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Abstract

We study absolute and relative keys for XML, and in-
vestigate their associated decision problems. We argue
that these keys are important to many forms of hierar-
chically structured data including XML documents. In
contrast to other proposals of keys for XML, these keys
can be reasoned about efficiently. We show that the (fi-
nite) satisfiability problem for these keys is trivial, and
their (finite) implication problem is finitely axiomatiz-
able and decidable in PTIME in the size of keys.

1 Introduction

Keys are of fundamental importance in databases. They
provide a means of locating a specific object within the
database and of referencing an object from another ob-
ject (e.g. relationships); they are also an important
class of constraints on the validity of data. In partic-
ular, value-based keys (as used in relational databases)
provide an invariant connection from an object in the
real world to its representation in the database. This
connection is crucial for modifying the database as the
world that it models changes.

As XML is increasingly used to model real world
data, it is natural to require a value-based method of
locating an element in an XML document. Key specifi-
cations for XML have been proposed in the XML stan-
dard [10], XML Data [27], and XML Schema [32]. How-
ever existing proposals cannot handle one or more of
the following situations. First, one may want to define
keys with complex structure. For example, the name
subelement of a person element could be a natural
key, but may itself have first-name and last-name
subelements. Keys should not be constrained to be
character strings (attribute values.) Second, in hier-
archically structured data, one may want to identify el-
ements within the scope of a sub-document. For exam-
ple, the number subelement of a chapter element may
be a key for chapters of a specific book, but would not be
unique among chapters of different books. The idea of
keys having a scope is not new. In relational databases,
scoped keys exists in the form of weak entities. Using
the same example, chapter is a weak entity of book. A
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chapter number would only make sense in the context
of some book name (assuming that the keys for book
and chapter are name and number respectively). Cur-
rently, there is no counterpart of weak entities in key
specification proposals. Third, since XML data is not
required to conform to a DTD or schema definition, it
is useful to have a definition of keys that is independent
of any specification (such as a DTD or XML Schema)
of the type of an XML document.

To overcome these limitations, the authors recently
[12] proposed a key structure for XML which has the
following benefits:

1. Keys are defined in terms of one or more path ex-
pressions, i.e. they may involve one or more at-
tributes, subelements or more general structures.
Equality is defined on tree structures instead of on
simple text, referred to as value equality.

2. Keys, in their general form, are defined relative to
a set, of context nodes, referred to as relative keys.
Such keys can be concatenated to form a hierarchi-
cal key structure, common in scientific data sets.
An absolute key is a special case of a relative key,
in which the set of context nodes consists of the
root.

3. The specification of keys does not depend on any
typing specification of the document (e.g. DTD or
XML Schema).

In developing our notion of keys for XML, we start
with a tree model of data as used in DOM [6], XSL
[17, 35], XQL [30] and XML Schema [32]. An example
of this representation for some XML data is shown in
Fig. 1 in which nodes are annotated by their type: E for
element, A for attribute, and S for string (or PCDATA).
Some value-based keys for this data might include: 1)
A book node is identified by @isbn; 2) An author node
is identified by name, no matter where the author node
appears; and 3) Within any subtree rooted at book, a
chapter node is identified by @number. These keys are
defined independently of any type specification. The
first two are examples of absolute keys since they must
hold globally throughout the tree. Observe that name
has a complex structure. As a consequence, to test
whether two authors violate this constraint involves test-
ing value-equality on the subtrees rooted at their name
nodes. The last one is an example of a relative key since
it holds locally within each subtree rooted at a book. It
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Figure 1: Example of some XML data and its representation as a tree

should be noted that a chapter @number is not a key for
the set of all chapter nodes in the document since two
different books have chapters with @number= 1. It is
worth remarking that proposals prior to [12] were not
capable of expressing the second and third constraints.

The notion of relative keys is particularly natural for
hierarchically structured data, and is motivated in part
by our experience with scientific data formats. Many
scientific databases transmit their data in one of a va-
riety of data formats. Some of these data formats are
general purpose (e.g. ASN.1, which is used in Gen-
Bank [9]; AceDB [31]; and EMBL, which is used in Swis-
sProt [8]).) XML itself is also emerging as a standard
for data exchange, especially with micro-array data (see
for example the DTDs GEML [1] and MAML [2]). All
of these specifications have a hierarchical structure. As
a typical example, SwissProt [7] at the top level con-
sists of a large set of entries, each of which is identified
by an accession number. Within each entry there is
a sequence of citations, each of which is identified by
a number 1,2,3... within the entry. Thus to identify
a citation fully, we need to provide both an accession

LAIl these data formats have easy translations to XML.

number for the entry and the number of the citation
within the entry. Note that the same number for a ci-
tation (e.g. 3) may occur within many different entries,
thus the citation number is a relative key within each
entry. In relational database design we also find the
notion of a hierarchical key structure in weak entities.
Here the key of the weak entity consists of a key of the
parent entity and some additional identification of the
dependent entity [29].

One of the most interesting questions involving keys
is that of logical implication, i.e., deciding if a new key
holds given a set of existing keys. This is important for
minimizing the expense of checking that a document
satisfies a set of key constraints, and may also provide
the basis for reasoning about how constraints can be
propagated through view definitions. Thus a central
task for the study of XML keys is to develop an algo-
rithm for determining logical implication. It is also de-
sirable to develop a sound and complete set of inference
rules for generating symbolic proofs of logical implica-
tion. The existence of such inference rules, referred to
as aziomatizability, is a stronger property than the ex-
istence of an algorithm, because the former implies the



latter but not the other way around [4]. Another inter-
esting question is whether a set of keys is “reasonable”
in the sense that there exists some (finite) document
that satisfies the key specification (finite satisfiability).

In relational databases, the (finite) implication prob-
lems for keys (and more generally, functional dependen-
cies) have been well studied (see, e.g., [4, 29]). The finite
satisfiability problem is trivial: given any finite set of
keys over a relational schema, one can always find a fi-
nite instance of the schema that satisfies the keys. The
implication problem for keys is also easy, and is decid-
able in linear time. In fact, there are exactly two in-
ference rules, and these are sound and complete for the
implication analysis. Let R be a relation schema and
Att(R) denote the set of attributes of R. Weuse X — R
to denote that X is a key of R, where X C Att(R).
Then the rules can be given as:

AR > R (schema)

X—-R XCY
Y >R
The first rule says that for any relation schema R, the
set of all the attributes of R is a key of R. The second
asserts that if X is a key of R then so is any superset
of X.

For XML the story is more complicated since the
hierarchical structure of data is far more complex than
the 1NF structure of relational data. In some propos-
als keys are not even finitely satisfiable. For example,
consider a key of XML Schema (in a simplified syn-
tax): (//*, [id]), where “//+” (in XPath [18] syntax)
traverses to any descendant of the root of an XML doc-
ument tree. This key asserts that any node in an XML
tree must have a unique id subelement (of text value)
and its id uniquely identifies the node in the entire doc-
ument. However, it is clear that no finite XML tree
satisfies this key because any id node must have an id
itself, and this yields an infinite chain of id nodes. For
implication of XML keys, the analysis is even more in-
triguing. Keys of XML Schema are defined in terms
of XPath [18], which is a powerful yet complicated lan-
guage. A number of technical questions in connection
with XPath are still open, including the containment
of XPath expressions which is important in the inter-
pretation of XML keys. Therefore, to the best of our
knowledge, the implication problem for keys defined in
XML Schema is still open, as is its axiomatizability.

In contrast, we show in this paper that the keys of
[12] can be reasoned about efficiently. More specifically,
we show that they are finitely satisfiable and their impli-
cation is decidable in PTIME. Better still, their (finite)
implication is finitely axiomatizable, i.e., there is a fi-
nite set of inference rules that is sound and complete for
implication of these keys. In developing these results,
we also investigate value-equality on XML subtrees and
containment of path expressions, which are not only in-
teresting in their own right but also important in the
study of decision problems for XML keys.

Despite the importance of reasoning about keys for
XML, little previous work has investigated this issue.

(superkey)

The only work closely related to this paper is [20, 21].
For a class of keys and foreign keys, the decision prob-
lems were studied in the absence [21] and presence [20]
of DTDs. The keys considered there are defined in
terms of XML attributes and are not as expressive as
keys studied in this paper.?2 Integrity constraints de-
fined in terms of navigation paths have been studied
for semistructured [3] and XML data in [5, 14, 15, 16].
These constraints are generalizations of inclusion de-
pendencies commonly found in relational databases, and
are not capable of expressing keys. Generalizations of
functional dependencies have also been studied [23, 26,
33]. However these generalizations were investigated in
database settings, which are quite different from the
tree model for XML data considered in this paper. Sur-
veys on XML constraints can be found in [13, 34].

The remainder of the paper is organized as follows.
Section 2 formally defines XML trees, value equality,
and (absolute and relative) keys for XML. Section 3
establishes the finite axiomatizability and complexity
results: First, we give a quadratic time algorithm for
determining inclusion of path expressions. The abil-
ity to determine inclusion of path expressions is then
used in developing inference rules for keys, for which a
PTIME algorithm is given. Finally, Section 4 identifies
directions for further research. The proofs are given in
the appendix.

2 Keys

As illustrated in Fig. 1, our notion of keys is based on a
tree model of XML data. Although the model is quite
simple, we need to do two things prior to defining keys:
the first is to give a precise definition of value equality
for XML keys; the second is to describe a path language
that will be used to locate sets of nodes in an XML
document. We therefore introduce a class of regular
path expressions, and define keys in terms of this path
language.

2.1 A tree model and value equality

An XML document is typically modeled as a node-
labeled tree. We assume three pairwise disjoint sets
of labels: E of element tags, A of attribute names, and
a singleton set {S} denoting text (PCDATA).

Definition 2.1: An XML (document) tree is defined
to be T' = (V, lab, ele, att, val, r), where (1) V is a set
of nodes; (2) lab is a mapping V — E U A U {S} which
assigns a label to each node in V; a node v in V is
called an element (E node) if lab(v) € E, an attribute
(A node) if lab(v) € A, and a text node (S node) if
lab(v) = S; (3) ele and att are partial mappings that
define the edge relation of T": for any node v in V,

e if v is an element then ele(v) is a sequence of el-
ements and text nodes in V' and att(v) is a set of
attributes in V; for each v’ in ele(v) or att(v), v’
is called a child of v and we say that there is a
(directed) edge from v to v';

2We do not consider foreign keys and DTDs in the current paper.



e if v is an attribute or a text node then ele(v) and
att(v) are undefined;

(4) val is a partial mapping that assigns a string to each
attribute and text node: for any nodevin V,ifvisan A
or S node then val(v) is a string, and val(v) is undefined
otherwise; (5) r is the unique and distinguished root
node. An XML tree has a tree structure, i.e., for each
v € V, there is a unique path of edges from root r to v.
An XML tree is said to be finite if V' is finite. [

For example, Fig. 1 depicts an XML tree that rep-
resents an XML document.

With this, we are ready to define value equality on
XML trees. Let T = (V, lab, ele, att, val, r) be an
XML tree, and nj,ns be two nodes in V. Informally,
ni,ne are value equal if they have the same tag (la-
bel) and in addition, either they have the same (string)
value (when they are S or A nodes) or their children are
pairwise value equal (when they are E nodes). More
formally:

Definition 2.2: Two nodes n; and n» are value equal,
denoted by n; =, ng, iff the following conditions are
satisfied:

o lab(ny) = lab(n2);
e if ny,my are A or S nodes then val(n,) = val(ns);

e if ny,my are E nodes, then 1) for any a; € att(ny),
there exists as € att(ng) such that a3 =, a2, and
vice versa; and 2) if ele(ny) = [v1,...,v], then
ele(ng) = [v],...,v;] and for all ¢ € [1,k], v; =, v}.

That is, ny =, no iff their subtrees are isomorphic by
an isomorphism that is the identity on string values. =

As an example, in Fig. 1, the author subelement of
the first book and the first author subelement of the
second book are value equal.

2.2 Path Languages

There are many options for a path language, ranging
from very simple ones involving just labels to more ex-
pressive ones such as regular languages or even XPath.
However, to develop inference rules for keys we need
to be able to reason about inclusion of path expres-
sions (the containment problem). It is well known that
for regular languages, the containment problem is not
finitely axiomatizable; and for XPath, although noth-
ing is known at this point we strongly suspect that it
is not much easier. We therefore restrict our attention
to the path language PL, which is expressive enough to
be interesting yet simple enough to be reasoned about
efficiently. We will also use a simpler language (PL;) in
defining keys, and therefore show both these languages
in the table below.

Path Language Syntax
PL, p = €| lp
PL g == €| 1l] gqq | =

In PL,, a path is a (possibly empty) sequence of
node labels. Here € represents the empty path, node
label I € EUA U{S}, and “.” is a binary operator that
concatenates two path expressions. The language PL,
describes the class of finite sequences of node labels.
The language PL is a generalization of PL, that allows
the symbol “_*”_ a combination of wildcard and Kleene
closure. This symbol represents any (possibly empty)
finite sequence of node labels. It should be noted that
for any path expression p in any of the path languages,
the following equality holds: p.e = e.p = p. These path
languages are fragments of regular expressions [24], with
PLg contained in PL.

A path in PL; is used to describe a path in an XML
tree T, and a path expression in PL describes a set
of such paths. Recall that an attribute node or a text
node is a leaf in T" and it does not have any child. Thus
a path p in PL; is said to be wvalid if for any label [
in p,ifl € A orl = S, then [ is the last symbol in
p- Similarly, we define valid path expressions of PL.
In what follows we only consider valid paths and we
assume that the regular language defined by a path ex-
pression of PL containing only valid paths. For exam-
ple, book.author.name is a valid path in PLs; and PL,
while _x .quthor is a valid path expression in PL but it
is not in PL;.

We now give some notation that will be used through-
out the rest of the paper. Let p be a path in PL,, P a
path expression in PL and T an XML tree.

Length. The length of path p, denoted by |p|, is the
number of labels in p (the empty path has length 0).
By treating “_x” as a special label, we also define the
length of PL expression P, denoted by |P|, to be the
number of labels in P.

Membership. We use p € P to denote that path pisin
the regular language defined by path expression P. For
example, book.author.name € book.author.name and
book.author.name € _* .name.

Reachability. Let ni,n2 be nodes in T. We say that
no is reachable from ny by following path p, denoted by
T E p(ny, ny), iff ny =ny if p =€, and if p = p'.1, then
there exists node n in T such that T = p'(ny, n) and
no is a child of n with label [.

We say that node ny is reachable from n, by follow-
ing path expression P, denoted by T' = P(ni, na), iff
there is a path p € P such that T | p(n1, na).

For example, if T' is the XML tree in Fig. 1, then all
the name nodes are reachable from the root by following
book.author.name; they are also reachable by following
X.

Node set. Let n be a node in 7. We use the notation
n[P] to denote the set of nodes in T that can be reached
by following the path expression P from node n. That
is, n[P] = {n' | T E P(n,n')}. We shall use [P]
as abbreviation for r[P], when r is the root node of T
For example, referring to Fig. 1 and let n be the first
book element, then n[chapter] is the set of all chapter
elements of the first book and [_ * .chapter] is the set
of all chapter elements in the entire document.



Value Intersection. The value intersection of n;[P]
and n[P], denoted by ni[P] N, n2[P], is defined by:

nl[[P]] ﬂv n2|[P]] =
{()|3p€ P, zemlpl,  €nalpl, ==, '}

Thus ny[P] Ny n2[P] consists of node pairs that are
value equal and are reachable by following the same sim-
ple path in the language defined by P starting from n;
and ne, respectively. For example, let n; and ns be the
first and second book elements in Fig. 1, respectively.
Then nq [author] Ny nzfauthor] is a set consisting of a
single pair (z,y), where z is the author subelement of
the first book and y is the first author subelement of
the second book.

2.3 A Key constraint language for XML

We are now in a position to define keys for XML and
what it means for an XML document to satisfy a key
constraint.

Definition 2.3: A key constraint ¢ for XML is an
expression of the form

(Q7 (Qla {Pla .. '5Pk}))7

where @), Q' and P; are PL expressions such that for
all i € [1,k], Q.Q'.P; is a valid path expression. The
path Q is called the context path, Q' is called the target
path, and P, ..., P, are called the key paths of .

When @ = €, we call ¢ an absolute key, and abbrevi-
ate the key to (Q', {P1,...,P}), otherwise ¢ is called
a relative key. We use K to denote the language of keys,
and Kups to denote the set of absolute keys in K. n

A key ¢ = (Q, (Q', {P1,...,P})) specifies the fol-
lowing:

e the context path (), starting from the root of an
XML tree T, identifies a set of nodes [Q];

o for each node n € [Q], ¢ defines an absolute key
(@', {P1,...,P}) that is to hold on the subtree
rooted at n; specifically,

— the target path @' identifies a set of nodes n[Q']
in the subtree, referred to as the target set,

— the key paths P, ..., P identify nodes in the
target set. That is, for each n' € n[Q’'] the
values of the nodes reached by following the key
paths from n' uniquely identify n’ in the target
set.

As illustrated in Fig. 2, the context path () starts at the
root of T', the target path Q' starts at a node n in [@]
and the key paths start at a node n' in n[Q']. That is
why we require Q.Q'.P; to be valid in Definition 2.3.

For example, the keys on Fig. 1 mentioned in Sec. 1
can be written as follows:

1. @isbn is a key of book nodes: (book, {@isbn});

2. name is a key of author nodes no matter where they
are: (_*.author, {name});

3. within each subtree rooted at a book, @number is a
key of chapter: (book, (chapter, {@Qnumber})).

Figure 2: Tllustration of a key (@, (Q', {P1,...,Px}))

The first two are absolute keys of K,ps and the last one
is a relative key of K.

Definition 2.4: Let ¢ = (Q, (Q', {P1,...,P:})) be
a key of K. An XML tree T satisfies o, denoted by
T = o, iff for any n in [Q] and any nq,ns in n[Q'],
if for all 4 € [1, k] there exist a path p € P; and nodes
z € nifp], y € nz[p] such that z =, y, then n; = na.
That is,

Vne[Q] Vnine € n[Q']
(( A\ mlP]0wna[P] #0) > ny = mno).

1<i<k n

As mentioned earlier, the key ¢ defines an absolute
key that is to hold on the subtree rooted at each node
n in [@Q]. That is, if two nodes in n[Q'] are distinct,
then the two sets of nodes reached on some P; must
be disjoint (by value equality.) More specifically, for
any n € [@] and for any distinct nodes n1,ns in n[Q’],
there must exist some P;, 1 < ¢ < k, and path p € P;
such that for all z in ni[P;] and y in nao[Pi],  #4 y.

Observe that when ) = ¢, i.e., when ¢ is an absolute
key, the set [Q] consists of a unique node, namely, the
root of the tree. In this case T |= ¢ iff

Vring € [QT(( \ mIPINuna[P] # 0) = ni = ny).

1<i<k

As an example, let us consider K constraints on the
XML tree T in Fig. 1.

1) T = (book, {Qisbn}) because the @isbn attributes
of the two book nodes in T' have different string val-
ues. For the same reason T' |= (book, {Qisbn,author}).
However, T [ (book, {author}) because the two books
agree on the values of their first author. Observe that
the second book node has two author subelements, and
the key requires that none of these author nodes is value
equal to the author of the first book.

2) T |~ (- .author, {name}) because the author of the
first book and the first author of the second book agree
on their names but they are distinct nodes. Note that
all author nodes are reachable from the root by follow-
ing _x.author. However, T |= (book, (author,{name}))
because under each book node, the same author does
not appear twice.

3) T | (book, (chapter,{@number})) because in the
subtree rooted at each book node, the @number attribute



of each chapter has a distinct value. However, observe
that T' £ (book.chapter, {@number}) since both book
nodes have a chapter with @number = 1 but the two
chapter’s are distinct.

Several subtleties are worth pointing out before we
move on to the associated decision problems. First, ob-
serve that each key path can specify a set of values. For
example, consider again ¢ = (book, {@isbn,author})
on the XML tree T in Fig. 1, and note that the key
path author reaches two author subelements from the
second book node. In contrast, this is not allowed in
most proposals for XML keys, e.g., XML Schema. The
reason that we allow a key path to reach multiple nodes
is to cope with the semistructured nature of XML data.
Second, the key has no impact on those nodes at which
some key path is missing. Observe that for any n € [Q]
and ny,ne in n[Q'], if P; is missing at either n; or
ny then n1[P;] and nq[P;] are by definition disjoint.
This is similar to unique constraints introduced in XML
Schema. In contrast to unique constraints, however, our
notion of keys is capable of comparing nodes at which
a key path may have multiple values. Third, it should
be noted that two notions of equality are used to de-
fine keys: value equality (=,) when comparing nodes
reached by following key paths, and node identity (=)
when comparing two nodes in the target set. This is
a departure from keys in relational databases, in which
only value equality is considered. Fourth, a key defines
that for two nodes to be the same, the value pointed
by the key paths together with the key paths must be
the same. This allows key paths to be scoped according
to its type. As an example, the following XML data
satisfies the absolute key (part, {_*.@id}).

(part)

(widget id=1)(/widget)
(/part)
(part)

(widget id=2)(/widget)
(/part)
(part)

(gadget id=1)(/gadget)
(/part)

Note that if the definition of keys did not require
equality on (simple) paths, but only on values, the above
example would not satisfy the given key.

2.4 Decision problems

In a relational database one can specify arbitrary keys
without worrying about their satisfiability. The analysis
of implication of relational keys is also trivial. However,
as mentioned in Sec. 1, the satisfiability and implication
analyses of XML keys are far more intriguing.

We first consider satisfiability of keys of our con-
straint language K. Let X be a finite set of keys in K
and T be an XML tree. Following [19], we use T’ |= &
to denote that T satisfies ¥. That is: for any ¢ € ¥,
T 9.

The satisfiability problem for K is to determine, given
any finite set ¥ of keys in K, whether there exists an
XML tree satisfying ¥. The finite satisfiability problem

for K is to determine whether there exists a finite XML
tree satisfying 3.

As observed in Sec. 1, keys defined in some proposals
(e.g., XML Schema) may not be finitely satisfiable at
all. In contrast, any key constraints of K can always be
satisfied by a finite XML tree, including the single node
tree. That is,

Observation. For any finite set ¥ of keys in K, one
can always find a finite XML tree that satisfies X.

Next, we consider implication of /C constraints. Let
Y U {p} be a finite set of keys of K. We use ¥ = ¢
to denote X implies ¢, that is, for any XML tree T, if
TEZX, then T |= .

There are two implication problems associated with
keys: The implication problem is to determine, given
any finite set of keys ¥ U {¢}, whether ¥ = ¢. The
finite implication problem is to determine whether X
finitely implies ¢, that is, whether it is the case that for
any finite XML tree T, if T |= X, then T' = ¢.

Given any finite set ¥ U {p} of keys in K, if there
is an XML tree T such that T = A £ A -, then there
must be a finite XML tree T” such that T = A LA —e.
That is, key implication has the finite model property
(see the appendix for a proof) and as a result:

Proposition 2.1: The implication and finite implica-
tion problems for keys coincide. [

In light of Proposition 2.1, we can also use ¥ | ¢
to denote that X finitely implies ¢. We investigate the
finite implication problems for keys in the next section.

3 Key implication

In this section, we study the finite implication problem
for keys. Our main result is the following:

Theorem 3.1: The finite implication problem for X is
finitely axiomatizable and decidable in PTIME in the
size of keys. n

We provide a finite axiomatization and an algorithm
for determining finite implication of X constraints. In
contrast to their relational database counterparts, the
axiomatization and algorithm are not trivial. A road
map for the proof of the theorem is as follows. We first
study containment of path expressions in the language
PL defined in the last section, since the axioms rely on
path inclusion. We then provide a finite set of inference
rules and show that it is sound and complete for finite
implication of K constraints. Finally, taking advantage
of the inference rules, we develop a PTIME algorithm
for determining finite implication. We shall also present
complexity results in connection with finite implication
of absolute keys in KCpps-

3.1 Inclusion of PL expressions

A path expression P of PL is said to be included (or
contained) in another PL expression @, denoted by
P C @, if for any XML tree T' and any node n in T,
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Table 1: Z,: rules for PL expression inclusion

n[P] C n[Q]- That is, the nodes reached from n by fol-
lowing P are contained in the set of the nodes reached
by following @) from n. We write P = @ if P C @) and
QCP.

In the absence of DTDs, P C @ is equivalent to the
containment of the regular language defined by P in the
regular language defined by @. Indeed, if there exists
a path p € P but p € @, then one can construct an
XML tree T with a path p from the root. It is obvious
that in T, [P] € [Q]- The other direction is immediate.
Therefore, P C Q iff for any path p € P, p € Q.

We investigate inclusion (containment) of path ex-
pressions in PL: given any PL expressions P and @, is
it the case that P C 7 As will become clear shortly,
this is important to the proof of Theorem 3.1, among
other things, and is decidable with low complexity:

Theorem 3.2: For determining inclusion of PL ex-
pressions,

1. there is a sound and complete finite set of inference
rules; and

2. there is a quadratic time algorithm.
]

It should be mentioned that PL is a star-free regu-

lar language (see, e.g., [36] for the definition of star-free
regular languages). In general, the inclusion problem
for star-free languages is co-NP complete [25]. Another
related result appears in [28] for a slightly more expres-
sive language that allows single wildcards. In contrast
to their PTIME complexity result for testing inclusion
of path expressions, we are able to provide a set of in-
ference rules, denoted by Z,, in Table 1, and to develop
a quadratic time algorithm for testing inclusion of PL
expressions.
Proof sketch: The soundness of ZP can be verified by
induction on the lengths of ZP-proofs. The proof of
completeness is a little involved. Central to the com-
pleteness proof and the algorithm is a simulation re-
lation on the transition diagrams of nondeterministic
finite state automata (NFAs) [24] that characterize PL
expressions. Thus we first describe NFAs and define the
simulation.

To simplify the discussion, we assume from here on-
wards that a PL expression P is in normal form. A PL

aOaUCQbé

Figure 3: NFA for the PL expression a._%.a.c._*.b
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expression P is in normal form iff it does not contain
consecutive _x’s and it does not contain € unless P = e.
Reducing - * ._x to _ can be done using the star and
composition rules of 7,,. By the empty-path rule, we can
also assume that P does not contain € unless P = €. It
takes linear time to rewrite P to an equivalent normal
form expression. Thus the assumption does not lose
generality.

Let P and @ be path expressions in PL. Let the
NFAs for P and @ be M(P) and M(Q) respectively,
defined as follows:

M(P) = (N1, CU{}, 1,5, F),
M(Q) = (NQ,CU{_}, 52,S27F2)7

where N1, N, are sets of states, C' is the alphabet, 1, d2
are transition functions, Si,S2 are start states, and
Fy, F, are final states of M (P) and M (Q), respectively.
Observe that the alphabets of the NFAs have been ex-
tended with the special character “_” which can match
any character in C. By the definition of PL expres-
sions, the transition diagram of such a NFA has a “lin-
ear” structure as depicted in Fig. 3. More specifically,
M (P) has the following properties (similarly for M (Q)):

1) There is a single final state Fj.

2) For any state n € Ny except the final state F}, there
exists exactly one letter [ € C' such that the NFA can
make a move from 7 on input [/ to a single different state
n' of Nyi. In other words, d1(n,l) = {n'}, n # n', and
d1(n,l") =0 for all I' € C if I' # 1. For the final state,
h(F,l)=0foralll eC.

We shall simply write 1 (n,l) = n' if §;(n,l) = {n'}.

W

3) At any state n € Nj, given the special letter
the NFA either does not move at all, or goes back to n.
That is, either §;(n, ) =0 or §1(n, ) =n.

As shown in Fig. 3, the only cycles in the transition
diagram of the NFA are introduced by “”, which go

from a state back to itself.

The transition diagrams of M (P) and M(Q) can be
treated as graphs in which each edge is labeled with a
letter in C U {_}. Given the edge-labeled graphs, we
define a simulation relation, <, on N1 x Ny. Similar to
simulations exploited in the context of semistructured
data [3], the relation < defines a correspondence be-
tween the nodes (or edges) in M(P) and M(Q) such
that any string that is accepted by M (P) is also ac-
cepted by M(Q) according to the simulation relation.
More specifically, for any n; € Ny and ns € Na, ng <\no
iff the following conditions are satisfied:

e If ny = F; then ny = Fs.
o If (51(711,_) =Nn1 then (52(”2,_) = N9.

e For any | € C, if §;(n1,1) = n} for some n} € Ny,
then



Algorithm 3.1: Incl(ny, ns)

1. if visited(ni,n2)
then return false
else mark visited(ni,n2) as true;

2. process ni, n2 as follows:
Case 1: if n1 = Fy
then if ny = F3 and (61 (F1,-) =0 or
d2(F2, ) = F3)
then return true;
else return false;
Case 2: if 61(n1,a) = n} and d2(n2,a) = n), for letter a
and d1(n1,.) = 0 and d2(n2,.) = 0
then return Incl(nf, n});
Case 3: if §1(n1,a) = n;1 and d2(n2,_) = ny and
d2(n2,a) = nj, for letter a
then return (Incl(n}, n2) or Incl(n}, n}))
else if §1(n1,a) =n} and d62(n2,_) = n2
and d2(n2,a) =0
then return Incl(nf, n2);

3. return false
Figure 4: Algorithm for testing PL inclusion

— either there exists a state njy € N» such that
02(na,l) = nh and n} < nj, or
— (52(712,_) = ny and TLII < ns.

The simulation is defined in such a way that showing
P C @ is equivalent to showing S; <1 S;. Intuitively,
this means that starting with the start states of M (P)
and M(Q) and a given input string, every step taken
by M(P) in accepting this string has a corresponding
step in M(Q) according to the simulation relation in
accepting this string.

Having defined the simulation, we proceed to prove
Theorem 3.2. For the completeness of Z?, it suffices to
show the following (see the appendix for a proof):

1. PCQiff 1 <8;.

2. If S1 < 82, then P C @ can be proved using the
inference rules of ZP.

Given 7P and the claims, we provide a recursive
function Incl(ni,ns) in Fig. 4 for testing inclusion of
PL expressions. The function assumes the existence of
M(P), M(Q) as described above for any P,Q) € PL. In
addition, assume that P and @ are in normal form. We
use visited(ny,n2) to keep track of whether Incl(nq,n2)
has been evaluated before. Initially, visited(ni,nz) is
false for all n; € N; and ny € N,. The function
Incl(ny,ng) returns true iff ny < my. Since P C Q iff
S1 <482, P C Q iff Incl(S1,S52). Therefore, the algo-
rithm can be used to determine whether P C Q).

The correctness of the algorithm immediately follows
from the claims given above. It is easy to see that trans-
forming P into its normal form can be done in O(|P])
time where |P| is the length of P. The construction of
M (P) can also be done in O(|P|) time. The same ar-
gument applies for ). The initialization statement can
be executed in O(|P| |Q|) time. Since each condition
of the cases 1-3 can be tested in constant time and the
first statement of the algorithm ensures that any pair of

(Q,S) PePL

@, Su{P)) (superkey)
&gﬁféﬂ.ﬁ% (subnodes)
@ U({Q],)ié'lg }{)Pi})P RS (containment-reduce)
(@,5 QcCq

— @5 (target-path-containment)

’

(@, Su{e,P}) P €PL
@, SU{e, PPT})

(prefix-epsilon)

S is a set of PL expressions
(e, 9)

(epsilon)

Table 2: Z,;s: Rules for absolute key implication

states (n1,n2) from Ny x N, is never processed twice,
it is easy to see that Incl(Si,S2) runs in O(|P| |Q])
time. We can therefore conclude that the algorithm is
in quadratic time. (]

3.2 Axiomatization for absolute key implication

Recall that an absolute key (@', S) is a special case
of a K constraint (Q, (@', 9)), i.e., when Q = €. As
opposed to relative keys, absolute keys are constraints
imposed on the entire XML tree T rather than on cer-
tain subtrees of T'. The problem of determining (finite)
implication of absolute keys is simpler than that for
relative keys. Since most of the rules for relative key
implication is an obvious generalization of that for ab-
solute key implication, we start by giving a discussion
on the rules for absolute key implication. The set of
rules, denote as Z,ps is shown in Table 2.

o superkey. If S is a key for the set of nodes in [Q]
then so is any superset of S. This is a generalization
of the superkey rule for relational database keys. It
is in fact the only rule of Z,55 that has a counterpart
in key inference in relational databases.

o subnodes. Observe that any node v € [Q.Q'] must
be in the subtree rooted at some node v’ in [Q] and
since we have a tree model, there is no sharing of
nodes. Hence v uniquely identifies v'. Therefore, if
a key path P uniquely identifies a node in [Q.Q']
then Q'.P uniquely identifies nodes in [Q].

e containment-reduce. If SU{P;, P;} is the set of the
keys paths that uniquely identify nodes in [@] and
P; C P; then we can leave out P; from the set of
keys paths. This is because for any nodes n1,no
in [Q], if n1[P;] Ny nao[F;] # O, then we must have
n1[P;] Ny n2[P;] # 0 since P; C P;. Thus by the
definition of keys S U {P;} is also a key for [Q].

o target-path-containment. A key for the set [Q] is
also a key for any subset of [Q]. Observe that

[RTclQlifQ cQ.



o prefiz-epsilon. If a set S U {¢, P} is a key of [Q],
then we can extend a key path P by appending to it
another path P’, and the modified set is also a key
of [@]- This is because for any nodes ny,ns € [Q],
if n1[P.P'] Ny no[P.P'] # 0 and ny =, n2, then we
have n1[P] N, n2[P] # §. Note that ny =, ng if
ni[e] Ny nafe] # 0. Thus by the definition of keys,
SU{e, P.P'} is also a key for [Q]. Observe however
that the implication of (Q, {€}) from the premise is
not sound. One can construct an XML tree with
only two nodes n; and ms in [Q] that are value
equal but do not have any paths in P. Since paths
of P are missing in the trees of ny and ns, the XML
tree satisfies the premise trivially. However, this
tree clearly does not satisfy (Q, {€}) since ny =, na.

e epsilon. This rule is sound because there is only
one root. In other words, [e] is exactly the root
node and therefore any set of path expressions is a
valid set of its key paths.

We omit the proof of the following theorem. Most
of the proof can be verified along the same lines as the
proof of Lemma 3.4 discussed in the next section. De-
tails can also be found in [11].

Theorem 3.3: For determining (finite) implication of
absolute keys of Kgps,

e the set 7,5 is sound and complete; and

e there is an O(n%) time algorithm, where n is the

length of constraints involved.
|

3.3 Axiomatization for key implication

We now turn to the finite implication problem for K,
and start by giving in Table 3 a set of inference rules,
denoted by Z. Most rules are simply a generalization
of rules shown in Table 2. The only exceptions are
rules that deal with the context path in relative keys:
context-path containment, context-target and interac-
tion. We briefly illustrate these rules below.

o context-path-containment. Note that [Q1] C [Q] if
Q1 C Q. If (Q',S) holds on all subtrees rooted at
nodes in [Q], then it must also hold on all subtrees
rooted at nodes in any subset of [Q].

o context-target. If a set S of key paths can uniquely
identify nodes of a set X in the entire tree 7', then
it can also identify nodes of X in any subtree of T'.
Along the same lines, if in a tree T rooted at a node
nin [@Q], S is a key for n[Q1.Q=], then in any sub-
tree of T rooted at n' in n[(Q1], S is a key for n'[Q2].
Note that n'[(Q2] consists of nodes that are in both
n[Q1.Q2] and the subtree rooted at n'. In particu-
lar, when @) = € this rules says that if (Q1.Q2, S)
holds then so does (Q1, (@2, S)). That is, if the
(absolute) key holds on the entire document, then
it must also hold on any sub-document.

e interaction. This is the only rule of 7 that has
more than one key in its precondition. By the first
key in the precondition, in each subtree rooted at a

Q,(Q,S) PePL
( (Q(, (Q’,);u 92y (superkey)
Q,(Q.Q", {P
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(@, ( @, (Q{', Sd]r{)lz’,})) 2 (containment-
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Table 3: Z: Inference rules for key implication

nodenin [Q:], Q'.P1,...,Q". Py uniquely identify a
node in n[@-]. The second key in the precondition
prevents the existence of more than one @' nodes
under ()2 that coincide in their Pi,..., P, nodes.
Therefore, Py,..., P, uniquely identify a node in
n[Q2.Q'] in each subtree rooted at n in [Q1]. More
formally, for any n € [Q1] and n1,n2 € n[Q2.Q'],
there must be v, vy in n[Q2] such that n; € v1[Q'],
ne € v2[Q'] and for all ¢ € [1,k], we must have
ny |[Pz]] g V1 [QIPZ]] and no [[Pz]] g UQ[[QI.PZ']]. If
n1[Pi] Ny nao[Pi] # 0, then v [Q".P] N, v2[Q'.F;] #
0, for any i € [1,k]. Thus by the first key in the
precondition, v; = vy. Hence ni,n2 € v1[Q'] and
as a result, n; = na by the second key in the pre-
condition. Therefore, (Q1, (Q2.Q', {P1,...,Px}))
holds.

Observe that key inference in the XML setting re-
lies heavily on path inclusion. That is why we need to
develop inference rules for determining inclusion of PL
expressions.

Given a finite set ¥ U {¢} of K constraints, we use
Y k7 ¢ to denote that ¢ is provable from ¥ using 7
(and Z,, for path inclusion).

To illustrate how 7 is used in implication proof, let
us consider two K constraints:

¢ = (4 (B.C.x, {D, D.+})),
v = (4B, (C, {—* D, E}))
An Z-proof for ¢ |= 1) is given as follows.

1) ¢ = (A, (B.C..x, {D})) by D C D.x and the
containment-reduce rule. Note that D C D._x is proved
by using star, empty-path and composition of Z,.



2) ¢ E (4, (B.C, {_%.D})) by 1) and subnodes.

3) ¢ = (A.B, (C, {_*.D})) by 2) and context-target.
4) ¢ l; (A.B, (C, {-.D, E})),ie., ¢ =1, by 3) and
super.

As another example, observe that the following is
provable from Z:

(@ (@,su{r})) PCP
(@, (@, SU{P'})
Indeed, if (Q, (Q', SU{P})) holds then by superkey, so
does (Q, (Q', SU{P, P'})). By containment-reduce we
have that (Q, (Q', SU {P'})) holds.

We next show that 7 is indeed a finite axiomatization
for K constraint implication.

(key-path-containment)

Lemma 3.4: The set 7 is sound and complete for finite
implication of K constraints. That is, for any finite set
Y U {¢} of K constraints, ¥ = ¢ iff ¥ k1 ¢. "

Proof sketch: Soundness of 7 can be verified by induc-
tion on the lengths of Z-proofs. For the proof of com-
pleteness, we show that if ¥ t/7 ¢, then there exists a
finite XML tree G such that G E ¥ and G = —, i.e.,
Y [ ¢. In other words, if ¥ |= ¢ then ¥ Fz . The
construction of G is given in the appendix. [

Finally, we show that /C constraint implication is de-
cidable in PTIME.

Lemma 3.5: There is an algorithm that, given any
finite set £ U {¢} of K constraints, determines whether
S | ¢ in PTIME. .

Proof sketch: An algorithm for determining finite impli-
cation of K constraints is given in Fig. 5. The correct-
ness of the algorithm follows from Lemma 3.4 and its
proof. It applies Z rules to derive ¢ if ¥ = ¢. To keep
track of intermediate keys in the Z-proof, it uses a set
variable X. Step 1 of the algorithm is a simple appli-
cation of the epsilon rule. Step 2 applies containment-
reduce to normalize the keys. Steps 4 (a) and 4 (b)
prove ¢ from X, and steps 4 (c) and 4 (d) produce in-
termediate results of the Z-proof and save them in X.
Steps 4 (a) and (c) consider the case when the context
path of a key in ¥ contains a prefix of (). Steps 4 (b)
and (d) deal with the other case: when () is contained
in a prefix of the context path of a key in ¥. Each con-
ditional statement in step 4 corresponds to applications
of certain rule in Z. More specifically:

e Steps 4 (a) and (c) use three containment rules (i.e.,
context-path-containment, target-path-containment
and key-path-containment), context-target, superkey,
and subnodes. If it is (ii) then prefiz-epsilon is also
used.

e Steps 4 (b) and (d) apply the three containment
rules, superkey, subnodes, and interaction, which
need intermediate results of the Z-proof stored in
X. If it is (ii) then prefiz-epsilon is also used.

For the interested reader, step 4 (a) corresponds to
Fig. 7(c) as shown in the appendix. Since nodes n;
and ny are merged as a result of this key, we can prove
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Algorithm 3.2: Finite implication of K constraints

Input: a finite set X U {¢p} of K constraints,
where p= (Q: (Qla {P17 aPk}))
Output: true if ¥ | ¢

// Epsilon rule.
1. if @' = € then output true and terminate

// Containment-reduce rule.
2. for each (Qs,(Q},S;)) € ZU {p} do
repeat until no further change
if $; = SU{P’, P"} such that P’ C P”
then S; := S; \ {P”}
3. X =0
4. repeat until no keys in ¥ can be applied in cases (a)-(d).
for each ¢ = (Qg, (Qy, {P[,--,Pp})) € T do
// See Fig. 7(c) for an illustration of this case.
(a) if there is Q¢, Rp in PL such that Q C Q4-Qt,
QtQ’RpCQ Rp=¢if m>1and
for all j € [1, m] there is s € [1, k] such that either
(i) Ps C Rp.P; or (ii) there exists | € [1,k] and
R; in PL such that P, =¢and Ps C Rp.P}.R;
then output true and terminate

// See Fig. 7(e) for an illustration of this case.

(b) if there are Q., Qt, Rp in PL such that Q.Q: C Qy,
Q' Rp C QeQly Rp =eif m>1, Q' = Qc.Qs and
for all j € [1, m] there is there is s € [1, k]
such that either (i) Ps C Rp.PJf or
(ii) there exists | € [1,k] and R; in PL
such that P, = € and Ps C R,.P!.R;; and moreover,
there is (Q, (Qc, {Q¢-P1,..,Q¢-Pr})) in X

then output true and terminate

// See Fig. 7(b) for an illustration of this case.

(c) if there are Q., Qt, Ry in PL such that Q C Q4-Q.,
Qc.Q' C Q;.Rp, Q" = Q+.Rp and for all j € [1,m]
there is s € [1, k] such that either (i) Rp.Ps C P]’
or (ii) there exists | € [1,k] and R; in PL such that
Pl =€ and Rp.Ps g F’J’Rj

then

(1) if m =1 then
X =XU {(Q, (Ql, {QQ.RP.Pl, . ,QQ.RP.Pk}))}
where Q: = Q1.Q2 for some Q1,Q2 € PL;

(2) if m > 1 then
X =X U{(Q,(Qt, {Rp-Pr,-..,Rp-P}))};

() Z:=2\{¢}

// See Fig. 7(d) for an illustration of this case.

(d) if there are Qc, Q¢, Rp in PL such that Q.Qc C Q,

@ C Qe-Q) Ry, Q' = Qc.Qs.Ry and for all j € [1,m]
there is s € [1, k] such that either (i) Rp.Ps C P]’

or (ii) there exists [ € [1,k] and R; in PL such that
P,=cand Rp.Ps C PJf.Rj; and moreover, there is

(@, (Qc, {Qt-Rp.Pr, ..., Qt.Rp.Fy})) in X

then
(1) if m =1 then
X:=XU {(Qz (Q17 {Q?-RP'Pla .. ’QZRPPk}))}
where Q..Q¢ = Q1.Q2 for some Q1,Q2 € PL;
(2) if m > 1 then
X = X U{(Q,(Qc-Qt, {Rp.Prye.., Ry Pi}))};
(3) T:=%\{o}

5. output false
Figure 5: Algorithm for implication of K constraints

. Similarly, step 4 (b) corresponds to Fig. 7(e). The
difference between steps 4 (a) and (b) is whether or
not the context path of the key contains a prefix of Q.
Steps 4 (c¢) and (d) correspond to Fig. 7 (b) and (d)
respectively. Here these keys do not prove ¢ directly,



but they generate intermediate results, which are saved
in X. Again the difference is whether the context path
of the key contains a prefix of Q.

We next show that this algorithm is in PTIME. To
see this, observe that step 1 takes constant time and
step 2 takes at most O(|%|?) time. For step 4, the worst
scenario can happen as follows: for each key in X, the
conditions of (a) - (d) are tested and only the last key in
¥ is removed after testing all keys in ¥. Hence, the sec-
ond time the for loop is performed, one less key is tested.
Therefore if there are s keys in 3, a total of O(s?) keys
will be tested. We next examine the complexity of each
condition of steps (a) - (d). For step (a), we need to
partition @ to find Q. Also, for each such Q);, we need
to partition @ to find R,. Since containment of path
expressions is tested in quadratic time, the first two in-
clusion tests cost at most |Q| * (|o| * (|¢| + |¢|) + |Q;,)| *
((Ie] + |¢]) * |#])), which is O(n?) in total, where n is
the size of keys. Then for each key path P} in ¢, we
check if there is a key path P; in ¢ and partition P; to
get R; such that case (i) or (ii) is satisfied. This costs
|Ps| * (| Rp| + [ Ps|) + | Ps| | Ps| * (| Rp| + | Pj| + | R;|). Since
there are m key paths in ¢, for all k key paths in ¢ these
tests cost (| Py|+...+|Pe|)x(mx|Rp|+|P{|+...+|PL|)+
(1P| [Pl | Bl | Pel) (mox | Rp | + [Py |+ ..+ | Py | +
m * |R;[). There are |Q| * |Qj| possible expressions for
Q:, and Rp. Therefore, the cost of step (a) is at most
(QI1Q il (mx[ 6|+ @)+ o[ (x| | +] 8| +mxlo])),
which is O(n®). Tt is easy to see that the steps (b), (c),
and (d) involve at most the same cost. Hence the com-
plexity is O(n%). Since these tests are performed O(s?)
times, the overall cost of the algorithm is O(n®), and
therefore we have a PTIME algorithm. n

Theorem 3.1 follows from Lemmas 3.4 and 3.5.

4 Discussion

We have investigated a key constraint language intro-
duced in [12] for XML data and studied the associated
(finite) satisfiability and (finite) implication problems in
the absence of DTDs. These keys are capable of express-
ing many important properties of XML data; moreover,
in contrast to other proposals, this language can be rea-
soned about efficiently. More specifically, keys defined
in this language are always finitely satisfiable, and their
(finite) implication is finitely axiomatizable and decid-
able in PTIME in the size of keys. We believe that these
key constraints are simple yet expressive enough to be
adopted by XML designers and maintained by systems
for XML applications.

For further research, a number of issues deserve in-
vestigation. First, despite their simple syntax, there is
an interaction between DTDs and our key constraints.
To illustrate this, let us consider a simple DTD D:

<!ELEMENT foo (X, X)>

and a simple (absolute) key ¢ = (X,0). Obviously,
there exists a finite XML tree that conforms to the DTD
D (see, e.g., Fig. 6 (a)), and there exists a finite XML
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Figure 6: Interaction between DTDs and XML keys

tree that satisfies the key ¢ (e.g., Fig. 6 (b)). How-
ever, there is no XML tree that both conforms to D
and satisfies . This is because D requires an XML
tree to have two distinct X elements, whereas ¢ im-
poses the following restriction: the path X, if it exists,
must be unique at the root. This shows that in the
presence of DTDs, the analysis of key satisfiability and
implication can be wildly different. It should be men-
tioned that keys defined in other proposals for XML,
such as those introduced in XML Schema [32], also in-
teract with DTDs or other type systems for XML. This
issue was recently investigated in [20] for a class of keys
and foreign keys defined in terms of XML attributes.

Second, one might be interested in using different
path languages to express keys. The containment and
equivalence problems for the full regular language are
PSPACE-complete [22], and as mentioned earlier, these
are not finitely axiomatizable. Also, for star-free lan-
guages in general, this is co-NP complete. Another al-
ternative is to adopt the language of [28], which simply
adds a single wildcard to PL. Despite the seemingly
trivial addition, containment of expressions in their lan-
guage is only known to be in PTIME. It would be in-
teresting to develop an algorithm for determining con-
tainment of expressions in this language with a com-
plexity comparable to the related result established in
this paper. For XPath [18] expressions, questions in
connection with their containment and equivalence, as
well as (finite) satisfiability and (finite) implication of
keys defined in terms of these complex path expressions
are, to the best of our knowledge, still open. Observe
however that regardless of the choice of path language
we use for expressing keys, the finite implication prob-
lem is decidable as long as the containment problem for
our path language is decidable.

Third, along the same lines as our XML key lan-
guage, a language of foreign keys needs to be developed
for XML. As shown by [21, 20], the implication and fi-
nite implication problems for a class of keys and foreign
keys defined in terms of XML attributes are undecid-
able, in the presence or absence of DTDs. However,
under certain practical restrictions, these problems are
decidable in PTIME. Whether these decidability results
still hold for more complex keys and foreign keys needs
further investigation.

A final question is about key constraint checking. An
efficient incremental checking algorithm for our keys is
currently under development.
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Appendix

Proof of Proposition 2.1: Observe that given any
finite set LU {¢} of K constraints, ¥ |= ¢ iff there exist
no XML tree T such that T' = A ©A—¢. Thus it suffices
to show that if there exists an XML tree T" such that
T = A X A —p, then there must be a finite XML tree
T' such that T' = A X A —p. That is, the complement
of the implication problem for K has the finite model
property [19]. This can be verified as follows. Let ¢ =
(@, (Q', {P1,...,P})). Since T £ ¢, there are nodes
n € [Q], n1,n2 € n[Q], z; € n1[F;] and y; € na[P;] for
i € [1,k] such that z; =, y; but ny # na. Let T be the
finite subtree of T that consists solely of all the nodes
in the paths from root to x;,y; for all ¢ € [1,k]. Tt is
easy to verify that 7' = X but T' = —~¢. Moreover, T’
is a finite XML tree. [

Proof of Theorem 3.2: We prove the completeness
of ZP. Given PL expressions P and @, let M(P) and
M (Q) be their NFAs, as defined in Section 3.1. To show
that P C @ can be proved using 7P, it suffices to show
the following claims:

Claim 1: P C Q iff S; < S5, where < is a simulation
relation defined in Section 3.1.

Claim 2: If S; < Ss, then P C @ can be proved using
inference rules in ZP.

To show Claim 1, recall [24] that the closure function
of a transition function § is defined as:

dn,€) = {n}
{p|3z e S(n,w), p€d(z,l)}

S(n,wl) =

Let 51,52 be the closure functions of §; and &, respec-
tively. X Observe that P C AQ iff for any p € P, if
F, € (51(51, p) then Fy € (52(52, p). Using this no-
tion we show Claim 1 as follows. Assume S; <1 S2. By
induction on |p|, where p is a path, one can show that
if ng € 31(Sl,p) then there exists ny € SQ(SQ,p) such
that ny < ny. For the base case, if p=¢€ then by the
definition of 0, 01(S1, €) = {S1}, and (52, €) = {52},
and S; < Sz by assumption. Assume the statement for
|p| < k. We next show that the statement holds for
|p| = k. Assume p € P, |p| > 0 and let p = p'.l where
leC. Letnf € 51(Sl,p’) and by induction hypothesis,
there exists n, € 5(Ss,p') such that n| <1 nj. Since
p € P, pis accepted by M(P). The last transition
taken by M(P) on [ from n} to the final state can be
one of the following cases:

e [ is consumed by a “_” transition from n}. More
precisely, d1(n},_) = n} and since Sy <1 S2 and by
the definition of <, it must be that d2(n), ) = nb.
Hence nj = F; which implies that n}, = Fb.

e [ is consumed by a “I” transition from nj. More

precisely, d1(n},!) = F; and by the definition of «,
either

— 62(nh,1) = nY and Fy < nf which implies that
ny = Fy or



— d0a(nh, ) = nh and F; < nh which implies that
TLIZ = Fz.

Thus if F; € 81(51, p) then we have F, € 32(52, p)
That is, P C Q. For the other direction, assume P C Q.
We can show that for any path p, if ny € §;(S1, p) then
there exists ny € 02(S2, p) such that ny <iny. To see this,
note that for any p € P, we have F; € 31(51, p), and
since P C Q, F € 85(S2, p). Thus we can define Fy 1F.
In addition, for any path p, if 51(51,;)) C Ny, then
there exists path p' such that Fy € 8;(S1, p.p'). Thus
the statement can be easily verified by contradiction.
Observe that 61(S1,€) = {S1} and 02(S2,€) = {S2}.
Thus S; < S2. Therefore, Claim 1 holds.

We next prove Claim 2. Assume that there exists a
simulation relation < such that S; <1 S>. By the def-
inition of < and the properties of M (P) given in Sec-
tion 3.1, there exists a total mapping 60 : N; — Ny
such that 6(S1) = Sz, 0(F1) = F5, and for any state
ny € Ni, n1 < 6(n1). Let the sequence of states in
M(P) be vi = py, --.,pr, where p; = S; and py, = Fi,
and similarly, let the sequence of states in M(Q) be
U5 = qq, ---,q, where ¢ = Sy and ¢ = F5. It is easy
to verify that for any 4,5 € [1,k], if ¢ < j, 0(p;) = q»
and 6(p;) = g, then i’ < j'. We define an equivalence
relation ~ on N as follows:

pi~p; iff 0(p:) =6(p;).
Let [p]~ denote the equivalence classes of p with re-
spect to ~. An equivalence class is non-trivial if it con-
tains more than one state. For any equivalence class
[p], let p; and p; be the smallest and largest states in
[p] respectively. That is, for any ps; € [p], ¢ < s < J.
By treating p; as the start state and p; as the final
state, we have a NFA that recognizes a regular expres-
sion, denoted by P; ;. Similarly, we can define P ; and
Pj,k such that P = Pl,z'.Pi,j.Pj,k. It is easy to ver-
ify that if [p] is a non-trivial equivalence class, then
there must be d2(6(p;), -) = 6(p;). In other words,
0(p;) indicates an occurrence of “_¥” in ). Observe that
Py ;.P;;.P; C P ;._x.P;;. This can be proved by us-
ing the star and composition rules of Z?. By an induc-
tion on the number of non-trivial equivalence classes,
one can show that P C () can always be proved using
the star, composition, transitivity and reflezivity rules
in 7P as illustrated above. Thus Z? is complete for in-
clusion of PL expressions. [

Proof of Lemma 3.4: We prove that 7 is complete
for (finite) implication of K constraint. To do so, we
first introduce some notions.

A key ¢ = (Q,(Q',5)) of K is in the key normal
form if for every pair of paths P; and P; in S, P; Z P;.
Note that they cannot be the same path since S is a
set of paths. One can assume without loss of generality
that keys are always in the key normal form. For if
(Q,(Q',SU{PF;, P;})) holds with P; C P;, then by the
containment-reduce rule, (Q,(Q',S U {F;})) must also
hold. Conversely, if (@, (Q', S U {F;})) holds, then so
does (Q,(Q',S U {P;, P;})) by the superkey rule. In
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general, let ¢ be a K constraint and ¢' be the key normal
form of ¢, then ¢ and ¢' are equivalent. That is, for
any XML tree T, T | ¢ iff T | ¢'. To simplify the
discussion and without loss of generality, we assume
from here onwards that all keys are in the key normal
form and all path expressions are in normal form.

An abstract tree is an extension of an XML tree by
allowing “_%” as a node label. Observe that in an ab-
stract tree T', the sequence of labels on a path is a PL
expression that possibly contains occurrences of “_x”.
Let R be the sequence of labels in the path from node a
to bin T, and P be any path expression in PL. We say
that T = P(a, b) if R C P. Given this, the definitions
of node sets and satisfaction of constraints in K can be
easily generalized for abstract trees.

Abstract trees have the following property:

Lemma 1: Let XU {p} be a finite set of K constraints.
If there is a finite abstract tree T such that T =X and
T E -, then there is a finite XML tree G such that
GEX and G = —o. m

Proof: Let ¥ U {¢} be a finite set of keys in K, and T
be a finite abstract tree with “_%” such that T' = X and
T W~ . We define a finite XML tree G as follows. Let
1 be an element tag that does not occur in any key of
Y U{¢}. We substitute 7 for every occurrence of “_x” in
T. Let G be T with this modification. Observe that G
and T have the same set of nodes. In addition, for any
nodes a, b in G, there is a path p such that G = p(a,b)
iff there is a path Rin T such that T = R(a,b), where R
is the same as p except that for each occurrence of “_x”
in R, the label 1 appears at the corresponding position
in p. Let us refer to R as the path expression w.r.t. p
and conversely, p as the path w.r.t. R. We show G E X
and G = —¢. To do so, it suffices to show the following:

Claim 1: Let P be a path expression in PL, and a,b
be nodes in G. Then there exists a path p € P such
that G = p(a,b) iff T = P(a,b), ie.,, T | R(a,b) and
R C P, where R is the path expression w.r.t. p.

From the claim follows immediately that for any
path expression P in PL, [P] consists of the same nodes
in T and G. For if T = P(r,a), where r is the root,
then there is a path R in T such that T = R(r,a) and
R C P. By the claim, we have G |= p(r,a), where p is
the path w.r.t. R and p € P. That is, a is in [P] in the
tree G. Conversely, if a is in [P] in the tree G, then
there is a path p € P such that G | p(r,a). Again by
the claim, T' = R(r,a) and R C P, where R is the path
expression w.r.t. p. Thus a is in [P] in the abstract
tree T'.

Assuming that the claim holds, we show G = ¥ and
G = —p. Suppose, by contradiction, that there exists a
key ¢ = (Q,(Q', {P1, ..., P;})) in ¥ such that G E —¢.
Then there exist a node n € [Q], two distinct nodes
n1,n2 € n[Q'] and in addition, for all ¢ € [1, k], there
exist path p; € P; and nodes z; € ni[p;], vi € nafp:]
such that z; =, y;. But by the claim, we would have
T E Pi(ni,z;) A Pi(na,y;) for all ¢ € [1,k]. There-
fore, T" & ¢, which contradicts our assumption. We
next show G = —p. Let ¢ = (Q,(Q",{P1, -, Pr}))-



Since T = -, there must exist a node n € [Q], two
distinct nodes nq,n2 € n[Q'], and for all i € [1,k],
there exist nodes x;,y; such that x; =, y; and in ad-
dition, there exists a path R; in T such that T =
R;(n1,2;) A Ri(ne,y;), where R; C P;. Thus by the
claim, there is path p; € P; such that z; € ni[pi],
Yi € nafp;]. Hence G = —p.

Next, we show the claim.
(1) Assume that T' = P(a,b), i.e., there is a path R
from a to b in T such that R C P. By the definition
of G, we must have G |= p(a,b), where p is the path
w.r.t. R. Recall that p is obtained by substituting n for
occurrences of “_x”. Since R C P, we have p € P.

(2) Conversely, assume that there exists a path p € P
such that G |= p(a,b). By the definition of G, we have
T E R(a,b), where R is the path expression w.r.t. p.
Thus it suffices to show R C P. To do so, we consider
the NFAs of R, P and p as defined in Section 3.1:

M(R) = (NR’ AU{—}’ 5R’SRJFR))
M(P) = (NP,AU{_}, 6PaSP7FP)7
M(p) = (NP7 AU{T’}J 5PJSP7FP)7

where A is an alphabet that contains neither “.” nor

1. Recall that NFAs for PL expressions have a “linear”
structure as shown in Fig. 3. In particular, since p does
not contain “_x”, M(p) has a strict linear structure.
More specifically, let the sequence of states in N, be
81,...,5m, where sy = S, and s,,, = F},. Then for any
i € [1,m — 1], there is exactly one ] € AU {n} such that
d,(si,1) # 0. More precisely, 6,(s;,1) = sit1. For any
le AUu{n}, 6,(F,,1) = 0. Let the sequence of states in
Ng be ny,...,ng, where n; = Sg and ny = Fr. Then
we can define a function f from N, to Ngr with the
following properties:

e f(S,) = Sk and f(F,) = Fp.

e For any i,j € [1,m], if f(s;) = ny, f(s;) =nj and
i < j, then i’ < j'.

e For any ¢ € [1,m] and I € A, 6,(s;,1) = si31 iff
6r(f(s:),1) = f(si+1) and f(s;) # f(Sit1)-

e For the special letters “_,n” for any ¢ € [1,m], we

let 6,(si,m) = sit1 iff Sr(f(s:),-) = f(siy1) and
f(s;) = f(six1). In particular, if it is the case that
0r(Fr,-) = Fgr then we have 6,(spm—1,1) = F, and
f(sm-1) = f(F,) = Fr.

We define an equivalence relation ~ on N, such that

iff  f(s) = f(s).

Let us use [s] to denote the equivalence class of s w.r.t.
~. Without loss of generality, assume that R is in the
normal form, i.e., it does not contain two consecutive
_x’s and does not contain € unless it is e. Then it is
easy to verify that [s] consists of at most two states.
More precisely, if [s] = {s}, then either s is a final
state or there is [ € A such that §,(s,l) = s, and if
[s] = {s,s'} then there is some i € [1,m — 1] such that
s =8, 8 = 8441, 0,(s,m) = s" and f(s) = f(s'). Given
these, we define a function g from Ng to the equivalence
classes such that for all n € Ng,

gn)=1[s] #f f(s)=n.

!
§n~ S
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On the other hand, recall that in the proof of Theo-
rem 3.2, we have shown the following: for any PL ex-
pressions @ and @', let M(Q), M(Q') be their NFAs,
Ng,Ng be the sets of states, Sg,Sqg be the start
states, and Fg, Fg be the final states of M(Q) and
M(Q"), respectively, then

o Q C Q' iff Sg < Sg/, where < is a simulation as
defined in Section 3.1;

e there is a function § from Ng to Ng such that
0(Sq) = Sqr, 6(Fg) = Fg, and for any s € Ng,
s <16(s).

By p € P, we have that the language defined by p
(which consists of a single string p) is contained in the
language defined by P, i.e., p C P. Thus there exist
such a function § from N, to Np and a simulation rela-
tion < such that 6(S,) = Sp, 6(F,) = Fp, and for any
s € N,, s<6(s). It is easy to verify the following claim:

Claim 2: for all s,s' € [s], O(s) = 8(s").

Indeed, as observed earlier, if s,s’ € [s], then there
is some ¢ € [1,m — 1] such that s = s;, s’ = s;41 and
d,(s,m) = s'. Since 1 does not appear in P, if §(s) = n'
and 6(s') = n", then there must be dp(n',) = n" and
n' =n", by the definition of simulation relations. As a
result, we can define 6([s]) to be 6(s). Given these, to
show R C P, it suffices to show that for any n € Ng,

n < 6(g(n)).

For if it holds, then Sg < 6(g(Sr)) = 6(S,) = Sp.
We next show that this holds. Assume, by contradic-
tion, there is n € Ng such that it is not the case that
n <1 60(g(n)). Let n be such a state with the largest in-
dex in the sequence of states in Np starting from Sg.
Then by the definition of simulation relations given in
Section 3.1, we must have one of the following cases.

(i) n = Fr and either

1. 6(9(FRr)) # Fp, or

2. G(g(FR)) = FP but 6R(FR;—) = FR, 5P(Fp,_) = @
The first case contradicts the assumption g(Fg) = [F}]
and 0([F,]) = 6(F,) = Fp. If it were the second case,
then by (SR(FR,_) = FR, we have g(FR) = {Fp,sm_l}
and 6,(sm-1,m) = F,. By Claim 2, there must be
G(Sm_l) = G(Fp) = Fp and 6P(Fp,_) = Fp. Again
this contradicts the assumption.
(ii) n # Fgr and either

L. r(n,-) = n but dp(6(g(n)), -) # 6(g(n)), or

2. there is some label | € A such that dg(n,l) = n’,
but we have neither §p(6(g(n)),l) # 8(g(n')) nor
6p(6(g(n)),-) = 0(g(n)).

If it were the first case, then by the definition of the
function g, we would have that g(n) = {s;, s;i+1} and
0p(si,m) = 8i+1. Thus by Claim 2, there must be
0(s;) = 0(si41), 0p(6(si),-) = 6(s;) and in addition,
6(g(n)) = 6(s;). Hence dp(6(g(n)),-) = 6(g(n)), which
contradicts the assumption. If it were the second case,
then given dg(n,l) = n', we would have that either
6p(6(g(n)),1) = 8(g(n')) or 6p(6(g(n)), -) = 6(g(n)), by
the definition of simulation relations and g(n)<16(g(n)).



Again this contradicts the assumption. Thus we have
n < 6(g(n)) for all n € Ng. This shows that Claim 1
holds.

This completes the proof of Lemma 1. [

Given Lemma 1, we proceed to verify the complete-
ness of Z. Let XU {p} be a finite set of keys in K, where
v =(Q,(Q",{P,...,P})). Suppose X /1 ¢. We show
¥ £ ¢ by constructing a finite XML tree G such that
G = X but G [£ ¢. Assume Q' # ¢, since otherwise we
have ¥ 7 ¢ by the epsilon rule in 7.

We construct G in two steps. We first define a finite
abstract tree Ty such that Ty = ¥ but Ty [~ ¢. We
then construct G' from T} following Lemma 1. To do
this, we start with a finite abstract tree T that does
not satisfy ¢. The abstract tree T' consists of a single
path @ from the root leading to a node n, which has
two distinct subtrees T7 and T5. Each subtree has a @’
path. These Q' paths lead to nodes n; and ny from n in
Ty and T3, respectively. From each of ny and no there
are paths P, ..., Py, as depicted in Fig. 7 (a). For each
i € [1,k], let x; be the (single) node at the end of the
P; path in T3, and y; be the (single) node at the end
of the P; path in T5. Assume that for each i € [1,k],
ZT; =y Yi, but for any other pair x,y in T,  #, y. This
can be achieved as follows: for each element in 7' we add
a new text subelement. For any z,y in T, if they are
z;,y; then we let them have the same value when they
are A or S nodes, and let their text subelements have
the same value when they are E nodes (in this case the
text subelements are their only subelements). If they
are not x;,y; then we let them have different values if
they are A or S nodes, and let their text subelements
have different values if they are E nodes. The only
exception is that there is ¢ € [1, k] such that P, = €. In
this case we have to assure n; =, ns. That is, for all
Jj € [1,k] and for any P} such that P; = P;.P;' for some
PJf’ € PL, we let x; =, y;-, where xé,y; are the nodes
in n,[P]] and ny[P;], respectively. For any other pair
z,y in T, we let x #, y as before. It is easy to see that
T ': Q.

We next modify T such that T = X. Using the
following algorithm and starting with T constructed
above, we examine each ¢ in 3. If the abstract tree
does not satisfy ¢, then we merge certain nodes in the
tree such that the modified tree satisfies ¢. Assume
Y ={¢1,-..,0n}, and for each i € [1,n], let us assume

repeat until no further change in T
if there exist key ¢; € ¥ and nodes
T,y Ty, i T, Y, Y, - Yy, in T,
and node w in T such that
T '= Qi(?",w), Q;(wa (E) A Q;(wa y) A
Py(x, 1) Aeoo A P, (2, 27,,) A
Pa(y, y1) A A Pi (Y, Ypa,) A
Ty =y YL A AT =y Y,
then merge z,y and their ancestors in 7" as follows:
Case 1: if 2,y are on Q' paths from n to ni,ns
respectively, and they are not ni,ns
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then merge nodes as shown in Fig. 7 (b)
Case 2: if x,y are on some P; in Ty, T», respectively
then (i) merge nodes as shown in Fig. 7 (c¢)
(ii) terminate the algorithm

By the construction of T, z =, y; iff they are cor-
responding nodes in 77 and T%», respectively. Moreover,
the node w can only be either on path @ or on path Q'.
In Case 1, the subtree under z and the subtree under
y will both be under the same node z = y, as shown
in Fig. 7 (b). In Case 2, under the node n; (which is
merged with mny) only a single copy of the P; path is
retained and we discard the rest of the key paths in
{P1, ..., Py}

The algorithm terminates since 7' is finite and thus
merging can be performed finitely many times. Let T
denote the tree obtained upon the termination of the
algorithm. Note that Ty |= ¢ iff n; = no, i.e., when the
algorithm terminates in Case 2. If the algorithm does
not terminate in Case 2, then Ty = ¥ and Ty [~ ¢.
By Lemma 1, there is a finite XML tree G such that
G E ¥ and G [~ ¢. Thus what we need to do is to
show that the algorithm does not terminate in Case 2,
ie., Ty - .

We show Ty [~ ¢ by contradiction, that is, if T; = X
then ¥ k7 ¢, which contradicts our assumption. Let us
also use T to denote the tree obtained after executing
m merging operations. We show by induction on m
that each step of merging corresponds to applications of
certain rules of Z, and thus if T' |= ¢ (i.e., the algorithm
terminates in Case 2 after step m), then ¥ k7 . When
m = 0, the statement holds since Ty = ¢. Assume
the statement for m and we show that it also holds for
m+ 1.

(1) First, consider the merging in Case 1 as shown in
Fig. 7 (b) and (d). This step generates Z-proofs for
keys that will be used in establishing ¥ k7 ¢ if T} |=
. By the definition of abstract trees, Case 1 can only
happen if there is a PL expression R, such that Q.Q' C
Q:.Q;.R, and in addition, for all j € [1,m;], there is
s € [1,k] such that either (i) R,.P, C P;; or (ii) there
is a PL expression R; such that R,.P, C P;;.R;. If it
is (ii) then there must some [ € [1, %] such that P, = ¢
in ¢, by the definition of T. We consider the following
cases.

(a) If the node w is on the path @, i.e., it is above n
in T, then there must be PL expression (J; such that
Q' = Q¢.R,, z,y € n[Q] and moreover, from ¢; the
following can be proved:

(Q7 (Qt7 {Rp'Pla DN RpPk}))

by using context-target, three containment rules (i.e.,
context-path-containment, target-path-containment and
key-path-containment) and superkey. If it is (ii) then
prefiz-epsilon is also needed. See Fig. 7 (b).

(b) If the node w is on the path @', i.e., it is below
n but above ni,ny in T, then there must be PL ex-
pressions @¢, Q; such that Q.Q. C Q;, Q' = Q..Q¢-Rp,
w € n[Q.] and z,y € n[Q..Q¢]. This can only happen
when some descendants z', y' of n on path Q' above z,y
were merged in a previous step by the algorithm. More
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Figure 7: Abstract trees constructed in the proof of Lemma 3.4

precisely, there are PL expressions (¢, Q2 such that
Qi = Qu1-Qs2, ', y' € n[Qc.Qu] and ', y" were merged
in Case 1 of the algorithm. Thus by the induction hy-
pothesis, we have that the following is provable from X
by using 7Z:

(@, (Qc.Qn, {Qe2.Rp.Pi, ..., Qu.Ry.Pr})).

(From ¢; the following can be proved

(Q-QCa (Qtl-QtZa {RP'PIJ LR} RPPk}))
by using the three containment rules and superkey. If
it is (ii) then prefiz-epsilon is also needed. Thus by
subnodes and interaction we have

(@, (Qe-Qu-Qu2, {Rp.Pr, ..., Rp.Fr})).
That is, (@, (Q¢.Qt, {Rp.P1, ..., Rp.Py})). See Fig. 7
(d).

(2) Next, we consider the merging in Case 2 as shown
in Fig. 7 (c) and (e). If it is the case then we show
3 k1 . By the definition of abstract trees, Case 2 can
only happen if there is a PL expression R, such that
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Q.Q".R, C Q;.Q} and in addition, for all j € [1,m;],
there is s € [1, k] such that either (i) P, C R,.P;; or (ii)
there is a PL expression R; such that P, C R,.P;;.R;.
If it is (ii) then there must some ! € [1,k] such that
P, = € in ¢, by the definition of . We consider the
following cases.

(a) If the node w is on the path @, i.e., it is above
n in T, then there must be PL expression (J; such
that Q¢+.Q".R, C Q;, € ni[R,] and y € no[Rp]. If
R, = € then ¢ can be proved from ¢; by using context-
target, the three containment rules and superkey. Note
that if it is (ii) then prefiz-epsilon is also needed. If
R, # € then by the construction of T', we must have
m; = 1. Thus we can also prove ¢ from ¢; by using
subnodes, context-target, the three containment rules
and superkey. Thus we have ¥ k7 ¢, which contradicts
our assumption. See Fig. 7 (c).

(b) If the node w is on the path @', i.e., it is below
n but above ni,ny in T, then there must be PL ex-



pressions Q.,Q; such that Q.Q. C Qi, Q' = Q..Q,
w € n[Q.], * € m[R,] and y € no[R,]. This can
only happen when some descendants z',y' of n on path
Q' above ny,ns were merged in a previous step by the
algorithm. More precisely, there are PL expressions
Q¢1, Qu2 such that Q; = Q41.Q2, o',y € n[Qu] and
z',y" were merged in Case 1 of the algorithm. Thus by
the induction hypothesis, we have that the following is
provable from ¥ by using Z:

(Q, (Qc-Qe1, {Qu2-P1,y ---, Qu2-Pr})).
If R, = € then from ¢; the following can be proved

(Q-Qc, (Qer-Qi2, {P1, -.., Pr}))

by using the three containment rules and superkey. Ob-
serve that if it is (ii) then prefiz-epsilon is also needed.
If R, # € then by the construction of 7', we must have
m; = 1. Thus we can also prove it from ¢; by using
subnodes, context-target, the three containment rules
and superkey. Thus by interaction we have

(QJ (QC-Qtl-Qt2; {P17 (RN Pk}))
That is, (@, (@', {Pi, ..., Pr})) = . Thus again we
have ¥ Fz ¢, which contradicts our assumption. See
Fig. 7 (e).
This shows that 7 is complete for K constraint im-
plication and thus completes the proof of Lemma 3.4.
|
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