 Example

We illustrate the utility of PACSR in the analysis of fault-tolerance properties
by slightly extending the example of Section 2.3. Note that we employ the
version of the dispatchers that emit special actions to flash missed
deadlines with the intention of exploiting these messages for model
checking the system. We consider the same set of tasks running on a pro-
cessor with an intermittent fault. At any time unit, the processor may be
running, in which case the higher-priority task executes normally, or it may
be down, in which case none of the tasks execute. We modify the specification
of a task by extending it with a failure-recovery mechanism (shown in bold)
which specifies that whenever resource cpu has a failure the execution time of
the task is not increased.

We apply the probabilistic analysis to the task set with: e1 = 2, p1 = 5,
e2 = 1, p2 = 2. Even though the task set is schedulable under perfect con-
ditions, in the presence of failures the tasks may still miss their deadlines.
Given the probability of a processor failure, we can compute the probabil-
ity that a deadline is missed. The properties we check have the form
¬(true〈{cpu}∗ miss !〉≤αtrue). The following list of pairs show results
of the experiments we ran. The first element of each pair is the
cpu failure probability and the second is the greatest value of the
probability α for which the property holds, which corresponds to
the probability that a deadline is missed: {(0,0), (0.1,0.003), (0.2,0.130),
(0.25,0.339), (0.3,0.585)}.

28

System
def
= [Task 1‖ . . . ‖Taskn]{cpu}

Task i
def
= (Ti‖Dispatch i)\{start i} i = {1..n}

Dispatch i
def
= (start i!, i).∅pi : Dispatchi

+(τ, 0).(miss !, 1).NIL i = {1..n}

Ti
def
= (start i?, 0).Pi,0 + ∅ : Ti i = {1..n}

Pi,j
def
= j < ei → (∅ : Pi,j

+{(cpu, dmax − (pi − j))} : Pi,j+1

+ {(cpu,dmax − (pi − j))} : Pi,j)

+ j = ei → Ti i = {1..n}, j = {0..ei}

Fig. 2. EDF scheduling problem with processor failures

4 Mappings between ACSR and PACSR

In this section we study the relation between the two process algebras by
providing mappings between them. These mappings confirm the natural re-
lationship between the process algebras and allow us to isolate properties
preserved between the two. They are defined compositionally at both the pro-
cess level and the logic level of the languages and they are shown to preserve
bisimulation between the two formalisms.

4.1 From PACSR to ACSR

In this section, we study a mapping from the PACSR to the ACSR formalism.
This mapping allows us to conclude the type of ACSR analysis techniques
that can be applied on PACSR models and move between the two frameworks
to check both probabilistic requirements as well as requirements expressed in
terms of ACSR. For example, we observe how schedulability analysis tech-
niques originating from ACSR can be applied to PACSR specifications. Fur-
thermore, we establish mappings between formulae of LHMLu and Lpr

HMLu and
we conclude how properties expressed in the former can be checked on PACSR
processes.

We begin by defining a mapping between PACSR and ACSR processes. This
mappings acts on the set of PACSR configurations and makes use of different
functions for probabilistic and nondeterministic configurations.

Definition 10 We define bb · cc : S 7→ Proc by

29

bb (P, W) cc =

 bb (P, W) ccp, if (P, W) ∈ Sp

bb (P, W) ccn, if (P, W) ∈ Sn

where bb · ccp : Sp 7→ Proc is defined by

bb (P, W) ccp =
∑

W ′∈W(imr(P)−res(W))

τ. bb (P, W ∪W ′) ccn

and bb · ccn : Sn 7→ Proc is defined inductively as follows:

bb (NIL, W) ccn = NIL

bb ((a, n).P, W) ccn = (a, n).bb (P, W) cc

bb (A:P, W) ccn =

 A : bb (P, ∅) cc, if ρ(A) ⊆ W

NIL, otherwise

bb (P + Q,W) ccn = bb (P, W) ccn + bb (Q,W) ccn
bb (P‖Q,W) ccn = bb (P, W) ccn‖bb (Q, W) ccn
bb (P\F, W) ccn = bb (P, W) ccn\F
bb ([P]I , W) ccn = [bb (P, W) ccn]I

bb (P 4a

t (Q,R, S), W) ccn = bb (P, W) ccn
4a

t(bb (Q, W) ccn, bb (R,W) ccn, bb (S), W ccn)

bb (b � P, W) ccn = b � bb (P, W) ccn
bb (C, W) ccn = bb (P, W) ccn, where C

def
= P

2

Thus, mapping bb · cc maps PACSR configurations into ACSR processes as
follows: Function bb · ccp abstracts away the probabilistic behavior of a proba-
bilistic process by replacing probabilistic transitions of a probabilistic config-
urations by internal actions, while bb · ccn preserves nondeterministic actions.
This is made precise by the following proposition.

Proposition 11

(1) If (P, W) ∈ Sp, then

• If (P, W)
p
−�p (P ′, W ′) then bb (P, W) ccp

τ−→π bb (P ′, W ′) ccn, and
• If bb (P, W) ccp

α−→π Q, then α = τ and there exists W ′ such that

(P, W)
p
−�p (P, W ′), where bb (P, W ′) ccn = Q.

(2) If (P, W) ∈ Sn, then

• If (P, W)
α

−�π (P ′, W ′) then bb (P, W) ccn
α−→π bb (P ′, W ′) cc, and

• If bb (P, W) ccn
α−→π Q, then there exists (P ′, W ′) such that (P, W)

α
−�π

(P ′, W ′), where bb (P ′, W ′) cc = Q.

30

Proof: The first clause follows straightforwardly from the definition of bb · ccp.
Note that, if bb (P, W) ccp

τ−→π P ′, then it must be that P ′ = bb (P, W ∪
W ′) ccp for some W ′ ∈ W(imr(P) − res(W)) and, by the PACSR semantics,

(P, W)
p
−�p (P, W ∪W ′), where p = pr(W ′).

The proof of the second clause follows by structural induction of P . Clearly, for
P = (a, n).Q and P = A : Q, the base cases, the result follows. The most inter-
esting of the remaining cases is the one concerning the parallel composition op-

erator which we now consider. To begin with, suppose (P‖Q, W)
α

−�π (R,W ′).
Three cases exist:

• α ∈ DE and (P, W)
α

−�π (P ′, W). By the induction hypothesis, bb (P, W) ccn
α−→π bb (P ′, W) ccn and, since bb (P‖Q, W) ccn = bb (P, W) ccn‖bb (Q,W) ccn,

we conclude that

bb (P‖Q,W) ccn
α−→π bb (P ′, W) ccn‖bb (Q,W) ccn = bb (P ′‖Q, W) ccn.

• α ∈ DR and (P, W)
A1−�π (P ′, ∅), (Q,W)

A2−�π (Q′, ∅), α = A1 ∪ A2. By

the induction hypothesis, bb (P, W) ccn
A1−→π bb (P ′, ∅) ccn, bb (Q, W) ccn

A2−→π

bb (Q′, ∅) ccn and, thus, since bb (P‖Q, W) ccn = bb (P, W) ccn‖bb (Q, W) ccn,

bb (P‖Q,W) ccn
α−→π bb (P ′, ∅) ccn‖bb (Q′, ∅) ccn = bb (P ′‖Q′, ∅) ccn.

• α = τ and (P, W)
(a?,m)

−�π (P ′, W), (Q,W)
(a!,n)

−�π (Q′, W). By the induction hy-

pothesis, bb (P, W) ccn
(a?,m)−→ π bb (P ′, W) ccn, bb (Q,W) ccn

(a!,n)−→π bb (Q′, W) ccn
and, thus, since bb (P‖Q,W) ccn = bb (P, W) ccn‖bb (Q,W) ccn

bb (P‖Q,W) ccn
τ−→π bb (P ′, W) ccn‖bb (Q′, W) ccn = bb (P ′‖Q′, W) ccn.

The proof of the other direction uses similar arguments. 2

A corollary of the above proposition follows:

Corollary 12 If (P, W) ∈ S then

(P, W)
w
−� (P ′, W ′) if and only if bb (P, W) cc w′

−→π bb (P ′, W ′) cc

where w′ is obtained from w by replacing all probabilistic labels with τ actions.
2

As a consequence of this result, we may conclude that a PACSR process dead-
locks if and only if its ACSR mapping does so. Therefore, the ACSR method-
ology for performing schedulability analysis, including Theorem 3, can be also
carried out in the PACSR setting.

31

We now answer the question of which properties of a PACSR process P are pre-
served by bbP cc. Let us write Lp

HMLu for the fragment of Lpr
HMLu that contains

neither negation nor a subscript of the form ≤ p. We begin by defining cor-
respondences between logics Lpr

HMLu and LHMLu. Specifically, for f ∈ Lpr
HMLu

let bb f cc be the formula g which is identical to f but with all probabilistic
conditions removed. Further, for f ∈ LHMLu let ‖f‖ be the formula g which
is identical to f but with every until operator decorated by the probabilistic
condition > 0. We have the following result:

Proposition 13 For any PACSR process P and f ∈ Lp
HMLu, if P |= f then

bbP cc |= bb f cc.

Proof: Consider a PACSR process P . The proof is carried out by induction
on the structure of the formula.

• f = tt. Clearly, P |= tt and bbP cc |= bb f cc.
• f = f1 ∧ f2. By the induction hypothesis,

P |= f ⇒P |= f1 ∧ P |= f2

⇒bbP cc |= bb f1 cc ∧ bbP cc |= bb f2 cc
⇒bbP cc |= bb f1 ∧ f2 cc

as required.
• f = f1〈Φ〉≥pf2. Suppose that P |= f . Then there exists σ ∈ Sched(P)

such that PrA(P, Φ, B, σ, P) ≥ p, where A = {s′ | s′ |= f} and B =
{s′ | s′ |= f ′}. This implies that there exists computation c such that
trace (c) ∈ Φ, first (c) = (P, ∅), and for all s′ ∈ states (init (c)), s′ |= f ,
and last (c) |= f ′. By the induction hypothesis and Corollary 12, we may
conclude that bbP cc |= bb f cc.

• f = f1〈Φ〉t≥pf2. The proof follows similarly to the previous case.

2

Note that this result fails to hold for formulae containing negation as exhibited
by the following counter-example. Consider formula f = tt〈a〉≥0.5tt which ex-
presses that label a occurs with probability at least 0.5. Suppose that P |= ¬f
and that P can perform a with probability 0.4, that is, there exist compu-
tations that may perform a but their probability measure does not add up
to 0.5. Nonetheless, it is not the case that bbP cc |= bb ¬f cc, since this would
entail that P is incapable of performing a, which is clearly not true.

The following proposition is particularly important for the analysis of PACSR
properties, since it allows us to perform analysis of a PACSR process P with
respect to a non-probabilistic logical specification.

Proposition 14 For any PACSR process P and g ∈ LHMLu, P |= ‖g‖ if and

32

only if bbP cc |= g.

Proof: Consider a PACSR process P and a LHMLu property g. The proof
is carried out by induction on the structure of g.

• g = tt. Clearly, P |= ‖tt‖ and bbP cc |= tt.
• g = ¬f . Since P |= g, it is not the case that P |= f and, by the induction

hypothesis, bbP cc |= g.
• g = g1 ∧ g2. By the induction hypothesis,

P |= g⇔P |= ‖g1‖ ∧ P |= ‖g2‖
⇔bbP cc |= g1 ∧ bbP cc |= g2

⇔bbP cc |= g1 ∧ g2

as required.
• g = g1〈Φ〉g2, ‖g‖ = ‖g1‖〈Φ〉>0‖g2‖. If P |= ‖g‖, then there exists σ ∈

Sched(P) such that PrA(P, Φ, B, σ, P) > 0, where A = {s′ | s′ |= ‖g1‖} and
B = {s′ | s′ |= ‖g2‖}. This is equivalent to the existence of a computation c
such that trace (c) ∈ Φ, first (c) = (P, ∅), and for all s′ ∈ states (init (c)),
s′ |= ‖g1‖, and last (c) |= ‖g2‖. By the induction hypothesis and Corol-
lary 12, this is equivalent to bbP cc |= g.

• g = g1〈Φ〉tg2, ‖g‖ = ‖g1‖〈Φ〉t>0‖g2‖. This is similar to the previous case.

2

We will next prove that bb · cc preserves bisimilarity of processes. Specifically,
we will show that for any two PACSR processes P and Q, (P, W) ∼p (Q, W) if
and only if bb (P, W) cc ∼ bb (Q, W) cc. An important observation in achieving
the result is that, if P ∼ Q then imr(P) = imr(Q). This is due to the fact

that, if r ∈ imr(P), then P
A−→π P ′ for some process P ′ and some action

A with r ∈ ρ(A) (this can be verified by a trivial structural induction on

P). Thus, if P and Q are bisimilar, Q
A−→π and r ∈ imr(Q). A symmetric

result holds for strong probabilistic bisimulation, i.e. if (P, W) ∼p (Q,W),
then imr(P) = imr(Q).

Theorem 15 For every pair of PACSR processes P and Q, (P, W) ∼p (Q,W)
if and only if bb (P, W) cc ∼ bb (Q, W) cc.

Proof: Suppose that (P, W) ∼p (Q, W) and consider the relation

R = {(bb (P, W) cc, bb (Q, W) cc) | (P, W) ∼p (Q, W)}.

Two cases exist:

• Suppose (P, W) ∈ Sn. Then, if bb (P, W) cc α−→π R, by Proposition 11,

33

(P, W)
α

−�π (P ′, W ′), where R = bb (P ′, W ′) cc. Then, since (P, W) ∼p

(Q, W), (Q, W)
α

−�π (Q′, W ′), where (P ′, W ′) ∼p (Q′, W ′). By, Proposi-
tion 11, bb (Q,W) cc α−→π bb (Q′, W ′) cc with (bb (P ′, W ′) cc, bb (Q′, W ′) cc ∈ R
as required.

• Suppose (P, W) ∈ Sp. Then, if bb (P, W) cc τ−→π R, by Proposition 11,

(P, W)
p
−�p (P, W ′), where R = bb (P, W ′) cc. Then, since (P, W) ∼p (Q,W),

(Q,W)
p′

−�p (Q, W ′), where (P, W ′) ∼p (Q, W ′), and, again by Proposi-
tion 11, bb (Q,W) cc τ−→π bb (Q,W ′) cc and (bb (P, W ′) cc, bb (Q,W ′) cc) ∈ R
as required.

Consequently, R is a strong bisimulation as required.

For the other way round suppose that bb (P, W) cc ∼ bb (Q,W) cc and consider
the relation:

R = {((P, W), (Q,W)) | bb (P, W) cc ∼ bb (Q,W) cc}.

Two cases exist:

• Suppose (P, W) ∈ Sn. Then, if (P, W)
α

−�π (P ′, W ′), by Proposition 11,
bb (P, W) cc α−→π bb (P ′, W ′) cc. Since bb (P, W) cc ∼ bb (Q, W) cc we have
that bb (Q,W) cc α−→π R and bb (P ′, W ′) cc ∼ R. Application of Propo-

sition 11 yields (Q, W ′)
α

−�π (Q′, W ′), where bb (Q′, W ′) cc = R. Thus,
((P ′, W ′), (Q′, W ′)) ∈ R as required.

• Suppose (P, W) ∈ Sp and suppose M is an equivalence class of R. Then, if

(P, W)
p
−�p (P, W ′) ∈M, by Proposition 11, bb (P, W) cc τ−→π bb (P, W ′) cc.

Since bb (P, W) cc ∼ bb (Q,W) cc, bb (Q, W) cc τ−→π bb (Q,W ′) cc, and by

Proposition 11, (P, W)
p
−�p (P, W ′). Since this holds for every member

of M, we conclude that µ((P, W),M) = µ((Q,W),M), as required.

Consequently, R is a probabilistic strong bisimulation which completes the
proof. 2

This result is especially interesting for the following reasons. First, it justifies
our choice of mapping from PACSR to ACSR and it highlights the natural
relationship between the two. Further, it implies the rather surprising result
that, two probabilistic systems are equivalent if and only if their nonprobabilis-
tic projections exhibit bisimilar behavior. This can be interpreted as follows:
two PACSR processes are bisimilar irrespectively of the probability of failure
of the resources on which they operate given, of course, that they operate in
the same resource environment.

34

4.2 From ACSR to PACSR

For completeness, we also consider the reverse mapping that transforms ACSR
processes into PACSR processes. We define [[·]] : Proc 7→ S by mapping each
ACSR process P to the PACSR configuration (P, ∅) and assigning to each
resource of P probability of failure equal to 0. That is, none of the resources in
the resulting PACSR process ever fails. Interestingly, the set of logical formulae
preserved by the new mapping is quite different compared to the mapping
considered in Section 4.1.

The following proposition shows that the proposed mapping preserves the
basic branching of an ACSR process but introduces a single probabilistic action
with probability label 1 before each state featuring a timed action.

Proposition 16

(1) If imr(P) = ∅, then

• if P
α−→π Q then [[P]]

α
−�π [[Q]], and

• if [[P]]
α

−�π (R, W), then P
α−→π Q with (R,W) = [[Q]].

(2) If imr(P) 6= ∅, then

• if P
α−→π Q then [[P]]

1
−�p

α
−�π [[Q]], and

• if [[P]]
p
−�p (Q, W), then p = 1, and (Q, W)

α
−�π (Q′, W ′) if and only

if P
α−→π P ′ with (Q′, W ′) = [[P ′]].

Proof: The proof follows directly from the mapping and the PACSR se-
mantics. 2

A corollary of the above proposition follows:

Corollary 17

• If P
w−→π Q then [[P]]

w′

−�π [[Q]], where w′ is obtained from w by adding a
probabilistic label with value 1 before every timed action.

• If [[P]]
w

−�π [[Q]] then P
w′
−→π Q, where w′ is obtained from w by removing

all probabilistic labels.

We now turn to deciding which properties of an ACSR process P are pre-
served by [[P]]. We define correspondences between logics Lpr

HMLu and LHMLu.
Specifically, for f ∈ LHMLu let [[f]] be the formula g which is identical to f
but with every until operator decorated by the probabilistic transition ≥ 1.
Further, for f ∈ Lpr

HMLu, we define dd f ee as the LHMLu formula obtained from
f by replacing (1) each subformula g = g1〈Φ〉≤pg2 by true if p = 1 and by
¬(dd g1 ee〈Φ〉dd g2 ee) otherwise, and (2) each subformula g = g1〈Φ〉≥pg2 by true,

35

if p = 0 and dd g1 ee〈Φ〉dd g2 ee, otherwise. We have the following results:

Proposition 18 For any ACSR process P and f ∈ LHMLu, P |= f if and
only if [[P]] |= [[f]].

Proof: Consider an ACSR process P . The proof is carried out by induction
on the structure of the formula.

• The cases g = tt, g = ¬f and g = g1 ∧ g2 follow trivially.
• f = f1〈Φ〉f2, [[f]] = [[f1]]〈Φ〉≥1[[f2]]. If P |= f , then there exists computation

c such that trace (c) ∈ Φ, first (c) = P , and for all s′ ∈ states (init (c)),
s′ |= f , and last (c) |= f ′. By Corollary 17 we may conclude that a similar
computation with probability measure equal to 1 exists for [[P]]. Then, by
the induction hypothesis, we have that [[P]] |= [[f]]. The opposite direction
similarly holds.

• f = f1〈Φ〉tf2. The proof is similar to that of the previous case.

2

Thus, any LHMLu property satisfied by an ACSR process P is also satisfied
by its PACSR mapping with probability 1. This is intuitive, since all compu-
tations of P survive in P with probability of occurrence equal to 1.

On the other hand, an Lpr
HMLu property f satisfied by the mapping of P is

abstracted into LHMLu as follows: any subformula f ′ of f with probabilistic
condition < 1 is in fact satisfied neither by process P nor by its abstraction,
since, as we have seen above, all properties are either satisfied, with probability
1, or not satisfied. Finally, if a subformula has a probabilistic condition ≥ p,
p 6= 0, then it is satisfied in both processes. We prove this below.

Proposition 19 For any ACSR process P and g ∈ Lpr
HMLu, P |= dd g ee if and

only if [[P]] |= g.

Proof: Consider an ACSR process P and a Lpr
HMLu property g. The proof

is carried out by induction on the structure of g.

• The cases g = tt, g = ¬f and g = g1 ∧ g2 follow trivially.
• g = g1〈Φ〉≥pg2, p 6= 0. If [[P]] |= g, then there exists computation c such

that trace (c) ∈ Φ, first (c) = (P, ∅), and for all s′ ∈ states (init (c)), s′ |= f ,
and last (c) |= f ′. By the nature of the mapping, all probabilistic labels on
this transition are equal to 1. Thus, the probability measure of the com-
putation is equal to 1 and in fact we may conclude that [[P]] |= g1〈Φ〉≥1g2.
By Corollary 17 above we may conclude that a similar computation, but
with all probabilistic labels removed, exists for P . Then, by the induction
hypothesis, we have that [[P]] |= [[f]]. The opposite direction similarly holds.

• g = g1〈Φ〉≤pg2, p 6= 1. Suppose that [[P]] |= g and that there exists com-

36

putation c such that trace (c) ∈ Φ, first (c) = (P, ∅), and for all s′ ∈
states (init (c)), s′ |= f , and last (c) |= f ′. By the nature of the mapping,
all probabilistic labels on this transition are equal to 1. Thus, the probabil-
ity measure of the computation is equal to 1 and we obtain a contradiction
to the assumption that [[P]] |= g. By Corollary 17 and the induction hy-
pothesis, we may conclude that there exists no computation c from P such
that trace (c) ∈ Φ, first (c) = P , and for all s′ ∈ states (init (c)), s′ |= f , and
last (c) |= f ′. Therefore, P |= ¬dd g ee, as required. The opposite direction
similarly holds.

• The cases g = g1〈Φ〉t≥pg2 and g = g1〈Φ〉t<pg2 follow similarly to the two
previous cases.

2

We will next prove that [[·]] preserves bisimilarity of processes. Specifically, we
will show that for any two ACSR processes P and Q, P ∼ Q if and only if
[[P]] ∼p [[Q]].

Proposition 20 For every pair of ACSR processes P and Q, P ∼ Q if and
only if [[P]] ∼p [[Q]].

Proof: Suppose that P ∼ Q and consider the relation

R = {((P, W), (Q,W)) | P ∼ Q}.

Two cases exist:

• Suppose (P, W) ∈ Sn. Then, if (P, W)
α

−�π (P ′, W ′), it also holds that
P

α−→π P ′ and, since P ∼ Q, Q
α−→π Q′, where P ′ ∼ Q′, yielding

(Q,W)
α

−�π (Q′, W ′) with ((P ′, W ′), (Q′, W ′)) ∈ R as required.
• Suppose (P, W) ∈ Sp. Then, since all resources in P have probability of

failure 0, (P, W)
1
−�p (P, W ∪ W ′), where W ′ = imr(P) − res(W). Since

P ∼ Q, imr(P) = imr(Q) and, thus, (Q, W)
1
−�p (Q,W ∪W ′) and ((P, W ∪

W ′), (Q,∪W ′)) ∈ R as required.

Consequently, R is a probabilistic strong bisimulation and since [[P]] = (P, ∅)
[[Q]] = (Q, ∅) the result follows.

Now, consider the other way round and suppose that [[P]] ∼p [[Q]]. Consider
the relation:

R = {(P, Q) | [[P]] ∼p [[Q]]}.

37

Two cases exist:

• Suppose imr(P) = ∅. Then, if P
α−→π P ′, by Proposition 16, [[P]]

α
−�π [[P ′]].

Since [[P]] ∼p [[Q]], [[Q]]
α

−�π R and [[P ′]] ∼p R, and again, by Proposition 16,
Q

α−→π Q′, where [[Q′]] = R. Thus, (P ′, Q′) ∈ R as required.

• Suppose imr(P) 6= ∅. Then, if P
α−→π P ′, by Proposition 16, [[P]]

1
−�p

R′ α
−�π R. Since [[P]] ∼p [[Q]], [[Q]]

1
−�p S ′ and R′ ∼p S ′ and S ′

α
−�π S ∼p R.

Then, by Proposition 16, Q
α−→π Q′, where [[Q′]] = S. Thus, (P ′, Q′) ∈ R

as required.

Consequently, R is a strong bisimulation which completes the proof. 2

This time the bisimulation preservation of the mapping is not surprising since
the translation given by the mapping neither introduces nor abstracts away
information of an ACSR process.

5 Conclusions

We have presented two resource-bound real-time process algebras from the
ACSR family: the basic algebra ACSR and its probabilistic extension PACSR.
ACSR was developed to handle schedulability analysis in a process-algebraic
setting by introducing the notion of a shared resource into the formalism.
PACSR extends ACSR by elaborating on the nature of resources to support
the notion of probabilistic resource failures. We have shown that, in ACSR,
schedulability analysis can be applied by recasting the problem of whether
a system is schedulable into deadlock detection. On the other hand, PACSR
modeling is primarily concerned with quantitative evaluation of system specifi-
cations. For example, one might like to compute the probability that a system
remains schedulable in the presence of resource failures. The analysis tech-
niques we have proposed are capable of performing such analysis.

In our presentation we have focused on illustrating the basic features of the
two formalisms and highlighting the intentions behind various design choices
as well as subtle interactions between constructs that play a crucial role for
specifying and verifying systems. We have also introduced a compositional
result for tracing the source of undesirable deadlocks in system models and, in
the context of ACSR, we have introduced an HML logic with until, featuring
regular expressions over observables as parameters. Finally, we have proposed
property-preserving mappings between ACSR and PACSR which highlight the
natural relationship between the two and allow us to apply analysis techniques
of one to the other.

38

As mentioned in the introduction section, the family of resource-bound real-
time process algebras includes several more formalisms. There is a formalism
for visual specification of ACSR and a version of ACSR for the dense-time
domain. P2ACSR introduces additional resource attributes to reason about
power consumption. MCSR extends ACSR to handle multi-capacity resources,
allowing us to handle systems with memory constraints. Finally, ACSR-VP
extends ACSR with a value-passing capability during communication and pa-
rameterized process definitions. In the ACSR-VP setting, bisimulation plays a
central role for performing schedulability analysis: System specifications may
contain a number of unspecified parameters, and the purpose of the analy-
sis performed is to specify values for these parameters that make the system
schedulable. To achieve this, symbolic bisimulation is employed between the
parameterized system and the process that idles forever, and, with the aid of
integer programming, appropriate ranges for the parameters that make the
system schedulable are computed.

In future work we aim to identify additional classes of resources and develop
means of incorporating them into a unified formalism, as well as to provide
flexible tool support for model development in the formalism. An interesting
extension to the current work is to go beyond serially-reusable resources to
consumable resources, which can be used only a fixed amount of times during a
computation and can be possibly replenished after a certain amount of time.

References

[1] K. Altisen, G. Goessler, and J. Sifakis. Scheduler modeling based on the
controller synthesis paradigm. Journal of Real-Time Systems, 23(1-2):55-84,
2002.

[2] H. Ammar, V. Cortellessa, and A. Ibrahim. Modeling resources in a UML-based
simulative environment. In Proceedings of AICCSA’01, pages 405-410. IEEE
Computer Society Press, 2001.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: A
Tool for Schedulability Analysis and Code Generation of Real-Time Systems.
In Proceedings of FORMATS’03, pages 60-72, LNCS 2791, 2003.

[4] L. Baum and T. Kramp. Towards a uniform modeling technique for resource-
usage scenarios. In Proceedings of PDPTA’99, pages 1324-1329, 1999.

[5] H. Ben-Abdallah. GCSR: A Graphical Language for the Specification,
Refinement and Analysis of Real-Time Systems. PhD thesis, Department of
Computer and Information Science, University of Pennsylvania, 1996.

[6] J. A. Bergstra and J. W. Klop. Algebra of Communicating Processes with
Abstraction. Journal of Theoretical Computer Science, 37:77-121, 1985.

39

[7] V. A. Braberman and M. Felder. Verification of real-time designs: combining
scheduling theory with automatic formal verification. In Proceedings of
ESEC’99, pages 494-510, LNCS 1687, 1999.

[8] P. Brémond-Grégoire, J. Y. Choi, and I. Lee. A complete axiomatization of
finite-state ACSR processes. Information and Computation, 138(2):124-159,
1997.

[9] P. Brémond-Grégoire and I. Lee. Process Algebra of Communicating Shared
Resources with Dense Time and Priorities. Theoretical Computer Science,
189(1-2):179-219, 1997.

[10] M. Buchholtz, J. Andersen, and H. H. Loevengreen. Towards a process algebra
for shared processors. Electronic Notes on Theoretical Computer Science, 52(3),
2001.

[11] J.-Y. Choi, I. Lee, and H-L Xie. The Specification and Schedulability Analysis
of Real-Time Systems using ACSR. In Proceeding of RTSS’95, pages 266-275.
IEEE Computer Society Press, 1995.

[12] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource
Interfaces. In Proceedings of EMSOFT’03, pages 117–133, LNCS 2855, 2003.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244-263, 1986.

[14] R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation.
In Proceedings of LICS’90, pages 118-129. IEEE Computer Society Press, 1990.

[15] J. Ermont and F. Boniol. TPAP: an algebra of preemptive processes for verifying
real-time systems with shared resources. Electronic Notes on Theoretical
Computer Science, 65(6), 2002.

[16] H. Hansson. Time and Probability in Formal Design of Distributed Systems.
PhD thesis, Department of Computer Systems, Uppsala University, 1994.

[17] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[18] E. Huh, L. Welch, B. Shirazi, and C. Cavanaugh. Heterogeneous resource
management for dynamic real-time systems. In Proceedings of Heterogeneous
Computing Workshop 2005, pages 287-296, 2000.

[19] H.-H. Kwak, I. Lee, A. Philippou, J. Y. Choi, and O. Sokolsky. Symbolic
schedulability analysis of real-time systems. In Proceedings RTSS’98, pages
409-419. IEEE Computer Society Press, 1998.

[20] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1-28, 1991.

[21] I. Lee, P. Brémond-Grégoire, and R. Gerber. A Process-Algebraic Method for
the Specification and Analysis of Real-Time Systems. Proceedings of the IEEE,
pages 158-171, 1994.

40

[22] I. Lee, H. Ben-Abdallah, and J.-Y.Choi. A Process-Algebraic Approach to the
Specification and Analysis of Resource-Bound Real-Time Systems. In Formal
Methods for Real-Time Computing, pages 167-194. John Wiley and Sons, 1996.

[23] I. Lee, A. Philippou, and O. Sokolsky A General Resource Framework for
Real-Time Systems. In Proceedings of RISSEF’02, pages 234–248, LNCS 2941,
2002.

[24] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-programming in
a hard-real-time environment. Journal of the ACM, 20(1):46-61, 1973.

[25] A. Mehra, A. Indiresan, and K.G. Shin. Resource management for real-time
communication: Making theory meet practice. In Proceedings of RTAS’96, pages
130-138. IEEE Computer Society Press, 1996.

[26] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[27] M. Mousavi, M. Reniers, T. Basten, and M. Chaudron. PARS: a process algebra
with resources and schedulers. In Proceedings of FORMATS’03, pages 134-150,
LNCS 2791, 2003.

[28] M. Nunez and I. Rodriguez. PAMR: A process algebra for the management of
resources in concurrent systems. In Proceedings of FORTE’01, pages 169-184.
Kluwer, 2001.

[29] D. Park. Concurrency and Automata on Infinite Sequences. In Proceedings of
the 5th GI Conference, pages 167-183, LNCS 104, 1981.

[30] A. Philippou, R. Cleaveland, I. Lee, S. Smolka, and O. Sokolsky. Probabilistic
resource failure in real-time process algebra. In Proceedings of CONCUR’98,
pages 389-404, LNCS 1466, 1998.

[31] A. Philippou and O. Sokolsky, Process-Algebraic Analysis of Timing and
Schedulability Properties. To appear in Handbook of Real-Time and Embedded
Systems, Chapman and Hall/CRC, 2007.

[32] A. Philippou, O. Sokolsky, and I. Lee. Weak bisimulation for probabilistic
systems. In Proceedings of CONCUR’00, pages 334-349, LNCS 1877, 2000.

[33] S. Saewong and R. Rajkumar. Cooperative scheduling of multiple resources. In
Proceedings of RTSS’99, pages 90-101. IEEE Computer Society Press, 1999.

[34] O. Sokolsky, I. Lee, and H. Ben-Abdallah. Specification and analysis of real-time
systems with PARAGON. Annals of Software Engineering, 7:211-234, 1999.

[35] O. Sokolsky, A. Philippou, I. Lee, and K. Christou. Modeling and analysis of
power-aware systems. In Proceedings of TACAS’03, page 409-425, LNCS 2619,
2003.

[36] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proceedings of FOCS’85, pages 327-338, 1985.

41

