Automatic Test Case Generation and Test Suite
Reduction for Closed-Loop Controller Software

Christian Murphy, Zoher Zoomkawalla, Koichiro Narita
Dept. of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104
{cdmurphy, zoher, knarita} @cis.upenn.edu

Abstract—Domains such as embedded systems, medical de-
vices, process automation, etc. make use of controller software to
make important decisions that can affect people’s lives and well-
being. Although safety-focused processes such as model-driven
development can be used to assure a certain degree of quality
in these applications, ultimately software testing still remains the
primary mechanism by which faults are detected.

However, a variety of challenges arises in identifying test cases
for controller software, particularly in closed-loop systems that
incorporate feedback from the entity being controlled, potentially
leading to exponential growth in the number of paths through
the code and difficulty in identifying sequences of inputs to put
the application into the desired states for testing.

In this paper, we present an approach to efficiently generating
a set of test cases that will cover all reachable states in closed-
loop controller software, describe how it is possible to reduce
the number of test cases without losing any coverage of states,
and present evidence that, compared to other approaches, the
technique significantly reduces the number of test cases (down
to less than 1% in our experiments) needed to achieve the same
level of coverage, with almost no negative effects on the test
suite’s fault-finding capabilities.

I. INTRODUCTION

Software is increasingly being used to make control deci-
sions in domains such as embedded systems, medical devices,
process automation, cyber-physical systems, etc. Typically,
a sensor is used to detect the status of whatever is being
controlled (often referred to as the “plant”), the software makes
some decision according to some rules or protocol, and the
output indicates what action to take.

When the system incorporates feedback from the plant, the
software is said to be a closed-loop controller. For example,
in medical cyber-physical systems, closed-loop controller soft-
ware can be found in automated insulin pumps, pacemakers,
anesthesia devices, etc. The input to the software consists of
some aspects of the patient’s physiological condition, and the
output is the action to take, such as how much medicine
to deliver; the software maintains state, e.g. the values of
past readings, and then awaits another input of the patient’s
condition before deciding on the next action, and the loop
continues.

Clearly, the quality assurance of such controller software
is of the utmost importance: the cost (either monetary or in
terms of health and lives) of faults in the implementations can

be enormous. And although safety-focused processes such as
model-driven development [10] can be used to a certain extent,
ultimately there is actual code running on actual hardware, and
software testing still remains the primary mechanism by which
faults are detected.

In addition to the importance of testing such software,
one challenge that arises in testing closed-loop controllers in
particular is that the “input” is actually a sequence of input
values that are read from the plant or the environment. To test
such software with a high degree of confidence, it is necessary
to identify sequences of input values (test cases) that would
put the software into each of the states in which it should be
tested.

Efficiently generating a set of test cases that cover all
possible states can be challenging for three reasons. First, even
if it were possible to enumerate all paths through the program,
so that all states are eventually reached, this can be incredibly
time consuming, even when automated, and would likely yield
a huge number of test cases. Second, aside from the fact
that it is time consuming, it may be unnecessary, since many
test cases ultimately put the program into the same state (or
semantically equivalent states), and it may only be necessary
to test the application in each state once, regardless of how it
was reached. However, automatically identifying even a single
path to each state can be as difficult as identifying all of them.
Third, even if we can identify one path to each state, often
there will be overlap in the paths, such that an individual state
may be covered by multiple test cases; if our objective is to
find the smallest number of test cases (or, at least, a relatively
small number) that will cover all states, we would want to
reduce the test set to remove any redundancy.

In this paper, we present an approach to efficiently generat-
ing a small set of test cases that will cover all (reachable) states
in closed-loop controller software, and then further explain
how it is possible to reduce the number of test cases without
losing any coverage of states. Additionally, we describe an
implementation of our approach for C programs, and present
evidence that, compared to simply enumerating all possible
paths through the program, the approach significantly reduces
the number of test cases needed to achieve the same level
of coverage, with almost no negative effects on the test set’s
fault-finding capabilities.

Although we focus on closed-loop controller software in
this paper, and medical device software in particular in our
experiments, the results are generalizable to any software for
which the input consists of a sequence of input values and the
implementation includes repeatedly-called functions that have
numerous paths (states) that need to be covered by the test set.

The rest of this paper is organized as follows. Section II
presents our approach using a running example, and Section
III explains how we implemented the approach for programs
written in C. Section IV discusses our empirical studies, in
which we measure the reduction in the number of test cases,
the time it takes to generate them, and the impact on the
effectiveness of the test set. Section V presents related work,
Section VI discusses possible future directions, and Section
VII concludes.

II. APPROACH

Because our approach to generating test cases for closed-
loop controller programs assumes that we have access to
source code, and not a state diagram, we will focus on
path coverage as our goal, since covering all reachable paths
through the code would imply covering all reachable states.

In this paper, we use path to mean the sequence of state-
ments from the beginning of the program’s execution to its
end, and sub-path to mean the sequence of statements from
the beginning of a specified function’s execution to its end.

Our approach to generating test cases for closed-loop con-
troller programs is based on the intuition that, in order to cover
all states, it is not necessary to cover all paths through the
program, as long as we cover all sub-paths through the various
functions. This intuition will be explained below.

The approach consists of two steps:

1) Identify a set of test cases that covers all function sub-
paths in the program under test

2) Remove any test cases that only cover sub-paths already
covered by some other tests

As a running example in this section, consider the C
program illustrated in Figure 1. This program implements a
closed-loop controller that takes an integer value as input. The
controller produces a 0 and stops if it observes the same input
three times in a row; otherwise, it produces a 1 and continues
processing. The controller also stops after seeing ten inputs
without seeing the same value three consecutive times.

There are five unique sub-paths through the update func-
tion. Given that it is called up to 10 times, if we wanted to
cover each path we would need up to 510 = 9.765,625 test
cases! Fortunately, because there are ways to break out of the
loop before the function is called 10 times (specifically, on
lines 7 and 16), the number of paths through this program
is only 143. Thus, to achieve 100% path coverage in this
program, we would need 143 test cases, each of which is a
sequence of inputs (generated/read on line 24).

As mentioned above, our intuition is that 100% path cover-
age is not necessary in order to test all states. For instance, we
note that some input sequences lead to the same state, even
though their paths are different: for instance, the test case input

1 | int consec=1, count, last;
2
3 | int update (int input) {
4 if (input == last) {
5 if (++consec == 3) {
6 //Done! Three in a row!
7 return O;
8 }
9 ¥
10 else consec = 1;
11
12 last = input;
13
14 if (++count == 10) {
15 //Done! Count is ten!
16 return 0;
17 }
18 else return 1;
19 |}
20
21 | main() {
22 int input, output;
23 do {
24 input = // get next input
25 output = update (input);
26 printf ("Output: %d", output);
27 }
28 while (output);
29 |}

Fig. 1. Simple controller to detect when the same input value (line 24) is
seen three times in a row.

sequences 4-7-3-8 and 6-6-2-8 both put the application in the
same state (consec = 1, count = 4, last = 8), but the
fact that in the second test case we at one point saw the same
number twice in a row, which took us through a different path,
no longer matters in the current state.

Additionally, some sequences lead to semantically similar
states. For instance, 5-1-1-1, 3-8-1-1-1, and 6-6-1-1-1 all cover
the state in which a number is seen three times in a row; the
fact that we have seen a total of four numbers or five numbers
up to that point, or that we at one point did or did not see the
same number twice in a row, is not significant.

Because some sequences lead to the same state or seman-
tically similar states that can be eliminated, we can reduce
the number of test cases by focusing only on the five unique
sub-paths through the “update” function, as shown in Table L.

Because we are testing using sequences of values for
input, we assume that we cannot directly manipulate the
other variables (last, consec, and count) in order to
create test cases to satisfy these path conditions. However,
by focusing only on covering the five sub-paths through the
update function, we can reduce the size of the test set from
143 test cases to just five. For instance, the set of test cases

TABLE I
SUB-PATHS THROUGH THE UPDATE FUNCTION
Sub-path
Line Numbers | Path Condition
A | 4-5-7 input == last and consec == 3
B | 4-5-12-14-16 input == last and consec !=3
and count == 10
C | 4-5-12-14-18 input == last and consec !=3
and count != 10
D | 4-10-12-14-16 input != last and count == 10
E | 4-10-12-14-18 input != last and count != 10

TABLE I
TEST CASES THAT COVER ALL FIVE SUB-PATHS

Test Case | Sub-path | Input Sequence
T1 A 1-1-1
T2 B 1-2-3-4-5-6-7-8-9-9
T3 C 1-1
T4 D 1-2-3-4-5-6-7-8-9-1
T5 E 1-2

described in Table II would cover each of the five sub-paths
described in Table I.

As pointed out in various other works (e.g., [4], [19], [13],
etc.), we can further reduce the number of test cases in our
test set by noting that there is overlap in the sub-paths that
are covered by these five tests. Although the initial reduction
from 143 test cases down to just five is significant, we can
apply a test suite reduction strategy and remove any test cases
that are unnecessary.

TABLE III
SUB-PATH COVERAGE MATRIX FOR EACH TEST CASE

A|B|C|D]|E
Tl | X X
T2 X X
T3 X
T4 X | X
T5 X

The coverage matrix shown in Table III shows, for instance,
that in order to get to sub-path D, test case T4 also goes
through sub-path E. Thus, since sub-path coverage is our goal,
it is unnecessary to have separate test cases for D and E, since
a test that covers D will also cover E. So we further reduce
the test set by finding the smallest subset that covers all five
sub-paths, giving us a final test set comprised of T1, T2, and
T4.

We have now reduced our original 143 test cases down to
just three, and we still manage to cover all of the sub-paths
through the update function, and thus cover all of the states
that we want to test.

III. IMPLEMENTATION

Here we describe the implementation of the two steps
to our approach as described in Section II. We chose C
for our implementation because of the availability of tool

support, but the approach itself is not language-dependent,
and implementations could conceivably be built for other
languages.

A. Test case generation

The first step in our approach is to generate a set of test
cases that will cover all sub-paths through the program, based
on the implementation of the code. We started with the test
case generation tool KLEE [3], which uses symbolic execution
to identify path conditions for all reachable paths, and then
uses a constraint solver to generate test cases that satisfy those
path conditions. KLEE supports the generation of sequences
of input values, which is required by the types of programs
that we want to test.

By default, KLEE will attempt to generate test cases that
cover all paths through the program, though as described
above, many of those test cases lead to equivalent or seman-
tically equivalent states. Our goal, of course, is not to achieve
100% path coverage through the whole program, but rather to
cover 100% of the sub-paths through the various functions.

Fortunately, KLEE has a runtime option “-only-output-
states-covering-new,” which reports only test cases that cover
sub-paths that have not been previously covered. As we discuss
later, this is not an attempt to find a global minimum set of
test cases that cover all sub-paths, but rather KLEE prunes
its search tree by focusing on paths that it has not previously
seen.

In the example from the previous section, KLEE generated
143 test cases to cover all paths (as expected), and then the
five test cases to cover the five sub-paths through the update
function (also as expected) when using the runtime option to
only cover new states.

B. Test suite reduction

In order to further reduce the test set, such that we remove
any test case that only covers sub-paths that are already
covered by other tests, we consider the coverage matrix and
then apply a solution to the Minimum Set Cover Problem in
order to find the minimum subset that covers all sub-paths.

Although this problem is known to be NP-hard, the greedy
solution typically gets optimal or close-to-optimal results [5],
and we implemented it in Java for the purposes of this work.
For the programs we considered in our empirical studies
below, solving the problem by enumerating through all 2"
possible combinations was certainly tractable, but we acknowl-
edge that that may not always be the case.

For the example in the previous section, the tool we im-
plemented would take the coverage matrix from Table III and
remove test cases T3 and T5. Thus, using a combination of
KLEE and our minimization tool, we reduced the total number
of test cases from 143 to just three.

IV. EVALUATION

To determine the effectiveness of our solution, we conducted
experiments in which we focused on the following three
questions:

1) By how much does the new approach reduce the number
of test cases?

2) By how much does the implementation of the approach
reduce the time to generate tests?

3) What effect does reducing the number of test cases have
on the fault-finding capabilities of the test suite?

In order to answer these questions, we applied our approach
to five controller programs that are based on implementations
of real-world medical protocols, specifically those used at
the Hospital of the University of Pennsylvania to determine
the amount of insulin to deliver to patients with various
medical conditions. The protocols are hereafter referred to
as: PennNeurolCU, PennCardiac, PennMICU, PennHyper-
Glycemia, and PennIntraoperative.

The implementations were written in C and receive as input
the patient’s current blood glucose level and then output the
rate of insulin delivery according to the specific protocol. The
state that is maintained includes the previous glucose level
reading and the current delivery rate, both of which are used
by the protocols to determine how to adjust the delivery of
insulin based on the current input reading. For our purposes,
the programs terminate when a simulated time of delivering
insulin has elapsed, or when an invalid blood glucose reading
is detected (specifically, one that is too high or too low to
be handled by the protocol and would, in practice, necessitate
emergency intervention). Details of the implementations are
provided in Table IV.

TABLE IV
PROGRAMS USED IN EXPERIMENTS
Simulation Lines
Program Name Time of Code | States
PennNeuroIlCU 240 min 215 28
PennCardiac 210 min 167 22
PennMICU 270 min 194 32
PennHyperGlycemia | 180 min 185 30
Pennlntraoperative 210 min 180 38

A. Test Cases

In order to answer the first research question, “By how much
does the new approach reduce the number of test cases?”, we
first used KLEE to generate test cases for all paths through the
programs (note that the simulation time was bounded for each
protocol, so that there would not be infinite paths). We then
used KLEE to generate only those test cases that covered new
sub-paths, and lastly performed test suite reduction to remove
unnecessary test cases.

As shown in Table V, the impact of using the approach
is quite significant. For instance, for the PennNeuroIlCU im-
plementation, KLEE generated 101,928 test cases in order to
cover all possible paths through the program when executing
the protocol for a simulated time of up to 240 minutes of in-
sulin delivery. However, when we only considered the distinct
sub-paths through the functions used in the implementation
(specifically, the ones used to calculate the initial insulin
delivery rate, and then to readjust it), only 31 test cases were

needed in order to test the implementation in all of the states
of the protocol. In addition, we were able to reduce the test
set down to 27 test cases by removing those that did not cover
states that were not already covered, reducing the total test set
to around a hundredth of a percent of its original size.

In general, across all five applications, the number of
test cases needed to cover all sub-paths is less than 1% of
the number needed to cover all paths through the program.
Furthermore, we can reduce the test sets by a further 10-
20% by removing test cases that only cover sub-paths that
are already covered by other test cases.

It is worth pointing out that, although we used KLEE to
obtain the numbers in the second and third columns of Table V,
any other tool that correctly enumerates all paths and correctly
identifies distinct sub-paths should produce the same results.

However, the size of the reduced set of generated tests is
somewhat an artifact of using KLEE since another tool may
have produced a different set of test cases to cover all sub-
paths. That is, our approach does not necessarily generate the
true minimum number of test cases, since we start with a set
of test cases that covers all sub-paths and then reduce those,
but the initial set is not necessarily attempting to cover all
sub-paths in as few test cases as possible. For instance, there
could conceivably be one single test case that covers all sub-
paths, but it may not be revealed by the initial exploration of
the code. To find a true minimum number of test cases that
cover all sub-paths, we may need to enumerate over all paths
through the program, which would of course defeat the point
of our approach in terms of time saving.

Regardless, this experiment demonstrates quite clearly that
for these types of programs that consist of repeatedly-called
functions with potentially huge numbers of paths, an approach
that only considers sequences of inputs that cover sub-paths
through the various functions in order to test all reachable
states will generate a far smaller and more manageable set of
test cases.

B. Time

In answering the second research question, “By how much
does the implementation of the approach reduce the time to
generate tests?”’, we measured the time it took to run KLEE
and our tool as described in the previous experiment. Using
a machine running Mac OS X on a 2.2 GHz Intel Core i7
processor with 8GB RAM, we obtained the results shown in
Table VI. The third column shows the combined time of using
KLEE to generate the test set that only covers new sub-paths,
plus the time to reduce it further to remove unnecessary test
cases.

As expected, the time it takes for KLEE to generate the
smaller set of test cases is significantly reduced, up to over
90% in some cases. In total across all five applications, the
time saved by only considering newly covered sub-paths was
literally more than three days of computing.

Note that, when considering the number of test cases (Table
V) and the time it takes to generate them (Table VI), the
results are not at all linear. For instance, it took twice as

TABLE V
NUMBER OF GENERATED TEST CASES.

Program Name All Paths | Only New Sub-paths | Reduced Set
PennNeuroICU 101,928 31 (-99.969%) 27 (-12.9%)
PennCardiac 3,052 26 (-99.148%) 22 (-15.4%)
PennMICU 61,195 33 (-99.946%) 28 (-15.2%)
PennHyperGlycemia 45,106 30 (-99.933%) 24 (-20.0%)
Pennlntraoperative 22,146 56 (-99.747%) 49 (-12.5%)
Total 233,427 176 (-99.924%) 150 (-14.8%)
TABLE VI

TIME TO GENERATE TEST CASES.

Only New Sub-paths
Program Name All Paths + Reduced Set
PennNeuroIlCU 63h 3m 15s 15h 31m 8s (-75.4%)
PennCardiac Oh 5m 5s Oh 1m 32s (-69.8%)
PennMICU 21h 30m 12s 1h 12m 34s (-94.3%)
PennHyperGlycemia | 10h 15m 35s Oh 53m 48s (-91.2%)
Pennlntraoperative 2h 40m 27s 2h 20m 48s (-12.2%)
Total 97h 34m 34s | 19h 59m 50s (-79.5%)

long to generate the test cases for PennMICU as it did
for PennHyperGlycemia, even though PennMICU only had
about 33% more paths. Additionally, although we reduced
the size of the test set by over 99% for each program, the
reduction in time varied greatly from 12% all the way up to
94%. Clearly these results are all related to using KLEE in
our implementation, and depend on the manner in which it
explores the program and solves path conditions, but the point
is still made that a large amount of time can potentially be
saved by reducing the number of tests cases that are generated.
Moreover, although we only considered test set generation
time and not test set execution time, it follows that a test set
that is 99% smaller should run about 99% faster, thus saving
even more time during development and regression testing.

C. Effectiveness

To answer the final research question, “What effect does
reducing the number of test cases have on the fault-finding
capabilities of the test suite?”, we used mutation analysis
to systematically insert faults into the source code and then
determined whether removing some test cases would hurt the
ability to detect those faults.

In particular, we inserted mutations related to arithmetic
operators (e.g., changing “+” to “-”), boolean operators (e.g.,
changing “>" to “<”), logical operators (e.g., changing “&&”
to “||”), and assignment operators (e.g., changing “=" to
“+ ="). Each variant of the program had exactly one mutation,
i.e., we did not create any program variants with more than
one fault inserted.

A fault was considered to be detected (or, the mutant is
considered “killed”), if any test case in the test set caused the
program to produce the incorrect output, using the original
(unmutated) version as the golden implementation. The goal
was not so much to determine the fault-finding capability of
the tests generated by our approach (though this is discussed

below), but rather to see whether removing test cases by
reducing the test set would diminish the number of faults that
could be found.

As shown in Table VII, our approach to reducing the number
of test cases in the test set had almost no negative effect on
the fault-finding capabilities: only two faults detected by the
full test set were missed by the reduced set. That is to say, for
those two mutations, our test set reduction technique removed
some test cases that were the only ones among the entire
set that detected those defects. Upon further investigation, we
determined that this happened because the values chosen by
KLEE for those test sets coincidentally revealed those bugs,
but the other test cases that covered the same sub-paths did
not; how this could happen is discussed below.

We observe here that the number of faults that were detected
by the test sets is somewhat small, around 72% in total.
This is primarily an artifact of using a white-box testing
technique (based on path coverage) to generate tests that are
not necessarily attempting to detect the different types of
mutations that we inserted. As one would expect, our test cases
were effective at revealing mutations that affected decisions in
the code (e.g., mutating “<” to “>"), since these resulted in
the wrong path being taken, and thus the incorrect behavior
from the controller. Additionally, mutations that affected the
calculations performed by the controller (e.g., mutating “+” to
“-”) were often revealed since the same path was covered but
the output had the incorrect value.

However, some mutations proved very hard to kill, espe-
cially those that generally result in the same path being taken
but do not change the output value. In our case, this happens
because KLEE only seeks to generate inputs based on the
path condition, and does not try to come up with inputs that
are “close” to the values against which they are compared.
For example, anything that satisfies “x < 10” will satisfy its
mutation “x <= 107, and almost any value that violates “x

TABLE VII
FAULT-FINDING CAPABILITIES OF TEST SETS.

Faults

Program Name Inserted
PennNeurolCU 241
PennCardiac 160
PennMICU 238
PennHyperGlycemia 195
PennlIntraoperative 256
Total 1090

Detected by Detected by
Full Test Set | Reduced Test Set

189 188

126 125

191 191

158 158

125 125

789 787

< 10” will violate its mutation “x <= 107, except for the
particular case where x is 10, of course. The same holds true
for the situation in which “A && B” is mutated to “A ||
B”. The only way in which these mutants would be killed is
when the condition should normally evaluate to false, but the
mutated version evaluates to true, e.g. if KLEE coincidentally
chose a value of 10 for x in an attempt to violate the condition
in the first example. As it turned out, this was the case for the
two tests in our experiment that revealed such faults but then
happened to be removed by the test set reduction strategy.

We noted anecdotally that, after analyzing the test cases
generated by KLEE, when we hand-generated some additional
test cases by using boundary analysis (a black-box technique)
based on the values specified in the original protocols, we
were able to raise the effectiveness up to over 90%, primarily
because we were able to detect faults related to changes to
boolean operators (such as a “<” that had been mutated to a
“<=") that essentially resulted in off-by-one errors.

This is not to say that black-box tests are more effective than
white-box tests, nor is it to say that mutation analysis is not
an appropriate means of measuring effectiveness (see [2] for a
discussion on that topic). In the case of closed-loop controllers,
it would have been very difficult to hand-generate black-box
test cases that consist of sequences of inputs that would allow
us to reach each sub-path; using our white-box approach was
necessary as a starting point. Thus, this is more evidence of
the claim that black-box and white-box tests should be used
in conjunction with each other.

But more importantly for our purposes, the results of this
part of the experiment show that a reduced set of white-box
tests can be generated much more quickly than a set that
simply covers all paths, with almost no decrease in fault-
finding capabilities as measured in this manner.

V. RELATED WORK

There has, of course, been substantial research in the area of
automated test case generation in general (e.g., [8], [3], [14],
[18], etc.) as surveyed by McMinn [16] in 2004, Ali et al. [1]in
2010, and many others. Some research in this area has sought
domain-specific strategies, e.g. for GUIs [17], Web Services
[23], etc., and there has also been work in generating test cases
for real-time embedded systems [7] [20] [21]; however, none
of this previous work has looked specifically at generating test
cases for closed-loop controllers as we do here.

Research into the testing of controller software [12] [15]
in domains such as automotive [6] [22] has focused on the
mechanisms of conducting the testing and not on the automatic
generation of test cases from an implementation. Moreover,
as with the works cited above, none specifically address the
challenges of creating and then reducing a test set for a closed-
loop controller.

VI. FUTURE DIRECTIONS

Future work in this area could involve addressing some of
the issues raised during our experiments, for instance seeking
to determine whether it is possible to quickly find a true
minimum set of test cases that will cover all sub-paths. It
would, of course, be possible to do this by enumerating all
possible paths and then applying a solution to the minimum
set cover problem, but the time to compute that set would be
enormous. It may instead be preferable to design a tool that
would specifically attempt to solve this problem by first trying
to achieve sub-path coverage with just one test case, then with
two tests, then three, and so on until a minimum number of
test cases is found.

Additionally, more work could be done in evaluating the
suitability of white-box vs. black-box test cases for such pro-
grams. Our goal was to automatically generate test cases based
on the code, but we noted above that we could improve the
fault-finding capability of the test set by manually adding extra
test cases based on the protocol, i.e. the specification. Although
this result is not surprising, future work could try to quantify
the benefits of doing so, and perhaps look into automatically
creating test cases from the free-text specification [11], or from
a state diagram or model that comes from those specs [9]. It
may also be possible to create a hybrid approach in which
a white-box technique like the one presented here is used to
identify the path conditions to reach certain sub-paths, but then
a black-box technique is used to find condition-satisfying input
sequences that will specifically be most likely to reveal defects.

Last, we acknowledge that there may be threats to the
validity of our experiment in terms of the target applications
and the tool we used, and thus further investigation would
be required to determine the effectiveness of the approach
when applied to closed-loop controllers in other domains, or
for implementations in other programming languages.

VII. CONCLUSION

As the use of software for process control purposes in-
creases in domains like cyber-physical systems and medical

devices, so too does the need to quickly generate test cases
that will cover all possible states in which the software should
be tested, so as to increase the chance of finding faults in the
software and thus its quality.

In this paper, we have presented an automated approach to
generating and then reducing such a set of test cases. Using
the tool KLEE, we identify only a small set of test cases
that covers each sub-path, and then remove test cases that
only cover sub-paths covered by other tests, using a solution
to the Minimal Set Cover Problem. Our experimental results
demonstrate that our implementation could reduce the number
of test cases by tens of thousands and test case generation time
by dozens of hours in applications in the domain of interest,
with almost no negative impact on fault-finding capability.

As the ultimate goal of this research is to identify ways to
improve the quality of controller software by making it easier
to test and analyze, we feel that this work is an important first
step in that direction.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Prof. Insup Lee for sug-
gesting this line of work, and for his advice in evaluating
it. We also thank Nikos Vasilakis for his initial investigation
into generating test cases, Shweta Tyagi for implementing the
programs used in the evaluation, Eric O’Brien for assisting
with the mutation analysis experiment, and Sanjian Chen
for his help with the insulin protocols. This research was
supported in part by NSF CNS-1035715.

REFERENCES

[1]1 S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A
systematic review of the application and empirical investigation of
search-based test case generation. [EEE Transactions on Software
Engineering, 36(6):742-762, Nov/Dec 2010.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proc. of the 27th International
Conference on Software Engineering (ICSE), pages 402-411, 2005.

[3] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX conference on operating systems design
and implementation, pages 209-224, Dec. 2008.

[4] T. Y. Chen and M. F. Lau. A new heuristic for test suite reduction.
Information and Software Technology, 40:347354, Jul 1998.

[5] V. Chvatal. A greedy heuristic for the set-covering problem. Mathemat-
ics of Operations Research, 4(3):233-235, Aug. 1979.

[6] M. Conrad and I. Fey. Systematic model-based testing of embedded
automotive software. Electronic Notes in Theoretical Computer Science,
111:13-26, Jan. 2005.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

S. J. Cunning and J. W. Rozenblit. Automatic test case generation from
requirements specifications for real-time embedded systems. In Pro-
ceedings of the 1999 IEEE conference on systems, man, and cybernetics,
pages 784-789, 1999.

R. A. DeMilli and A. J. Offut. Constraint-based automatic test data
generation. [EEE Transactions on Software Engineering, 17(9):900—
910, Sep 1991.

J. Dick and A. Faivre. Automating the generation and sequencing of
test cases from model-based specifications. In Proceedings of the First
International Symposium of Formal Methods Europe: Industrial-Strength
Formal Methods, pages 268-284, 1993.

R. France and B. Rumpe. Model-driven development of complex
software: A research roadmap. In Proceedings of the 2007 Future of
Software Engineering, pages 37-54, 2007.

A. Gargantini and C. Heitmeyer. Using model checking to generate tests
from requirements specifications. In Proceedings of the 7th European
software engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on foundations of software engineering, pages
146-162, Nov. 1999.

J. Hawkins, R. B. Howard, and H. V. Nguyen. Automated real-time
testing (ARTT) for embedded control systems (ECS). In Proceedings of
the annual reliability and maintainability symposium, pages 647-652,
2002.

J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization for
modified condition/decision coverage. IEEE Transactions on Software
Engineering, 29(3):195-209, Mar 2003.

B. Korel. Automated software test data generation. /[EEE Transactions
on Software Engineering, 16(8):870-879, Aug 1990.

K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time
embedded software using UPPAAL-TRON: an industrial case study.
In Proceedings of the 5th ACM international conference on embedded
software, pages 299-306, 2005.

P. McMinn. Search-based software test data generation: a survey.
Software Testing, Verification and Reliability, 14(2):105-156, Jun 2004.
A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical GUI
test case generation using automated planning. [EEE Transactions on
Software Engineering, 27(2):144-155, Feb 2001.

R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data generation
using genetic algorithms. Software Testing, Verification and Reliability,
9(4):263-282, Dec 1999.

G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong. Empirical
studies of test-suite reduction. Software Testing, Verification and
Reliability, 12(4):219-249, Dec 2002.

T. Tekcan, V. Zlokolica, V. Pekovic, N. Teslic, and M. Gunduzalp. User-
driven automatic test-case generation for DTV/STB reliable functional
verification. IEEE Transactions on Consumer Electronics, 58(2):587—
595, May 2012.

W. T. Tsai, L. Yu, X. X. Liu, A. Saimi, and Y. Xiao. Scenario-based test
case generation for state-based embedded systems. In Proceedings of
the 2003 IEEE performance, computing, and communication conference,
pages 335-342, 2003.

J. R. Wagner and J. S. Furry. A real-time simulation environment for the
verification of automotive electronic controller software. International
Journal of Vehicle Design, 13(4):365-377, 1992.

Y. Zheng, J. Zhou, and P. Krause. An automatic test case generation
framework for web services. Journal of Software, 2(3):64-77, Sep 2007.

