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ABSTRACT

REPRESENTATIONS OF FUNDAMENTAL GROUPS OF ABELIAN

VARIETIES IN CHARACTERISTIC p

Brett Frankel

Ted Chinburg

Let Ag be an abelian variety of dimension g and p-rank λ ≤ 1 over an algebraically

closed field of characteristic p > 0. We compute the number of homomorphisms from

πét
1 (Ag) to GLn(Fq), where q is any power of p. We show that for fixed g, λ, and

n, the number of such representations is polynomial in q. We show that the set of

such homomorphisms forms a constructable set, and use the geometry of this space

to deduce information about the coefficients and degree of the polynomial.

In the last chapter we prove a divisibility theorem about the number of homomor-

phisms from certain semidirect products of profinite groups into finite groups. As a

corollary, we deduce that when λ = 0,

# Hom(πét
1 (Ag), GLn(Fq))

#GLn(Fq)

is a Laurent polynomial in q.
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Chapter 1

Introduction

1.1 Representations of Fundamental Groups of Com-

plex Algebraic Varieties

This thesis explores representations of the fundamental groups of certain algebraic va-

rieties in characteristic p > 0. Before turning our attention to positive characteristic,

it will be useful to survey some motivating examples over the complex numbers.

If X is a smooth projective complex variety, its fundamental group π1(X, x) is

finitely generated. What follows will not depend on the choice of base point, so we will

simply write π1(X). For any finitely-presented group G = 〈α1, · · · , αk|r1, · · · , rm〉,

one may construct the variety of representations of G by associating to each repre-

sentation ρ : G → GLn(C) the point (ρ(α1), · · · , ρ(αk)) ⊂ GLn(C)k ⊂ Akn2
. In fact,

since Akn2
is noetherian, only finite generation is necessary for this construction, not
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finite presentation. The set of all such representations is the locus in GLn(C)k by the

relations ri, and each ri is a closed condition, so we obtain a quasi-affine variety. (We

will see in Proposition 7 that this construction is not always as well-behaved when G

is profinite.) This construction does not depend on the choice of generating set; writ-

ing one generating set in term of another gives an isomorphism of the corresponding

varieties. We then take the quotient of the conjugation action, but the resulting space

is not separated. So we identify each representation with its semisimplification. This

moduli space of representations of the fundamental group of X is called the Character

Variety of X. [12]

In Mixed Hodge Polynomials of Character Varieties, [5] Hausel and Rodriguez-

Villegas computed the number of homomorphisms from the fundamental group of

a Riemann surface of genus g into GLn(Fq). By van Kampen’s theorem, this is

equivalent to counting 2g-tuples of matrices,

P (q) = # Hom(π1(X), GLn(Fq))

= #{(X1, Y1, · · · , Xg, Yg) : [X1, Y1][X2, Y2] · · · [Xn, Yn] = 1},

where [Xi, Yi] denotes the commutator XYX−1Y −1. They also consider a twisted
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version of the problem, computing

R(q) = # Homtwist(π1(X), GLn(Fq))

= #{(X1, Y1, · · · , Xg, Yg) : [X1, Y1][X2, Y2] · · · [Xn, Yn] = ζn},

where ζn is a primitive nth root of 1.

The salient feature of both these counts is that, for fixed g and n, P and R are

both polynomial functions of q. Another curious feature is that P (q) is divisible by

the order of GLn(Fq). This phenomenon is explained in [3].

In the twisted case, PGLn acts scheme-theoretically freely on Homtwist(π1(X), GLn),

and the GIT quotient Mn = Homtwist(π1(X), GLn)//PGLn is the moduli space of

twisted homomorphisms from π1(X) to GLn. The polynomial point-counting for-

mula is then used to produce the E-polynomial E(Mn, T ) of Mn(C), which encodes

information about the weight and Hodge filtrations on the cohomology of Mn.

The bridge from combinatorics to Hodge theory is given by the following theorem.

Theorem 1 (N. Katz, Appendix to [5]). Let X be a scheme over a ring R, where

R is finite type over Z. Fix an embedding R ↪→ C so that X = X ×R C is a variety

(i.e., separated and finite type over C). If there exists a polynomial PX(T ) ∈ Z[t]

such that for all primes p and all powers of q of p, #(X ×R F̄p)(Fq) = PX(q), then

PX(T ) = E(X,T ).
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1.2 Fundamental Groups in Positive Characteris-

tic

We are interested in extending the combinatorial results of [5] where the Riemann

surface X is replaced by a variety over an algebraically closed field of characteristic

p.

The most natural generalization of [5] is to consider a curve C/F̄p. However, in

positive characteristic, the étale fundamental group is a much more subtle object. In

particular, there is not a single curve of genus greater than 1 for which an explicit

presentation of the fundamental group is known. [10]

However, these fundamental groups have well-understood abelianization; the abelian-

ization of the fundamental group of a curve is the fundamental group of the Jacobian

variety, which is the dual of the Jacobian. Thus we will concern ourselves in this

thesis with representations of fundamental groups of abelian varieties.

Let Ag be an abelian variety of dimension g. The p-torsion points of A form a

vector space over Fp of dimension 0 ≤ λ ≤ g. We call λ the p-rank of Ag. The

fundamental group of Ag is given by

πét
1 (Ag) ∼=

∏
`6=p

(Z`)2g × Zλp

∼= (Ẑ′)2g−λ × Ẑλ,

4



where

Ẑ = lim←−Z/n

is the profinite completion of the group of integers and

Ẑ′ = lim←−
(n,p)=1

Z/n

is the group of integers completed away from the prime p. We will write π1(Ag)

instead of πét
1 (Ag) in the remainder of this thesis.

Let q be a power of p. A homomorphism π1(Ag) → GLn(Fq) is determined by

the image of the topological generators, so specifying a homomorphism is equivalent

to choosing an ordered 2g-tuple of pairwise commuting matrices, such that the first

2g − λ have order not divisible by p. In Chapter 2 we compute the number of

homomorphisms π1(Ag)→ GLn(Fq), where q is a power of p and the p-rank of Ag is

either 0 or 1. We also compute the number of homomorphisms up to conjugation in

the p-rank 0 case. All three counting formulas are polynomial in q, depending on g

and n but not on the characteristic.

Chapter 3 considers the space of all such representation, and relates the geometry

of this space to certain features of the polynomial formulas in the previous chapter.

Chapter 4 gives the profinite analogue of a theorem of Gordon and Villegas, [3]

and deduces as a corollary that when the λ = 0, Hom(π1(Ag), GLn(Fq))/#GLn(Fq)

is a Laurent polynomial in q.
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Chapter 2

Counting Formulas

Our main reference in this chapter is Macdonald’s Symmetric Functions and Hall

Polynomials. [8] Throughout, p will be a prime number, and q will denote a power of

p.

2.1 Some Linear Algebra

For any matrix X ∈ GLn(Fq) we have an associated Fq[T ]-module structure on Fnq ,

where T acts by X. If X and Y induce isomorphic module structures on Fnq , then

the isomorphism of Fq[T ]-modules defines an element of GLn(Fq), so X and Y are

conjugate. Note that X ∈ GLn(Fq) has order prime to p if and only if X acts

semisimply on Fnq . That is, X is diagonalizable over F̄q. Since elements of order prime

to p act semisimply, the associated Fq[T ]-module is a direct sum of simple modules

of the form Fq[T ]/f(T ), where the f(T ) are irreducible but not necessarily distinct.
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Matrices of order prime to p are thus uniquely characterized, up to conjugation, by

their characteristic polynomials.

2.2 Polynomials and their Types

Definition 2. A type Λ of n is a partition of n along with a refinement of its con-

jugate. That is, a partition λ of n along with partitions λi of the multiplicities of the

entries i of λ.

This is a slight generalization of what Macdonald calls a type in [8]. For example,

the data λ = (5 3 3 3 3 3 2 2 2 1 1) = (5(1) 3(5) 2(3) 1(2)), λ5 = (1), λ4 = ∅, λ3 = (2 2 1),

λ2 = (2 1), λ1 = (2) give a type of 28. We shall write λ ` n when λ is a partition of

n, and Λ � n when Λ is a type of n. By

∏
(i,r)∈Λ

f(i, r)

we will mean the product taken over all pairs (i, r) such that i ∈ λ and r ∈ λi. We

index over λ without multiplicity, but over r ∈ λi with multiplicity. So if

Λ =



λ = (3 3 3 3 3 1 1)

λ3 = (2 2 1)

λ1 = (2)

,
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then ∏
(i,r)∈Λ

f(i, r) = f(3, 2)2f(3, 1)f(1, 2).

We associate to an n×n matrix X a type Λ � n by considering the characteristic

polynomial cX(T ) of X. Factoring cX(T ) into irreducible factors gives a partition

of λ ` n, where the entries of λ are the degrees of the irreducible factors of cX(T ),

counted with multiplicity. We then take λi to be the partition consisting of the

multiplicity of each distinct degree-i factor of cX(T ).

For example, over F3, we associate λ = (3 3 1 1 1 1 1 1), λ3 = (2), λ1 = (3 3) to

the polynomial (T 3 + 2T + 1)2(T − 2)3(T − 1)3.

Recall that the number of irreducible monic polynomials over Fq of degree i is

1

i

∑
k|i

µ(k)qi/k,

where µ is the Möbius function. [7]

Definition 3. Denote by ψΛ(q) the number of monic polynomials p(T ) ∈ Fq(T ) with

factorization type Λ.

Note that ψΛ(T ) ∈ Q[T ], but in general ψΛ(T ) /∈ Z[T ]. For instance, if λ = (1 1),

λ1 = (1 1), then

φΛ(q) =
(q − 1)(q − 2)

2
.
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2.3 Counting

We now count the number of homomorphisms from π1(Ag) to GLn(Fq), where the

p-rank of Ag is 0. This is equivalent to counting 2g-tuples of commuting matrices

(X1, . . . , Xk) such that each Xi has order prime to p. Since the combinatorial ar-

guments below do not make use of the fact that 2g is even, we may state a slightly

stronger theorem.

Theorem 4. The number of ordered k-tuples of pairwise-commuting, semisimple,

invertible matricies with entries in Fq is

#GLn(q)
∑
Λ1�n

ψΛ1(q)
∏

(i1,r1)∈Λ1

∑
Λ2�r1

ψΛ2(q
i1)

∏
(i2,r2)∈Λ2

· · ·

· · ·
∑

Λk−1�rk−2

ψΛk−1
(qi1i2···ik−2)

∏
(ik−1,rk−1)∈Λk−1

∑
Λk�rk−1

ψΛk
(qi1i2···ik−1)∏

(ik,rk)∈Λk

#GLrk(qi1i2···ik)
.

For instance, the number of commuting semisimple pairs (X, Y ) ∈ GL2(Fq)2 is

#GL2(Fq)
(q3 + q2 − q + 1)

q
= q6 − 3q4 + 2q3 + q2 − 2q + 1.

In GL3(Fq), the number of semisimple commuting pairs is

#GL3(Fq)
q6 − q5 − q4 + 2q3 − q2 + q − 1

q3

=q12 − 2q11 − q10 + 4q9 − q8 − 4q6 + 2q5 + 3q4 − 2q3 + q2 − 2q + 1.
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Proof. We first prove the theorem for k = 2. Since semisimple matrices are charac-

terized, up to conjugation, by their characteristic polynomials, we associate to each

such conjugacy class a type Λ. There are by definition ψΛ(q) conjugacy classes of

type Λ. Suppose X1 is any matrix of order prime to p, with associated type Λ. A

matrix Y commutes with X1 if and only if Y acts X-equivariantly on Fnq . That is,

writing Fnq as a sum of simple modules

Fnq ∼=
⊕
j

(Fq[T ]/fj(T ))rj ,

the action of Y is a Fq[T ]-automorphism of each (Fq[T ]/fj(T ))rj . Specifying such

an action is given by an element of GLrj(Fqdeg fj ). The order of the centralizer of a

semisimple matrix X1 with type Λ is thus

∏
fj

#GLrj(Fqdeg fj ) =
∏

(i,r)∈Λ

#GLr(Fqi). (2.3.1)

The matrix X2 commutes with X1 and also must be semisimple, so X2 acts

semisimply on each (Fq[T ]/fj(T ))rj . A semisimple matrix Yj ∈ GLrj(Fqdeg fj ) is de-

termined, up to conjugacy, by its characteristic polynomial, or equivalently by a type

N = (ν, ν`) � rj and a polynomial of type N in Fqdeg fj [T ]. By the same argument

used to compute the cardinality of the centralizer of X1, we see that index of the
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centralizer of Yj ∈ GLrj(Fqdeg fj ) is

#GLrj(Fqdeg fj )∏
(`,s)∈N

#GLs(Fqdeg(fj)`)
.

The number of all such Yj is therefore

∑
N�rj

ψN(qdeg fj)
#GLrj(Fqdeg fj )∏

(`,ν)∈N
#GLs(Fqdeg(fj)`)

 . (2.3.2)

So, if X1 is semisimple with type Λ, the number of semisimple matrices X2 commuting

with X1 is

∏
fj

∑
N�rj

ψN(qdeg fj)
#GLrj(Fqdeg fj )∏

(`,s)∈N
#GLs(Fqdeg(fj)`)


=
∏

(i,r)∈Λ

∑
N�r

ψN(qi)
#GLr(Fqi)∏

(`,s)∈N
#GLs(Fqi`)

 . (2.3.3)

Given a semisimple matrix X ∈ GLn(Fq), we have just computed both the number

of matrices (2.3.1) that commute with X and the number of semisimple matrices

(2.3.3) that commute with X. Note that both of these numbers depend only on the

type associated to X, since the deg(fj)’s are the entries of λ, and the rj’s are the

entries of the corresponding λdeg fj ’s.

From these two computations, we see that the number of pairs (X1, X2) of com-
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muting semisimple matrices in GLn(Fq) is

∑
Λ�n

∑
ψ(Λ)

#GLn(Fq)∏
(i,r)∈Λ

#GLr(Fqi)
∏

(i,r)∈Λ

∑
N�r

ψN(qi)
#GLr(Fqi)∏

(`,s)∈N
#GLs(Fqi`)

 (2.3.4)

where the second sum is taken over polynomials with type Λ. Since

#GLn(Fq)∏
(i,r)∈Λ

#GLr(Fqi)
∏

(i,r)∈Λ

∑
N�r

ψN(qi)
#GLr(Fqi)∏

(`,s)∈N
#GLs(Fqi`)


depends only on Λ, we may simplify (2.3.4) by replacing the second summation with

multiplication by ψΛ(q). Thus (2.3.4) simplifies to

#GLn(Fq)
∑
Λ�n

ψΛ(q)
∏

(i,r)∈Λ

∑
N�r

ψN(qi)∏
(`,s)∈N

#GLs(Fqi`)
. (2.3.5)

We now continue by induction. Suppose the number of pairwise commuting

(k − 1)-tuples of semisimple elements of GLn(Fq) is

#GLn(q)
∑
Λ1�n

ψΛ1(q)
∏

(i1,r1)∈Λ1

∑
Λ2�r1

ψΛ2(q
i1)

∏
(i2,r2)∈Λ2

· · ·

· · ·
∑

Λk−2�rk−3

ψΛk−2
(qi1i2···ik−3)

∏
(ik−2,rk−2)∈Λk−2

∑
Λk−1�rk−2

ψΛk−1
(qi1i2···ik−2)∏

(ik−1,rk−1)∈Λk−1

#GLrk−1
(qi1i2···ik−1)

.

Suppose further that for each possible action of X1, . . . , Xk−1 on Fnq , the action of

Xk−1 on an isotypic summands of the Fq[X1, . . . , Xk−2]-module Fnq has characteris-

tic polynomials of type Λk−1 as above when these isotypic summands are viewed as
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Fqi1i2···ik−2 -vector spaces. (We note that Λ2k−1 may be different for different sum-

mands; indeed, Λk−1 � rk−2, and the symbol rk−2 takes on different values in different

terms of the above formula).

Since Xk commutes with each X`, 1 ≤ ` < k, then Xk acts on Fnq by acting on each

isotypic summand, which by induction are Fqi1i2···ik−2 [Xk−1]-modules, or Fqi1i2···ik−1 -

vector spaces of dimension rk−1. There are

∑
Λk�rk−1

ψΛk
(qi1i2···ik−1)

conjugacy classes of semisimple elements of GLrk−1
(Fqi1i2···ik−1 ). By (2.3.1), each

conjugacy class has

#GLrk−1
(Fqi1i2···ik−1 )∏

(ik,rk)∈Λk

#GLrk(Fqi1i2···ik )

elements, for a total of

F (rk−1) =
∑

Λk�rk−1

ψΛk
(qi1i2···ik−1)

#GLrk−1
(Fqi1i2···ik−1 )∏

(ik,rk)∈Λk

#GLrk(Fqi1i2···ik )

possibleXk-actions on Frk−1

qi1i2···ik−1
. So by induction, the number of pairwise-commuting

k-tuples of semisimple matrices in GLn(Fq) is

#GLn(q)
∑
Λ1�n

ψΛ1(q)
∏

(i1,r1)∈Λ1

∑
Λ2�r1

ψΛ2(q
i1)

∏
(i2,r2)∈Λ2

· · ·

· · ·
∑

Λk−1�rk−2

ψΛk−1
(qi1···ik−2)

∏
(ik−1,rk−1)∈Λk−1

1

#GLrk−1
(qi1···ik−1)

F (rk−1).
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Canceling factors of #GLrk−1
(qi1···ik−1), the above formula simplifies to the state-

ment of the theorem.

Observation. From the proof, we see that the formula in Theorem 4 is polynomial

in q. This polynomial depends on n and k, but not on the characteristic.

The next theorem computes # Hom(π1(Ag), GLn(Fq)) when the p-rank of Ag is 1.

Theorem 5. The number of ordered k-tuples of invertible, pairwise-commuting ma-

trices (X1, . . . , Xk−1, Y ) such that the Xi are all semisimple is

#GLn(q)
∑
Λ1�n

ψΛ1(q)
∏

(i1,r1)∈Λ1

∑
Λ2�r1

ψΛ2(q
i1)

∏
(i2,r2)∈Λ2

· · ·

· · ·
∑

Λk−2�rk−3

ψΛk−2
(qi1i2···ik−3)

∏
(ik−2,rk−2)∈Λk−2

(qi1···ik−2 − 1)(qi1···ik−2)rk−2−1.

Proof. As in the inductive step of the theorem, we assume the number of pairwise

commuting (k − 2)-tuples of semisimple elements of GLn(Fq) is

#GLn(q)
∑
Λ1�n

ψΛ1(q)
∏

(i1,r1)∈Λ1

∑
Λ2�r1

ψΛ2(q
i1)

∏
(i2,r2)∈Λ2

· · ·

· · ·
∑

Λk−3�rk−4

ψΛk−3
(qi1i2···ik−4)

∏
(ik−3,rk−3)∈Λk−3

∑
Λk−2�rk−3

ψΛk−2
(qi1i2···ik−3)∏

(ik−2,rk−2)∈Λk−2

#GLrk−2
(qi1i2···ik−2)

.

As before, for each possible action of X1, . . . , Xk−2 on Fnq , the action of Xk−2 on an

isotypic summands of the Fq[X1, . . . , Xk−3]-module Fnq has characteristic polynomials

of type Λk−2 as above when these isotypic summands are viewed as Fqi1i2···ik−3 -vector

spaces.
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Thus it suffices to count the number of pairs Xk−1, Y which act on each isotypic

summand of the Fq[X1, . . . , Xk−2]-module Fnq . By assumption, these summands are

of the form Frk−2

qi1···ik−2
.

Let O be the orbit, under the conjugation action in GLrk−2
(Fqi1···ik−2 ), of a matrix

of order prime-to-p. Given any Xk−1, we will denote by A its restriction to the

isotypic summand in question, and similarly B will denote the restriction of Y . For

any A ∈ O, the number of nonsingular matrices B that commute with A is the

order of the centralizer of A. The number of elements in O is the index of the

centralizer of A. Thus there are precisely #GLrk−2
(Fqi1···ik−2 ) pairs (A,B) such that

A and B commute and A ∈ O. So to compute the number of pairs (A,B) with

[A,B] = 1 and |A| prime to p, we need only count the number of possible conjugacy

classes A. These are in bijection with characteristic polynomials, of which there are

(qi1···ik−2)rk−2−1(qi1···ik−2 − 1).

Thus the number of pairwise commuting k-tuples of invertible n× n matrices

(X1, . . . , Xk−1, Y ), of which all but possibly the last have order prime to p, is

#GLn(q)
∑
Λ1�n

ψΛ1(q)
∏

(i1,r1)∈Λ1

∑
Λ2�r1

ψΛ2(q
i1)

∏
(i2,r2)∈Λ2

· · ·

· · ·
∑

Λk−3�rk−4

ψΛk−3
(qi1···ik−4)

∏
(ik−3,rk−3)∈Λk−3

∑
Λk−2�rk−3

ψΛk−2
(qi1···ik−3)#(A,B)∏

(ik−2,rk−2)∈Λk−2

#GLrk−2
(qi1···ik−2)

,
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where

#(A,B) =
∏

(ik−2,rk−2)∈Λk−2

#GLrk−2
(Fqi1···ik−2

)(qi1···ik−2)rk−2−1(qi1···ik−2 − 1).

After cancellation we arrive at the statement of the theorem.

Theorem 6. The number of conjugacy classes of k-tuples of pairwise-commuting,

invertible, semisimple matrices is

#{(X1, . . . , Xk)}/ ∼=∑
Λ1�n

ψΛ1(q)
∏

(i1,r1)∈Λ1

∑
Λ2�r1

ψΛ2(q
i1)

∏
(i2,r2)∈Λ2

· · ·

· · ·
∑

Λk−1�rk−2

ψΛk−1
(qi1i2···ik−2)

∏
(ik−1,rk−1)∈Λk−1

(qi1···ik−1)rk−1−1(qi1···ik−1 − 1).

Proof. Observe that Y ∈ GLn(Fq) stabilizes (X1, . . . , Xk) if and only if it commutes

with each X`. Writing Z(X1, . . . , Xk) for the order of the stabilizer of (X1, . . . , Xk)

and applying the orbit-stabilizer lemma,

#{(X1, . . . , Xk)}/ ∼ =
∑

{(X1,...,Xk)}

Z(X1, . . . , Xk)

#GLn(Fq)

=
1

#GLn(Fq)
∑

{(X1,...,Xk)}

Z(X1, . . . , Xk)

=
1

#GLn(Fq)
∑

{(X1,...,Xk,Y )}

1

where the last sum is taken over k+1-tuples pairwise commuting semisimple matrices
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(X1, . . . , Xk, Y ) with all X` semisimple. The value of this sum was computed in

Theorem 5.
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Chapter 3

The Space of Representations

In this chapter, Ag will be an abelian variety with p-rank 0, as before. However, all

statements apply if the p-rank of Ag is 1, mutatis mutandi. All schemes below are

reduced. Recall that a subset of affine (or projective) space is said to be constructable

if it may be expressed as a Boolean combination of Zariski-closed sets. [9]

Fix n, and let R = Hom(π1(Ag), GLn(F̄q)). Recall that a representation of π1(Ag)

is given by a choice of 2g invertible matrices Xk, 1 ≤ i ≤ 2g, such that these matrices

are pairwise commuting and each have order relatively prime to p. Assigning a matrix

(Xk
ij)1≤i,j≤n to each generator, we may view R as a subset of A2gn2

.

We will now show that for fixed n and g, the set R = Hom(π1(Ag), GLn(F̄q)) of

all representations may be considered a constructible set.

Proposition 7. R is constructable.

Proof. The requirement that the matrices pairwise commute defines a closed affine

18



subscheme. We may specify that the matrices are (simultaneously) diagonalizable

with the statement that there exists an invertible matrix C (with coordinates Ci,j,

1 ≤ i, j ≤ n) so that CXkC−1 is diagonal for each k. This last statement requires an

existential quantifier, and thus does not necessarily define a subscheme, but it is a first

order statement in the sense of model theory, and hence the space of representations

is a definable subset of A2gn2
. Since the theory of algebraically closed fields admits

quantifier elimination, [9] every definable set is in fact constructable, i.e. a Boolean

combination of closed subschemes.

Alternatively, since we are considering simultaneously diagonalizable matrices, one

may write the diagonalization of each Xk as an element of a torus, and then define

a morphism GLn × G2gn
m → A2gn2

, (C,X1, . . . , X2g) 7→ (C−1X1C, . . . , C
−1X2gC).

By Chevalley’s Theorem, [9] the image of this morphism, which is equal to R, is

constructable.

Since R is constructable, we may write R = (R1−R′1)∪(R2−R′2)∪ . . .∪(Rt−R′t),

where each Ri is a projective variety and R′i is a (possibly empty) closed subscheme

of Ri. Alternatively, since R is contained in affine space, we may choose each Ri and

R′i to be affine.

Proposition 8. Let P (T ) be the polynomial such that P (q) = #R(Fq), the number

of Fq-rational points of R. Then P (T ) ∈ Z[T ].

This argument is not new, and can be found in the appendix of [5] by Katz.

Proof. Chose q so that each Ri and R′i is defined over Fq. Let
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P (T ) = a0 + a1T + . . . adT
d. Then the zeta function Z(R, T ) is defined to be

Z(R, T ) = exp(
∞∑
n=0

R(Fqn)T n/n) = exp(
∞∑
n=0

P (qn)T n/n)

On the other hand, each Ri and R′i is a projective variety, each Z(Ri, T ) and Z(R′i, T )

is rational, and

Z(R, T ) =
∏
i

Z(Ri, T )

Z(R′i, T )
.

Writing

Z(R, T ) =
(1− α1T ) · · · (1− αrT )

(1− β1T ) · · · (1− βsT )

in lowest terms and taking logs, we see that

r∑
j=1

log(1− αjT )−
s∑

k=1

log(1− βkT ) = logZ(R, T )

=
∞∑
n=0

P (qn)T n/n

=
∞∑
n=0

d∑
i=0

aiq
inT n/n.

And so, taking derivatives,

s∑
k=1

βk
1− βkT

−
r∑
j=1

αj
1− αjT

=
∂

∂T
Z(R, T ) =

∞∑
n=0

d∑
i=1

aiq
inT n−1 =

d∑
i=1

aiq
i

1− qiT
.

Comparing poles, each αj and βk must be a power of q. Comparing numerators we

see that for each i, either ai is the number of k such that βk = qi, or −ai is the
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number of j for which αj = qi.

From the above proof, we see that the leading coefficient of P (T ) is the multiplicity

of (1− βsT ) in the denominator of Z(R, T ).

Theorem 9 (R. Guralnick, B. Sethuraman [4]). Let V be the variety of commuting

k-tuples of n× n matrices. If ∆ ⊂ V denotes the union of the discriminant loci, i.e.

the set on which at least one matrix has a repeated eigenvalue, then the the closure

of R − ∆ is an irreducible component of V . The dimension of this component is

n2 + (k − 1)n.

Corollary 10. The degree of P (T ) is at least n2 + (2g − 1)n.

Proof. Let D ⊂ V be the union of the determinant loci, the set on which at least one

matrix is not invertible. Note that V ⊃ R ⊃ V − (∆ ∪D). Then we may decompose

R = (R1 − R′1) ∪ (R2 − R′2) ∪ . . . ∪ (Rt − R′t), where R1 is the closure of V − ∆,

R′1 = ∆ ∪ D, and all Ri ⊂ (∆ ∪ D) for all i > 1. By theorem 9, the closure of

R1 − ∆ is irreducible, and is thus equal to the closure of R1 − (∆ ∪ D) because D

is closed. From the proof of Proposition 8, the degree of P (T ) is supi dimRi, and

dimR1 = n2 + (k − 1).

Theorem 11 (Gerstenhaber [2]). The variety of commuting pairs of matrices is

irreducible.

Corollary 12. When g = 1, P (T ) is monic of degree n2 + (2g − 1)n.
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Proof. Since the variety V of pairs of commuting matrices is irreducible, we may write

R1 = V and R′1 = ∆∪D, and V ⊃ R ⊃ V − (∆∪D) as in the proof of Corollary 10.

All remaining Ri are contained in ∆∪D, which is a closed subvariety of an irreducible

variety and therefore of strictly lower dimension.
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Chapter 4

A Divisibility Theorem for

Profinite Groups

4.1 Introduction and Statement of Theorem

In “On the divisibility of # Hom(Γ, G) by |G|,” [3] Cameron Gordon and Fernando

Rodriguez-Villegas prove that for a finitely-generated group Γ̃, Γ̃ has infinite abelian-

ization if and only if it satisfies the divisibility condition in the paper’s title for all

finite groups G. This extends a result of Louis Solomon [13] which proves the same,

assuming Γ̃ has a presentation with more generators than relations. Using their no-

tation, # will denote the cardinality of a set, while | · | will be the order of either a

finite group or an element of a finite group. By homomorphism, we will always mean

a continuous homomorphism, where where countable groups are given the discrete

topology. In this chapter, we state and prove the following profinite analogue of the
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theorem in [3]:

Theorem 13. Let S be a set of primes (not necessarily finite), and let ẐS = lim←−Z/n,

where the the inverse limit is taken over all natural numbers n not divisible by any

prime in S. Then for any topologically finitely generated profinite group Γ and finite

group G,

# Hom(Γ o ẐS, G)

|G|
∈ S−1Z,

where Γ o ẐS is any semidirect product of Γ and G, and S is the multiplicative set

generated by the elements of S. Conversely, if Γ̃ is topologically finitely generated and

# Hom(Γ̃, G)

|G|
∈ S−1Z

for all finite groups G, then there exists a Γ with Γ̃ ∼= Γ o ẐS.

Remark. This result is precisely the profinite version of [3], because a finitely gen-

erated group has infinite abelianiztion if and only if it is of the form Γ o Z.

Corollary 14. Let P (T ) be as in the previous section, i.e. the unique polynomial

such that P (q) = Hom(π1(Ag), GLn(Fq)) whenever q is a power of p, and denote by

G(T ) the polynomial such that G(q) = #GLn(Fq). Then

P (T )

#GLn(Fq)
∈ Z[T,

1

T
].

Proof. Choose S = {p}. Writing π1(Ag) ∼= (Ẑ′)2g ∼= (Ẑ′)2g−1 × Ẑ′ ∼= (Ẑ′)2g−1 × ẐS,
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we see that for all q, P (q)/#GLn(Fq) is a rational number whose denominator is

divisible only by the prime p. Thus T n P (T )
G(T )

∈ Q[T ] for sufficiently large n. Since

G(T ) is monic, T n P (T )
G(T )
∈ Z[T ].

4.2 Proof (first statement)

In this section we prove that for any topologically finitely generated Γ, the number of

homomorphisms from Γ o ẐS to G, when divided by |G|, has denominator divisible

only by primes in S.

We first recall a theorem of Frobenius. [1] (See [6] for a short elementary proof.)

Theorem 15. If H is a finite group and n
∣∣ |H|, then the number of elements of H

with order dividing n is a multiple of n.

Lemma 16. Let G be a finite group, and H a subgroup of order prm, with p - m.

Choose g ∈ NG(H) with |g| a power of p. Then the set {x ∈ Hg : |x| is a power of p}

has cardinality divisible by pr.

Proof. We may assume that g /∈ H, for otherwise the lemma follows from Theorem 15,

and then reduce to the case that G = 〈H, g〉, since it suffices to prove the lemma for

this subgroup. Let ps be the least positive integer with gp
s ∈ H.

By Theorem 15, the number of elements of G with p-power order is a multiple of

pr+s, and the number of such elements in K = 〈H, gp〉 is a multiple of pr+s−1. Thus

the number of elements of G\K with p-power order is a multiple of pr+s−1.
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Let x ∈ G\K be of p-power order. Then we may write x = ygt with y ∈ H and

p - t. The group Z/(pr+s)× acts on the set of of all such x, n · x = xn. The orbit

of x under this action is the set of generators of 〈x〉, and 〈x〉 surjects onto 〈g〉/〈gps〉.

Each orbit inside G\K therefore contains the same number of elements in each coset

of the form Hgu with p - u. G\K is the union of ϕ(ps) = ps−1(p− 1) cosets of H, so

the number of elements of Hg with p-power order is equal to

#{x ∈ G\K : |x| is a power of p}/ϕ(ps), and is thus divisible by pr.

For any p /∈ S we may write Γ o ẐS ∼= (Γ o ẐS∪{p}) o Zp. Therefore, we have

reduced the statement of the theorem to the following:

Proposition 17. Suppose Γ is any topologically finitely generated profinite group,

and let vp denote the p-adic valuation on the integers. Then

vp

(
# Hom(Γ o Zp, G)

|G|

)
≥ 0.

The proof of the proposition is now a straightforward modification of the argument

in [3].

Proof. A homomorphism Φ : Γ oZp is determined by its restriction φ = Φ
∣∣∣
Γ

and the

image of 1 ∈ Zp, which is an element g ∈ G such that the order of g is a power of

p, subject to the condition that φ((−1)γ(1)) = g−1φ(γ)g for all γ ∈ Γ. In particular,

this condition ensures that g normalizes φ(Γ), and thus normalizes the centralizer

Cφ of φ(Γ). Observe that if a pair (φ, g) determines a well-defined homomorphism
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ΓoZp → G as above, then so does (φ, x) if and only if |x| is a power of p and x ∈ Cφg.

Thus

# Hom(Γ o Zp, G)

=
∑
φ

#{g ∈ G : |g| is a power of p, g−1φ(γ)g = φ((−1)γ1) ∀ γ ∈ Γ},

where the sum is taken over all φ which are restrictions of homomorphisms from

Γ o Zp, ie. those φ for which there exists such a g. We let G act by conjugation on

the set of homomorphisms restricted to Γ. The stabilizer of φ under this action is Cφ.

Denoting by the orbit of φ by [φ], each element of [φ] extends to the same number of

homomorphisms on Γ o Zp. For each [φ] choose a representative φ and an element

gφ ∈ G such that (φ, gφ) determines a homomorphism.

# Hom(Γ o Zp, G)

=
∑
φ

#{g ∈ G : |g| is a power of p, g−1φ(γ)g = φ((−1)γ1) ∀ γ ∈ Γ}

=
∑
[φ]

|G|
|Cφ|

#{g ∈ G : |g| is a power of p, g−1φ(γ)g = φ((−1)γ1) ∀ γ ∈ Γ}

=
∑
[φ]

|G|
|Cφ|

#{x ∈ Cφgφ : |x| is a power of p}.

The proposition follows by applying Lemma 16 to the coset Cφgφ.
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4.3 Proof of the Converse

We have the following proposition:

Lemma 18. Let S and S be as above, and Γ̃ a topologically finitely generated profinite

group. Suppose that for all finite groups G, # Hom(Γ̃, G)/|G| ∈ S−1Z. Then Γ̃ has

ẐS = lim←−
(n,p)=1
∀p∈S

Z/n

as a quotient.

Proof. Suppose Γ̃ does not surject onto

lim←−
(n,p)=1
∀p∈S

Z/n.

Then for some prime ` /∈ S and sufficiently large m, Γ̃ does not surject onto Z/`m.

All homomorphisms from Γ̃ to abelian `-groups factor through the maximal pro-

abelian `-quotient of Γ̃, which is itself a quotient of (Z/`m−1)r, where Γ̃ is topo-

logically generated by r generators. But there are at most `r(m−1) homomorphisms

(Z/`m−1)r → Z/`s. Taking s > r(m− 1) and G = Z/`s, we see that # Hom(Γ̃, G) is

not a multiple of |G|, and thus is not an element of S−1Z.

All that remains to be shown is that Γ̃ is a semidirect product, which follows from

the proposition below.
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Proposition 19. Let f : H → ẐS be a continuous surjection of profinite groups.

Then f has a continuous section with closed image.

Proof. Let h ∈ H with f(h) = 1. Consider the closed subgroup < h > generated by

h. It is isomorphic to a product
∏

p∈I Zp ×
∏

p/∈I Z/pnp , where I is a set of primes.

The order of h, as a supernatural number, is divisible by the order of 1 ∈ ẐS, and so

S is contained in the complement of I (See [11]). Thus < h > has a direct factor K

isomorphic to ẐS, which is a closed subgroup of H. K is topologically generated by

the image k of h under the projection map < h > → K, and f(k) = 1. So H has a

closed subgroup K which is abstractly isomorphic to ẐS, and f sends a topological

generator of K to a topological generator of ẐS. The restriction of f to K is thus an

isomorphism, and therefore admits a section.

Remark. We have in fact proven a stronger statement than the theorem. Namely, it

suffices to check that # Hom(Γ̃, G)/|G| ∈ S−1Z only for groups of the form G = Z/pe,

where p /∈ S.
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