
Automated Recovery in a Secure Bootstrap Process

William A. Arbaugh
Angelos D. Keromytis

David J. Farber
�

Jonathan M. Smith
University of Pennsylvania

Distributed Systems Laboratory
Philadelphia, PA. 19104-6389�

waa, angelos, farber, jms � @dsl.cis.upenn.edu

MS-CS-97-13

August 1, 1997

Abstract

Integrity is rarely a valid presupposition in many sys-
tems architectures, yet it is necessary to make any security
guarantees. To address this problem, we have designed a
secure bootstrap process, AEGIS, which presumes a min-
imal amount of integrity, and which we have prototyped
on the Intel x86 architecture. The basic principle is se-
quencing the bootstrap process as a chain of progressively
higher levels of abstraction, and requiring each layer to
check a digital signature of the next layer before con-
trol is passed to it. A major design decision is the con-
sequence of a failed integrity check. A simplistic strat-
egy is to simply halt the bootstrap process. However, as
we show in this paper, the AEGIS bootstrap process can
be augmented with automated recovery procedures which
preserve the security properties of AEGIS under the ad-
ditional assumption of the availability of a trusted repos-
itory. We describe a variety of means by which such a
repository can be implemented, and focus our attention
on a network-accessible repository. The recovery process

�
Smith and Farber’s work is supported by DARPA under Contracts

#DABT63-95-C-0073, #N66001-96-C-852, and #MDA972-95-1-0013
with additional support from the Hewlett-Packard and Intel Corpora-
tions.

is easily generalized to applications other than AEGIS,
such as standardized desktop management and secure au-
tomated recovery of network elements such as routers or
”Active Network” elements.

1 Introduction

Systems are organized as layered levels of abstraction, in
effect defining a series of virtual machines. Each virtual
machine presumes the correctness (integrity) of whatever
virtual or real machines underlie its own operation. With-
out integrity, no system can be made secure, and con-
versely, any system is only as secure as the foundation
upon which it is built. Thus, without such a secure boot-
strap the operating system kernel cannot be trusted since
it is invoked by an untrusted process. We believe that
designing trusted systems by explicitly trusting the boot
components provides a false sense of security to the users
of the operating system, and more important, is unneces-
sary.

We have previously reported[AFS97] the design and
preliminary implementation results for AEGIS, a secure
bootstrap process. AEGIS increases the security of the
boot process by ensuring the integrity of bootstrap code.

1

1 INTRODUCTION 2

It does this by constructing a chain of integrity checks, be-
ginning at power-on and continuing until the final transfer
of control from the bootstrap components to the operating
system itself. The integrity checks compare a computed
cryptographic hash value with a stored digital signature
associated with each component.

The AEGIS model relies explicitly on three assump-
tions:

1. The motherboard, processor, and a portion of the sys-
tem ROM (BIOS) are not compromised, i.e., the ad-
versary is unable or unwilling to replace the mother-
board or BIOS.

2. Existence of a cryptographic certificate authority in-
frastructure to bind an identity with a public key, al-
though no limits are placed on the type of infrastruc-
ture.

3. A trusted source exists for recovery purposes. This
source may be a host on a network that is reachable
through a secure communications protocol, or it may
be a trusted ROM card located on the protected host.

The AEGIS architecture, which we outline below in
Section 2, includes a recovery mechanism for repairing
integrity failures protecting against some classes of denial
of service attacks. An added benefit of the recovery mech-
anism is the potential for reducing the Total Cost Oper-
ation (TCO) of a computer system by reducing trouble
calls and down time associated with failures of the boot
process.

From the start, AEGIS has been targeted for commer-
cial operating systems on commodity hardware, making it
a practical “real-world” system. In AEGIS, the boot pro-
cess is guaranteed to end up in a secure state, even in the
event of integrity failures outside of a minimal section of
trusted code.

We define a guaranteed secure boot process in two
parts. The first is that no code is executed unless it is
either explicitly trusted or its integrity is verified prior to
its use. The second is that when an integrity failure is
detected a process can recover a suitable verified replace-
ment module. This recovery process is the focus of the
current paper.

1.1 Responses to integrity failure

When a system detects an integrity failure, one of three
possible courses of action can be taken.

The first is to continue normally, but issue a warning.
Unfortunately, this may result in the execution or use of
either a corrupt or malicious component.

The second is to not use or execute the component. This
approach is typically called fail secure, and creates a po-
tential denial of service attack.

The final approach is to recover and correct the incon-
sistency from a trusted source before the use or execution
of the component.

The first two approaches are unacceptable when the
systems are important network elements such as switches,
intrusion detection monitors, or associated with electronic
commerce, since they either make the component unavail-
able for service, or its results untrustworthy.

1.2 Goals

There are six main goals of the AEGIS recovery protocol.

1. Allow the AEGIS client and the trusted repository to
mutually authenticate their identities with limited or
no prior contact (mobility between domains).

2. Prevent man in the middle attacks.

3. Prevent replay attacks.

4. Mitigate certain classes of denial of service attacks.

5. Allow the participating parties to agree upon a shared
secret in a secure manner in order to optimize future
message authentication.

6. Be as simple as possible: Complexity breeds design
and implementation vulnerabilities.

1.3 Outline of the Paper

In Section 2, we make the goals of the AEGIS design ex-
plicit. Sections 3, 4, and 5 form the core of the paper, giv-
ing an overview of AEGIS, and the IBM PC boot process.
Section 4 provides an introduction to the cryptographic
and system tools needed to build a secure recovery pro-
tocol, and describes such a protocol. Section 5 describes

2 AEGIS ARCHITECTURE 3

the details of adding the recovery protocol to existing Dy-
namic Host Configuration Protocol (DHCP), and Trivial
File Transfer Protocol (TFTP) implementations and pro-
vides performance information. We discuss the system
status and our next steps in section 6, and conclude the
paper in section 7.

2 AEGIS Architecture

2.1 Overview

To have a practical impact, AEGIS must be able to work
with commodity hardware with minimal changes (ideally
none) to the existing architecture. The IBM PC archi-
tecture was selected as our prototype platform because
of its large user community and the availability of the
source code for several operating systems. We also use
the FreeBSD operating system, but the AEGIS architec-
ture is not limited to any specific operating system. Port-
ing to a new operating system only requires a few minor
changes to the boot block code so that the kernel can be
verified prior to passing control to it. Since the verifica-
tion code is contained in the BIOS, the changes will not
substantially increase the size of the boot loader, nor the
boot block.

AEGIS modifies the boot process shown in figure 1 so
that all executable code, except for a very small section
of trusted code, is verified prior to execution by using a
digital signature. This is accomplished through modifi-
cations and additions to the BIOS. The BIOS contains the
verification code, and public key certificate(s). In essence,
the trusted software serves as the root of an authentication
chain that extends to the operating system and potentially
beyond to application software [PG89] [GDM89] [Mic].
In the AEGIS boot process, either the operating system
kernel is started, or a recovery process is entered to repair
any integrity failure detected. Once the repair is com-
pleted, the system is restarted to ensure that the system
boots. This entire process occurs without user interven-
tion.

In addition to ensuring that the system boots in a se-
cure manner, AEGIS can also be used to maintain the
hardware and software configuration of a machine. Since
AEGIS maintains a copy of the signature for each expan-

sion card1, any additional expansion cards will fail the in-
tegrity test. Similarly, a new operating system cannot be
started since the boot block would change, and the new
boot block would fail the integrity test.

2.2 AEGIS Boot Process

Every computer with the IBM PC architecture follows ap-
proximately the same boot process. We have divided this
process into four levels of abstraction (see figure 1), which
correspond to phases of the bootstrap operation. The first
phase is the Power on Self Test or POST [Ltd91]. POST
is invoked in one of four ways:

1. Applying power to the computer automatically in-
vokes POST causing the processor to jump to the en-
try point indicated by the processor reset vector.

2. Hardware reset also causes the processor to jump to
the entry point indicated by the processor reset vec-
tor.

3. Warm boot (ctrl-alt-del under DOS) invokes POST
without testing or initializing the upper 64K of sys-
tem memory.

4. Software programs, if permitted by the operating
system, can jump to the processor reset vector.

In each of the cases above, a sequence of tests are con-
ducted. All of these tests, except for the initial processor
self test, are under the control of the system BIOS.

Once the BIOS has performed all of its power on tests,
it begins searching for expansion card ROMs which are
identified in memory by a specific signature. Once a valid
ROM signature is found by the BIOS, control is immedi-
ately passed to it. When the ROM completes its execu-
tion, control is returned to the BIOS.

The final step of the POST process calls the BIOS op-
erating system bootstrap interrupt (Int 19h). The boot-
strap code first finds a bootable disk by searching the
disk search order defined in the CMOS. Once it finds a
bootable disk, it loads the primary boot block into mem-
ory and passes control to it. The code contained in the
boot block proceeds to load the operating system, or a

1Ideally, the signature would be embedded in the firmware of the
ROM.

2 AEGIS ARCHITECTURE 4

secondary boot block depending on the operating sys-
tem [Gri93] [Eli96] or boot loader [Alm96].

Ideally, the boot process would proceed in a series of
levels with each level passing control to the next until
the operating system kernel is running. Unfortunately, the
IBM architecture uses a “star like” model which is shown
in figure 1.

Expansion ROMs

System BIOS

Initiate POST

Operating System

Boot Block

Level 1

Level 2

Level 3

Level 4

Expansion ROMs

Figure 1: IBM PC boot process

2.2.1 A Layered Boot Process

We have divided the boot process into several levels to
simplify and organize the AEGIS BIOS modifications, as
shown in figure 2. Each increasing level adds functional-
ity to the system, providing correspondingly higher lev-
els of abstraction. The lowest level is Level 0. Level 0
contains the small section of trusted software, digital sig-
natures, public key certificates, and recovery code. The
integrity of this level is assumed to be valid. We do, how-
ever, perform an initial checksum test to identify PROM
failures. The first level contains the remainder of the usual
BIOS code, and the CMOS. The second level contains
all of the expansion cards and their associated ROMs, if
any. The third level contains the operating system boot
block(s). These are resident on the bootable device and

are responsible for loading the operating system kernel.
The fourth level contains the operating system, and the
fifth and final level contains user level programs and any
network hosts.

The transition between levels in a traditional boot pro-
cess is accomplished with a jump or a call instruction
without any attempt at verifying the integrity of the next
level. AEGIS, on the other hand, uses public key cryptog-
raphy and cryptographic hashes to protect the transition
from each lower level to the next higher one, and its re-
covery process ensures the integrity of the next level in the
event of failures. The pseudo code for the action taken at
each level, � , before transition to level ����� is:

if (IntegrityValid(L+1))) {
GOTO(L+1);

} else {
GOTO(Recovery);

}.

2.2.2 AEGIS BIOS Modifications

AEGIS modifies the boot process shown in figure 1 by
dividing the BIOS into two logical sections. The first sec-
tion contains the bare essentials needed for integrity veri-
fication and recovery. It comprises the “trusted software”.
The second section contains the remainder of the BIOS
and the CMOS.

The first section executes and performs the standard
checksum calculation over its address space to protect
against ROM failures. Following successful completion
of the checksum, the cryptographic hash of the second
section is computed and verified against a stored signa-
ture. If the signature is valid, control is passed to the sec-
ond section, i.e., Level 1.

The second section proceeds normally with one
change. Prior to executing an expansion ROM, a cryp-
tographic hash is computed and verified against a stored
digital signature for the expansion code. If the signature
is valid, then control is passed to the expansion ROM.
Once the verification of each expansion ROM is complete
(Level 2), the BIOS passes control to the operating sys-
tem bootstrap code. The bootstrap code was previously
verified as part of section 2 of the BIOS, and thus no fur-
ther verification is required. The bootstrap code finds the
bootable device and verifies the boot block.

2 AEGIS ARCHITECTURE 5

Assuming that the boot block is verified successfully,
control is passed to it (Level 3). If a secondary boot block
is required, then it is verified by the primary block before
passing control to it. Finally, the kernel is verified by the
last boot block in the chain before passing control to it
(Level 4).

Any integrity failures identified in the above process
are recovered through a trusted repository.

2.3 Integrity Policy

Formalizing the discussion in Section 1.1, the AEGIS in-
tegrity policy prevents the execution of a component if
its integrity can not be validated. There are three reasons
why the integrity of a component could become invalid.
The first is the integrity of the component could change
because of some hardware or software malfunction, or
it could change because of some malicious act. Finally,
the component’s certificate timestamp may no longer be
valid. In each case, the client MUST attempt to recover
from a trusted repository. Should a trusted repository be
unavailable after several attempts, then the client’s fur-
ther action depends on the security policy of the user. For
instance, a user may choose to continue operation in a
limited manner, or they may choose to halt operations al-
together.

The AEGIS Integrity Policy can be represented by the
following pseudo code:

StartOver:
if (ComponentCertificateValid) {

if (ComponentIntegrityValid) {
continue;

} elseif (Recover(Component)) {
continue;

} else {
User_Policy();

}
} else if (Recover(Certificate)) {

goto StartOver;
} else {

UserPolicy();
}

}

2.4 Trusted Repository

The trusted repository can either be an expansion ROM
board that contains verified copies of the required soft-
ware, or it can be a network host. If the repository is
a ROM board, then simple memory copies can repair or
shadow failures. If the repository is a network host, then
a protocol with strong authentication is required

In the case of a network host, the detection of an in-
tegrity failure causes the system to boot into a recovery
kernel contained on the network card ROM. The recovery
kernel contacts a “trusted” host through the secure pro-
tocol described in this paper to recover a signed copy of
the failed component. The failed component is then shad-
owed or repaired, and the system is restarted (warm boot).

The resultant AEGIS boot process is shown in fig-
ure 2. Note that when the boot process enters the recov-
ery procedure it becomes isomorphic to a secure network
boot. We leverage this fact by adding authentication to the
well known network protocols supporting the boot pro-
cess DHCP[Dro97], and TFTP[Fin84] and using them as
our recovery protocol.

Expansion ROMs

Boot Block

Operating System

Initiate POST

BIOS Section 1

BIOS Section 2

AEGIS ROM

Level 0

User Programs

Network Host

Recovery Transition

Control Transition

Legend

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 2: AEGIS boot control flow

3 AEGIS NETWORK RECOVERY PROTOCOL 6

3 AEGIS Network Recovery Proto-
col

The AEGIS network recovery protocol combines proto-
cols and algorithms from networking and cryptography
to ensure the security of the protocol. This section first
provides an introduction to the material needed to fully
understand the recovery protocol. We then describe the
protocol and provide examples of its use.

3.1 Certificates

The usual purpose of a certificate with respect to public
key cryptography is to bind a public key with an identity.
While this binding is essential for strong authentication,
it severely limits the potential of certificates, e.g. anony-
mous transactions. The most widely used certificate stan-
dard, the X.509[Com89] and its variants, provide only this
binding. The X.509 standard, also, suffers from other se-
rious problems in addition to its limited use. The most
significant is ambiguity in the parsing of compliant cer-
tificates because of its use of the Basic Encoding Rules
(BER)[Com88]. The encoding rules also require a great
deal of space to implement, and the encoded certificates
are usually large.

Because of the limits and problems with the X.509
certificate standard, we use a subset of the proposed
SDSI/SPKI 2.0 certificate structure[EFRT97][Ell97] in-
stead. The SDSI/SPKI format does not suffer from the
same problems as X.509, and it offers additional func-
tionality.

3.1.1 SDSI/SPKI Lite

Since the SDSI/SPKI standard is still under development,
we have chosen to support the small subset of SDSI/SPKI
needed for AEGIS. We call this subset SDSI/SPKI Lite.

SDSI/SPKI provides for functionality beyond the sim-
ple binding of an identity with a public key. Identity based
certificates require the existence of an Access Control List
(ACL) which describe the access rights of an entity. Main-
taining such lists in a distributed environment is a com-
plex and difficult task. In contrast, SDSI/SPKI provides
for the notion of a capability [Lev84]. In a capability
based model, the certificate itself carries the authoriza-
tions of the holder eliminating the need for an identity

((cert (issuer (hash-of-key (hash sha1
cakey)))

(subject (hash-of-key (hash sha1
keyholderkey)))

(tag (client))
(not-before 03/29/97-0000)
(not-after 03/29/98-0000))

(signature (hash sha1 hashbytes)
(hash-of-key (hash sha1 cakey))
(sigbytes)))

Figure 3: AEGIS Authorization Certificate

infrastructure and access control lists. In AEGIS, we use
two capabilities: SERVER, and CLIENT with the obvious
meanings.

In AEGIS we only use three types of certificates. The
first is an authorization certificate. This certificate, signed
by a trusted third party or certificate authority, grants to
the keyholder (the machine that holds the private key)
the capability to generate the second type of certificate-
an authentication certificate. The authentication certifi-
cate demonstrates that the client or server actually hold
the private key corresponding to the public key identified
in the authentication certificate. The nonce field is used
along with a corresponding nonce in the server authenti-
cation certificate to ensure that the authentication proto-
col is “Fail Stop”[GS95] detecting and preventing active
attacks such as a man–in–the–middle. The msg-hash field
ensures that the entire message containing the certificates
has not been modified. Using the msg-hash in the authen-
tication certificate eliminates a signature and verification
operation since the entire message no longer needs to be
signed. The additional server fields are used to pass op-
tional Diffie-Helman parameters to the client so that these
parameters need not be global values. While clients are
free to set the validity period of the authentication certifi-
cate to whatever they desire, we expect that clients will
keep the period short. Examples of these certificates are
shown in figures 3 , 4, and 5. The third and final certifi-
cate format is the component signature certificate shown
in figure 6. This certificate is either embedded in a com-
ponent or stored in a table. It is used with the AEGIS boot
process described earlier in this paper.

3 AEGIS NETWORK RECOVERY PROTOCOL 7

((cert (issuer (hash-of-key (hash sha1
clientkey)))

(subject (hash-of-key (hash sha1
clientkey)))

(tag (client (cnonce cbytes)
(msg-hash
(hash sha1 hbytes))))

(not-before 09/01/97-0000)
(not-after 09/01/97-0000))

(signature (hash sha1 hashbytes)
(public-key dsa-sha1 clientkey)
(sigbytes)))

Figure 4: AEGIS Client Authentication Certificate

((cert (issuer (hash-of-key (hash sha1
serverkey)))

(subject (hash-of-key (hash sha1
serverkey)))

(tag (server (dh-g gbytes)
(dh-p pbytes)
(dh-Y ybytes)
(msg-hash
(hash sha1 hbytes))
(cnonce cbytes)
(snonce sbytes)))

(not-before 09/01/97-0900)
(not-after 09/01/97-0900))

(signature
(hash sha1 hashbytes)
(public-key dsa-sha1 serverkey)
(sigbytes)))

Figure 5: AEGIS Server Authentication Certificate

((cert (issuer (hash-of-key (hash sha1
approverkey)))

(subject (hash sha1
hashbytes))

(not-before 09/01/97-0000)
(not-after 09/05/97-0000))

(signature (hash sha1
hashbytes)

(public-key dsa-sha1
approverkey)

(sigbytes)))

Figure 6: AEGIS Component Certificate

3.1.2 Certificate Revocation Lists

Requiring each client to maintain a Certificate Revocation
List (CRL) places a significant burden on the non-volatile
storage of the client. Rather than use CRLs, we choose
instead to keep the validity period of certificates short as
in the SDSI/SPKI model and require the client to update
the certificates when they expire. This serves two pur-
poses beyond the ability to handle key revocation. First,
we eliminate the storage requirements for CRLs. Second,
we can potentially reduce the amount of system mainte-
nance required of the client. Since the client must connect
to the server on a regular basis to update the component
certificates, the server can, at the same time, update the
actual component as well if a new version is available.

3.2 Diffie Hellman Key Agreement

The Diffie Hellman Key Agreement (DH) [DH76] per-
mits two parties to establish a shared secret between them.
Unfortunately, the algorithm as originally proposed is sus-
ceptible to a man-in-the-middle attack. The attack can be
defeated, however, by combining DH with a public key al-
gorithm such as DSA as proposed in the Station to Station
Protocol[DvOW92].

The algorithm is based on the difficulty of calculat-
ing discrete logarithms in a finite field. Each participant
agrees to two primes, � and � , such that � is primitive
������� . These values do not need to be protected in or-
der to ensure the strength of the system, and therefore can
be public values. Each participant then generates a large

3 AEGIS NETWORK RECOVERY PROTOCOL 8

random integer. Bob generates � as his large random in-
teger and computes

���
�����	��
 � . He then sends

�
to Alice. Alice generates � as her large random integer
and computes
 �

��������
 � . She then sends
 to Bob.
Bob and Alice can now each compute a shared secret, � ,
by computing � �
����	��
 � and � ��� ���	��
 � , re-
spectively.

3.3 Digital Signature Standard

The Digital Signature Standard (DSS) includes a digital
signature algorithm (DSA) [oS94] and a cryptographic
hash algorithm (SHA1) [oS95]. DSA produces a 320 bit
signature using the following parameters:

A prime, � , between 512 and 1024 bits in length. The
size of the prime must also be a multiple of 64.

A 160 bit prime factor, � , of ��� � .
� , where �

��������� �"!$#&% �	��
 � and
�

is less than �'���
such that � is greater than 1.

� , where � is less than � .
� , where � � � � �	�(
 � .

The parameters � , � , and � are public. The private key is
� , and the public key is � .

A signature of a message,) , is computed in the fol-
lowing manner. The signer generates a random number,
� , that is less than � . They then compute * ��+

�-, � ��� �/.
�	��
0� , and 1 �2+ � � � +436587 � +)9. �:�-*;.".<�	�(
=� . The
values * and 1 , each 160 bits in length, comprise the sig-
nature. The receiver verifies the signature by computing:

> � 1 � � �	��
=�
? � �@+A36587 � +)9.�B > .C�	��
=�
?/D �@+ *EB > .F�	��
=�
G �9+"+

�(H;IJBK��HMLN.F�	�(
 �/.O�	��
0� .
The signature is verified by comparing G and * . If they are
equal, then the signature is valid.

3.4 SHA1 Message Authentication Code

Message Authentication Codes (MAC) utilize a secret, � ,
shared between the communicating parties and a message
digest. We use the Secure Hash Algorithm (SHA1), and
the HMAC described in RFC 2104[KBC97]. The MAC is
defined as:

36587
�
+ � XOR � �QP �-R 3J587

�
+ � XOR S �QP �-R)9.T. ,

where) is the message or datagram, � �QP � is an array of
64 bytes each with the value 0x5c, and S �QP � is an array
of sixty four bytes each with the value 0x36. � is zero
padded to sixty four bytes. The result of this MAC is the
160-bit SHA1 digest.

3.5 DHCP

The DHCP protocol[Dro97] provides clients the ability to
configure their networking and host specific parameters
dynamically during the boot process. The typical param-
eters are the IP addresses of the client, gateways, and DNS
server. DHCP, however, supports up to 255 configuration
parameters, or options. Currently approximately one hun-
dred options are defined for DHCP [AD97]. One of these
options is an authentication option which is described in
Section 4.1.

The format of a DHCP message is shown in fig-
ure 7[Dro97]. The first field in the DHCP message is the
opcode. The opcode can have one of two values, 1 for
a BOOTREQUEST message, and 2 for a BOOTREPLY
message. The next field, htype, is the hardware address
type defined by the “Assigned Numbers” RFC[RP94], and
hlen indicates the length of the hardware address. hops is
set to zero by the client and used by BOOTP relay agents
to determine if they should forward the message. xid is a
random number chosen by the client. Its use is to permit
the client and the server to associate messages between
each other. secs is set by the client to the number of sec-
onds elapsed since the start address acquisition process.
Currently, only the leftmost bit of the flags field is used
to help solve an IP multicast problem. The remaining bits
must be zero. ciaddr is the client address if the client
knows it already, yiaddr is “your” address set by the server
if the client did not know (or had a bad one) its address.
giaddr is the relay agent address. chaddr is the client’s
hardware address. sname is an optional null terminated

3 AEGIS NETWORK RECOVERY PROTOCOL 9

OPCODE

XID

FLAGSSECS

HTYPE HLEN HOPS

Client IP Address

Your (Client) IP Address

IP Address of Next Server in Bootstrap

Relay Agent IP Address

Client Hardware Address (16 bytes)

Options (variable)

Boot File Name (128 bytes)

Optional Server Name (64 bytes)

0 8 16 24 31

Figure 7: DHCP Message Format

string containing the server’s name. file is the name of
the boot file. In AEGIS, this is the name of the compo-
nent to recover. Finally, options is a variable length field
containing any options associated with the message.

The initial message exchange between the client and
the server is shown in figure 8. The client begins the pro-
cess by sending a DHCPDISCOVER message as a broad-
cast message on its local area network. The broadcast
message may or may not be forwarded beyond the LAN
depending on the existence of relay agents at the gate-
ways. Any or all DHCP servers respond with a DHCPOF-
FER message. The client selects one of the DHCPOFFER
messages and responds to that server with a DHCPRE-
QUEST message, and the server acknowledges it with a
DHCPACK.

In addition to providing networking and host specific
parameters, DHCP can provide the name and server lo-

ACK

REQUEST

OFFER

OFFER

ServerClient

Time DISCOVER

Figure 8: Initial DHCP Message Exchange

cation of a bootstrap program to support diskless clients.
After the client receives the IP address of the boot server
and the name of the bootstrap program, the client uses
TFTP[Sol92] to contact the server and transfer the file.

3.6 TFTP

TFTP was designed to be simple and small to fit in a ROM
on a diskless client. Because of this, TFTP uses UDP
rather than TCP with no authentication included in the
protocol. TFTP does, however, have an option capabil-
ity [MH95] similar to DHCP.

TFTP has five unique messages that are identified by a
two byte opcode value at the beginning of the packet. The
Read Request (RRQ) and the Write Request (WRQ) pack-
ets, opcodes 1 and 2 respectively, share the same format,
see figure 12. The Data (DATA) packet contains three
fields. The first field is the two byte opcode, 3 for DATA.
Following the opcode is a two byte field containing the
block number of the data, beginning at 1 and increasing.
The third and final field of the packet contains the actual
block of data transferred. Typically, the block size is 512
bytes. However, the size can be increased through the use
of the TFTP options. Should the block be smaller than
the blocksize, this identifies the packet as the final DATA
packet. Each DATA packet is acknowledged by a four
byte ACK packet, opcode 4, containing the opcode and
the acknowledged block number. The final packet, op-
code 5, is the ERROR packet with three fields. The first is
the two byte opcode. The second is a two byte error code,

4 IMPLEMENTATION 10

and the final field is a zero terminated netascii string con-
taining an error message. Figure 13 depicts the various
TFTP messages.

A TFTP session for reading/downloading a file begins
with the client sending a RRQ packet to the sever and re-
ceiving either the first DATA packet in response, or an
ERROR packet if the request was denied. The client re-
sponds with an ACK packet, and the process continues
until the file is transferred.

3.7 Initial Mutual Authentication Protocol

A Client (AEGIS) and a Server (Trusted Repository) wish
to communicate and establish a shared secret after au-
thenticating the identity of each other. There has been
no prior contact between the Client and the Server other
than to agree on a trusted third party, or a public key in-
frastructure, to sign their authorization certificates, ����� .
The Server and the Client also need to have a copy of the
trusted third party’s public key, ����� . The Client sends
a message to the Server containing the Client’s autho-
rization and authentication certificates, � ��	 . The Server
receives the message and verifies the Client’s signature
on the authentication certificate and that the hash con-
tained in the authentication certificate matches that of the
message,) . The signature of the CA on the autho-
rization certificate is also verified. If all are valid and
the timestamp on the authentication certificate is within
bounds, then the Server sends to the Client a message con-
taining its authorization and authentication certificates.
The server’s authentication certificate may include the op-
tional DH parameters, � and � , and
 , where
 �

� �
�	��
 � . If the DH parameters are not included in the cer-
tificate, then default values for � and � are used. Cur-
rently, we are using the same default values as those
used in SKIP[AMP]. The server’s nonce, 1 � � ��

� , and
the client’s nonce,
 � � ��

� , are also included in the mes-
sage. The Client receives this message and verifies the
signatures on the authentication and authorization certifi-
cates, that the hash in the servers authentication certificate
matches the message hash, and that
 � � ��

� matches that
sent in the first message. If all are valid and the timestamp
value of the authentication certificate is within bounds and

 � � ��

� matches that sent in the first message, then the
Client sends a signed message to the Server containing its
DH parameter

�
where

� �
�����	��
 � , and the server’s

nonce 1 � � ��

� . The Server receives the message and veri-
fies the signature and that 1 � � ��

� matches that sent in its
previous message. If both are valid, then the Server can
generate the shared secret, � , using DH, � �O� � �	�(
 � .
The Client similarly generates the shared secret, � �
 �
����
 � . The shared secret, � , can now be used to authen-
ticate messages between the Server and the Client until
such time as both agree to change � . Figure 9 depicts the
entire exchange between the Client and the Server with
the DHCP messages identified. The use of the authen-
tication certificate assists in ensuring that the protocol is
“Fail Stop” through the use of nonces and a short validity
period for the certificate. The use of 1 � � ��
�� also permits
the Server to reuse
 over a limited period. This reduces
the computational overhead on the server during high ac-
tivity periods. The potential for a TCPSYN like denial
of service attack[HB96] is mitigated in the same manner
by the authentication certificate. The authorization certifi-
cate also prevents clients from masquerading as a server
because of the client/server capability tag. This is a bene-
fit not possible with X.509 based certificates.

3.8 Subsequent Message Authentication

Subsequent messages, e.g. TFTP messages, use the
SHA1 HMAC defined in section 3.4 augmented with a
one up counter to prevent replays. The counter is initially
set to zero when the shared secret, � , is derived.

4 Implementation

Moving from a high level design to an implementation re-
quires a great deal of work. In this section we take the
protocol and certificates described in section 4 and de-
scribe their implementation using DHCP and TFTP. We
also provide the message formats and type information.
We conclude the section by providing performance infor-
mation, and discussing related work.

4.1 DHCP Authentication Option

DHCP is extensible through the use of the variable length
options field at the end of each DHCP message. The for-
mat and use of this field is currently defined by an In-
ternet RFC [AD97]. An option for authentication is also

4 IMPLEMENTATION 11

CAP CAP

CAN

Client
CAR

Client

VClient

Y=g mod py

VCA CAR

Client

CAN

Client

()

()

CAN

Server
CAR

x
k = Y mod p

hash = H(M)?

hash = H(M)?

CAN

Server

CAR

Server

X=g mod px

ServerV ()

CAV ()

cnonce = cnonce?

ClientV Client(S (M))

k = X mod p
y

snonce = snonce
?

Client Server

,

,
Server

Client

DHCPOFFER

DHCPDISCOVER

DHCPREQUEST

DHCPACK
SHA1MAC(M, k)

X, snonce, S (M)

Figure 9: Authentication Message Exchange

4 IMPLEMENTATION 12

defined by an expired draft RFC [Dro96]. The format
of the message is shown in figure 10. The DHCP au-

90 Length Protocol

Authentication Information

8 16 24 310

Figure 10: DHCP Authentication Option Format

thentication option was designed to support a wide va-
riety of authentication schemes by using the single byte
protocol and length fields. Unfortunately, a single byte
value for the size in octets of authentication information
is too small for the AEGIS authentication information.
To solve this problem, our choices were to either violate
the current DHCP options standard and use a two byte
size field and potentially cause interoperability problems,
or place an additional restriction on the AEGIS authen-
tication packet, requiring it to be the last option on any
DHCP packet. We have selected the latter. Using this and
a unique AEGIS option number permits interoperability
with current DHCP servers.

Since we are unable to use the authentication option
message format shown in figure 10, we must define a
new DHCP option format for AEGIS Authentication. The
AEGIS option uses the same basic format as the normal
DHCP format. The only difference is the use of a two byte
size field. Embedded in the data portion of the option are
the AEGIS certificates, and other data as required. These
fields are identified through the use of a one byte AEGIS
type followed by a two byte size field. The AEGIS Au-
thentication format is shown in figure 11. The different

8 16 24 310

TBD Length AEGISType

AEGISSize

Authentication InformationAEGIS

Figure 11: AEGIS Authentication Option Format

AEGIS types are shown in table 1.

Type Value
Authorization Certificate 0
Client Authentication Certificate 1
Server Authentication Certificate 2
Component Authentication Certificate 3
X value 4
snonce 5
signature 6
SHA1MAC 7

Table 1: AEGIS Types

4.2 Adding Authentication to TFTP

We define a new TFTP option, HMAC-SHA1, that uses
the HMAC defined in section 3.4 along with a 32 bit one
up counter for use with the TFTP Read (RRQ) and Write
(WRQ) requests. The format of a RRQ or WRQ packet
with the HMAC option is shown in figure 12. The counter

Mode 0 "hmac-sha1" 0 0

TFTP Message TFTP Option Extension

OPC FileName 0 Count Digest 0

Figure 12: TFTP RRQ/WRQ Authentication Packet For-
mat

is two bytes in length, and its purpose is to prevent replay
attacks. Both the client and the server initialize the count
to zero immediately after � is derived from the protocol
shown in figure 9.

The TFTP option extension, however, is not defined for
TFTP DATA or ERROR packets. Therefore, we must ex-
tend2 those packets in the same manner as we did with the
RRQ and WRQ packets shown in figure 12. The TFTP
packet formats are shown in figure 13.

Another TFTP implementation problem is how to han-
dle the “lock-step” nature of the protocol and still prevent
replays. The solution we have adopted provides a nar-
row window for an adversary to obtain a copy of the file
from the server without proper authentication by replay-
ing the message to the server before the clients next mes-
sage. We believe the benefits of this approach, not having
to change the TFTP protocol other than a small message

2We are currently investigating the interoperability issues with exist-
ing servers raised by this modification

4 IMPLEMENTATION 13

Block
Number

Block
Number

Error
Num

Data

N42

2 4

3

4

5 Error Message

ERROR

ACK

DATA

Figure 13: TFTP packets

format change, outweigh the potential problems associ-
ated with dramatically changing the protocol.

4.3 Using DHCP/TFTP as the Recovery
Protocol

Once authentication is added to DHCP and TFTP, AEGIS
can use them without further modifications as its recovery
protocol. In AEGIS, the client follows the DHCP proto-
col but adds to the DHCPDISCOVER message the name
of the required component needed followed by the SHA1
hash of the component in the boot file name field. Once
the DHCP protocol is completed and the shared secret es-
tablished, the AEGIS client contacts the trusted repository
using TFTP with authentication and downloads the new
component.

4.4 Performance Information

We are currently in the process of implementing this
work using the Internet Software Consortium’s DHCP
server [Lem97], and AT&T’s Cryptolib [LMB95]. We
will provide specific performance information on our im-
plementation in the final copy of this paper. We expect to
have a completed prototype of the recovery process by the
end of September. In the mean time, we are providing per-
formance estimates using the times shown in table 2. The
results were generated using a 200Mhz PentiumPro with
32MB of memory. For the purposes of these estimates,
we assume that each DHCP message is three kilobytes in
length. The cost of hashing the first and second message
for comparison to the hash contained in the authentication

Algorithm Time
SHA1 6.1 MB/sec
DSA Verify (1024bit) 36 msec
DSA Sign (1024bit) 23 msec
Generate X,Y (1024bit) 22 msec
Generate k (1024bit) 71 msec

Table 2: CryptoLib 1.1 Benchmarks

certificate is negligible and therefore not included in the
estimates below.

4.4.1 Initial Exchange

The initial authentication exchange includes the first three
DHCP messages, DHCPDISCOVER, DHCPOFFER and
DHCPREQUEST. DHCPDISCOVER requires the client
to perfom one signature operation, and the server must
perform two verify operations. Thus, the total cost of this
message is 95 msec. The DHCPOFFER message requires
the server to generate
 and perform one signature opera-
tion. The client must perform two verify operations. This
results in a message cost of 117 msec. The final message,
DHCPREQUEST, requires the client to generate

�
and

� , and perform one signature operation. The server must
perform one verify operation, and generate � resulting in
a message cost of 107 msec. Summing the cost of these
three messages gives a total cost of 319 msec.

While the above time may seem too high a cost to pay
for security, the total time is small when compared to the
total time spent booting a computer system. It is unlikely
that users will see the increase in time required to perform
the authentication.

4.4.2 Subsequent Exchanges

Subsequent messages use the MAC described earlier, and
will likely (in a LAN situation) be bounded by the speed
of SHA1, 6.1 MB/sec.

4.5 Related Work

To our knowledge, there is no previous work involving
the secure recovery of bootstrap components. There have

6 CONCLUSIONS 14

been, however, several efforts at incorporating authentica-
tion into DHCP. Two are expired draft RFCs. The first ef-
fort [Dro] involves the use of a shared secret between the
DHCP client and server. While this approach is secure,
it severely limits the mobility of clients to those domains
where a shared secret was previously established. Fur-
thermore, the maintenance and protection of the shared
secrets is a difficult process. Another effort at incorporat-
ing authentication into DHCP was by TIS. This proposal
combines DHCP with DNSSEC[EK97]. This approach
provides for the mobility of DHCP clients, but at a signif-
icant increase in cost in terms of complexity. The client
implementation, in order to support this approach, must
also include an implementation of DNSSEC. This will
significantly increase the size of client code- possibly be-
yond the ROM size available to the client. Recently, Intel
has proposed authentication support for DHCP [Pat97].
Their proposal uses a two phase approach. In the first
phase, the computer system boots normally using DHCP.
The second phase begins after the system completes the
DHCP process and uses ISAKMP [MSST96] to exchange
a security association. This security association is then
used to once again obtain the configuration information
from the DHCP server using a secure channel, if such a
channel can be established. This information is then com-
pared to that obtained in the first phase. If they differ or a
secure channel cannot be established, then the boot fails.
The benefit of this approach is that it requires no changes
to DHCP. The drawbacks are the same as the DNSSEC
approach with the addition of two problems. The first is a
possible race condition vulnerability during the time be-
fore the two configurations are compared. The second is
that the approach does not protect against denial of ser-
vice attacks.

5 Future Work

One of the major goals of the AEGIS research has been
the development of new ideas for the construction of se-
cure systems, with the additional constraint that the ideas
must be realizable today or in the very near term with
commercial platforms. While confining, this constraint
ensures that AEGIS results will have impact beyond sim-
ply the academic community.

We intend to further investigate the centralized man-

agement of the bootstrap process. This has many practi-
cal uses, including desktop management in LAN-attached
PCs (where integrity failures might be stimulated by
viruses or user-inserted cards), as well as secure, recover-
able bootstrap for network elements with processors, such
as bridges and IP routers.

The recovery protocol itself will be fully incorporated
into the DHCP model, and we intend to propose it as an
authentication RFC standard, perhaps as soon as the De-
cember 1997 Internet Engineering Task Force meeting.

6 Conclusions

We introduced the AEGIS secure bootstrap architecture,
explained its approach to integrity and the assumptions
it makes about the operating environment, and discussed
the general idea behind automated recovery in a secure
bootstrap process using trusted sources. We are currently
implementing this new automated recovery process in the
context of the PC architecture using a small portion of the
BIOS. We have shown how it can be extended to recov-
ery over networks by use of cryptographic protocols, and
provided one such protocol, with expected data structures
and packet formats.

We believe that this work has a significant impact on
the administration and manage-ability of systems. While
we have previously demonstrated the need and provided
an architecture for a secure bootstrap for any trusted sys-
tem, here we have shown how that architecture can be
utilized in a very realistic environment, with no loss of
security. Thus, we can build distributed computer sys-
tems of nodes which are in two logical states: (1) non-
operational (e.g., down or recovering), and (2) operational
and trusted. Such simple states and transitions ease, and
in some sense make possible, verification of applications
built on the distributed systems.

References

[AD97] S. Alexander and R. Droms. DHCP Op-
tions and BOOTP Vendor Extensions. Inter-
net RFC 2132, March 1997.

[AFS97] William A. Arbaugh, David J. Farber, and
Jonathan M. Smith. A Secure and Reliable

REFERENCES 15

Bootstrap Architecture. In Proceedings 1997
IEEE Symposium on Security and Privacy,
pages 65–71, May 1997.

[Alm96] Werner Almesberger. LILO Technical
Overview, version 19 edition, May 1996.

[AMP] Ashar Aziz, Tom Markson, and
Hemma Prafullchandra. As-
signed Numbers for SKIP Protocols.
http://skip.incog.com/spec/numbers.html.

[Com88] Consultation Committee. Recommenda-
tion X.209: Specification of Basic Encod-
ing Rules for Abstract Syntax Notation One
(ASN.1), 1988.

[Com89] Consultation Committee. X.509: The Di-
rectory Authentication Framework. Inter-
national Telephone and Telegraph, Interna-
tional Telecommunications Union, Geneva,
1989.

[DH76] W. Diffie and M.E. Hellman. New Direc-
tions in Cryptography. IEEE Transactions on
Information Theory, IT–22(6):644–654, Nov
1976.

[Dro] R. Droms. Authentication for DHCP mes-
sages. Work in Progress.

[Dro96] R. Droms. Authentication for DHCP Mes-
sages. Work in Progress, November 1996.

[Dro97] R. Droms. Dynamic Host Configuration Pro-
tocol, RFC 2131, March 1997.

[DvOW92] W. Diffie, P.C. van Oorschot, and M.J.
Wiener. Authentication and Authenticated
Key Exchanges. Designs, Codes and Cryp-
tography, 2:107–125, 1992.

[EFRT97] Carl M. Ellison, Bill Frantz, Ron Rivest, and
Brian M. Thomas. Simple Public Key Cer-
tificate. Work in Progress, April 1997.

[EK97] D. Eastlake and C. Kaufman. Dynamic Name
Service and Security. Internet RFC 2065,
January 1997.

[Eli96] Julian Elischer. 386 boot.
/sys/i386/boot/biosboot/README.386,
July 1996. 2.1.5 FreeBSD.

[Ell97] Carl M. Ellison. SDSI/SPKI BNF. Private
Email, July 1997.

[Fin84] Ross Finlayson. Bootstrap Loading using
TFTP. Internet RFC 906, June 1984.

[GDM89] Y. Desmedt G. Davida and B. Matt. Defend-
ing Systems Against Viruses through Cryp-
tographic Authentication. In 1989 IEEE
Symposium on Security and Privacy, pages
312–318. IEEE, 1989.

[Gri93] R. Grimes. AT386 Pro-
tected Mode Bootstrap Loader.
/sys/i386/boot/biosboot/README.MACH,
October 1993. 2.1.5 FreeBSD.

[GS95] Li Gong and Paul Syverson. Fail-Stop Pro-
tocols: An Approach to Designing Secure
Protocols. In Proceedings of IFIP DCCA-5,
September 1995.

[HB96] L.T. Heberlein and M. Bishop. Attack Class:
Address Spoofing. In Proceedings of the 19th
National Information Systems Security Con-
ference, pages 371–377, October 1996.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti.
HMAC:Keyed–Hashing for Message Au-
thentication. Internet RFC 2104, February
1997.

[Lem97] Ted Lemon. Dynamic Host Configuration
Server. ftp://ftp.fugue.com/pub/, 1997.

[Lev84] H.M. Levy. Capability Based Computer Sys-
tems. Digital Press, 1984.

[LMB95] Jack Lacy, Don Mitchell, and Matt
Blaze. Cryptolib 1.1. Email to cryp-
tolib@research.att.com, 1995.

[Ltd91] Phoenix Technologies Ltd. System BIOS for
IBM PCs, Compatibles, and EISA Comput-
ers. Addison Wesley, 2nd edition, 1991.

REFERENCES 16

[MH95] G. Malkin and A. Harkin. TFTP Option Ex-
tension. Internet RFC 1782, March 1995.

[Mic] Microsoft. Authenticode Techonology. Mi-
crosoft’s Developer Network Library, Octo-
ber 1996.

[MSST96] Douglas Maughan, Mark Schertler, Mark
Schneider, and Jeff Turner. Internet Secu-
rity Association and Key Management Proto-
col (isakmp). Internet–draft, IPSEC Working
Group, June 1996.

[oS94] National Institute of Standards. Digital Sig-
nature Standard. Technical Report FIPS-186,
U.S. Department of Commerce, May 1994.

[oS95] National Institute of Standards. Secure Hash
Standard. Technical Report FIPS-180-1, U.S.
Department of Commerce, April 1995. Also
known as: 59 Fed Reg 35317 (1994).

[Pat97] Baiju V. Patel. Securing dhcp. Work in
Progress, July 1997.

[PG89] Maria M. Pozzo and Terrence E. Gray. A
Model for the Containment of Computer
Viruses. In 1989 IEEE Symposium on Se-
curity and Privacy, pages 312–318. IEEE,
1989.

[RP94] J. Reynolds and J. Postel. Assigned Num-
bers. Internet RFC 1700, October 1994.

[Sol92] K. R. Sollins. The TFTP Protocol (revision
2). Internet RFC 1350, July 1992.

APPENDIX A SDSI/SPKI LITE BNF 17

Appendix A SDSI/SPKI Lite BNF

<byte-string> :: <bytes> ;
<bytes> :: <decimal> ‘‘:’’ {binary byte string of that length} ;
<cert> :: ‘‘(‘‘ ‘‘cert’’ <issuer> <subject> <deleg>? <tag> <valid>?‘‘)’’ ;
<client> :: ‘‘(‘‘ ‘‘client’’ <cnonce>? <msg-hash>? ‘‘)’’ ;
<cnonce> :: ‘‘(‘‘ ‘‘cnonce’’ <byte-string> ‘‘)’’ ;
<date> :: <byte-string> ;
<ddigit> :: ‘‘0’’ | <nzdigit> ;
<decimal> :: <nzddigit> <ddigit> ;
<deleg> :: ‘‘(‘‘ ‘‘propagate’’ ‘‘)’’ ;
<hash> :: ‘‘(‘‘ ‘‘hash’’ ‘‘sha1’’ <byte-string> ‘‘)’’ ;
<issuer> :: ‘‘(‘‘ ‘‘issuer’’ <issuer-name> ‘‘)’’ ;
<issuer-name> :: <principal>;
<msg-hash> :: ‘‘(‘‘ ‘‘msg-hash’’ <hash> ‘‘)’’ ;
<not-after> :: ‘‘(‘‘ ‘‘not-after <date> ‘‘)’’ ;
<not-before> :: ‘‘(‘‘ ‘‘not-before’’ <date> ‘‘)’’ ;
<nzdigit> :: ‘‘1’’|‘‘2’’|‘‘3’’|‘‘4’’|‘‘5’’|‘‘6’’|‘‘7’’|‘‘8’’|‘‘9’’;
<obj-hash> :: ‘‘(‘‘ ‘‘object-hash’’ <hash> ‘‘)’’ ;
<principle> :: <pub-key> | <hash-of-key> ;
<pub-key> :: ‘‘(‘‘ ‘‘public-key’’ <pub-sig-alg-id> <s-expr>* <uri>?‘‘)’’ ;
<pub-sig-alg-id> :: ‘‘dsa-sha1’’ ;
<s-expr> :: ‘‘(‘‘ <byte-string> ‘‘)’’ ;
<server> :: ‘‘(‘‘ ‘‘server’’ <dh-g>? <dh-p>? <dh-Y>? <snonce>?

<msg-hash>? ‘‘)’’ ;
<signature> :: ‘‘(‘‘ ‘‘signature’’ <hash> <principle> <byte-string> ‘‘)’’ ;
<subject> :: <principal> | <obj-hash> ;
<tag> :: ‘‘(‘‘ ‘‘tag’’ ‘‘)’’ | ‘‘(‘‘ ‘‘tag’’ <tag-body> ‘‘)’’ ;
<tag-body> :: <client> | <server> ;
<valid> :: <not-before>? <not-after>? ;

