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Second-order theory for nonlinear dielectric composites incorporating field fluctuations
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This paper deals with the development of an improved second-order theory for estimating the effective
behavior of nonlinear composite dielectrics. The theory makes use of the field fluctuations in the phases of the
relevant “linear comparison composite” to generate improved Maxwell-GafNeRA) and effective-medium
(EMA) types of approximations for nonlinear media. Similar to the earlier version of the theory, the resulting
MGA and EMA predictions are exact to second-order in the contrast, but—unlike the earlier version—the
estimates satisfy all known bounds. In particular, the EMA estimates exhibit a nonlinearity-independent per-
colation threshold, and critical exponents that are consistent with recently developed bounds on these expo-
nents. In addition, the MGA and EMA estimates are shown to yield reasonable predictions for strongly
nonlinear composites with “threshold-type” nonlinearities, which are extreme cases where earlier methods
have been known to sometimes fail.
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[. INTRODUCTION acceptabl® values for the associated critical exponents. Fur-
thermore, in two dimensions, duality thebf provides a
In recent years, there have been numerous sttidfeson-  condition on the critical exponents, as well as more restric-
cerned with the computation of the effective behavior oftive conditions on the associated scaling functions. In addi-
nonlinear dielectri¢or conductoy compositegsee also Refs. tion to these criteria, one should also add the followi(w:
31-33. In part, this has been due to theoretical interest inThe estimates should not degenerate for large values of the
such material systems—atfter all, nonlinear effects are to bEelevant nonlinearity parameter, and, in particular, for the
expected at sufficiently high field intensities, and the stanimportant special cases of “threshold-type” nonlinearity. Of
dard Maxwell-Garnett approximatidh(MGA) (also known aII.the above requirements, the last one is perhaps the most
as the Claussius-Mossotti approximatioand effective- ~ Strict. .
medium approximatioli (EMA) apply only to linear sys- To the knowledge of the author, the first general method
tems. It should be emphasized that the extension to nonline&® satisfy criterion(i) is the “second-order” method pro-
systems is nontrivial, as the governing equations becomBosed by the author and co-worke?$’ As will be seen in
nonlinear and the linear methods on which the standarénore detail in the body of this paper, this method makes use
MGA and EMA estimates are based are no longer applicable?f @ second-order Taylor expansion for the energy-density
The interest in these nonlinear heterogeneous material syéinctions of the constituent phases, leading to a “linear com-
tems derives also, in part, due to their importance in theparison composite” with spontaneous polarizations, which is
context of many different physica| phenomena, inc|uding di_then used to estimate the effective behavior of the nonlinear
electric breakdown, fuse burn out, and nonlinear optical phecomposite. While this method, when applied together with
nomena. Additional examples could be given in the realms ofh® EMA approximation, leads to nonlinearity-independent
electric, magnetic and other physical and mechanical propeRercolation thresholds, and initially appeared to give predic-
ties of matter. tions consistent with all known bounds, it has been recently
The aim of this work is to propose a general method fc,,dis,coverea8 to violate the bounds provided by the “varia-
deriving accurate estimates for nonlinear composites directifional” method*°sufficiently close to the percolation thresh-
from corresponding estimates for suitably chosen linear como!d. - .
posites. This is an approach that has been pioneered by the More specifically, using standard notatidr for power-
author and co-workef<? in the so-called “variational” lin- law composite conductor@lielectricy, it has been recently
ear comparison method. In particular, one of the goals is t§ound™ that the critical exponentsands, corresponding to
provide robust generalizations of the MGA and EMA esti- metal/insulator  (dielectric/insulator, ~ and ~ metal/
mates for nonlinear composites. As suggested recently b§uperconductofdielectric/conductgrmixtures, respectively,
Barthelemy’ and Pellegrin?® such generalizations must sat- Must satisfy the bounds
isfy certain criteria(i) They should be exact to second order
in the contrast, and thus be in agreement with the perturba- t<(1+m)/2 and s=(1+m)/2, (H)
tive small-contrast expansions of Blumenfeld and Bergfhan.
(i) They should be in good agreement with knownwhere the power exponent, characterizing the nonlinearity
result$**2 in the dilute (small concentrationlimit. (i)  of the material, has been assumed to be suchtirat . Note
They should satisfy all known boundg:2*(iv) For the par- thatm corresponds to & and 1+ « in the notations of Stra-
ticular case of the EMA estimates, a nonlinearity-ley and Kenkel and Barthé&my,?’ respectively, in such a
independent percolation threshold should be predicted, wittvay thatm=1 corresponds to the linear case. The above
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bounds also apply for the case where @1<<1, but the sense an analogous development in the context of the “variational”
of the inequalities in Eq(1) must be inverted. The predic- procedure:*® This improved version, which will be pre-
tions of the second-ord€r?® theory for the EMA estimates sented in Sec. llI, is found to be free of the limitations of the
for power-law composites leads to the valiesm and s earlier version of the method, and provides a general and
=1, which can be seen to violate the bounds describembust method satisfying all the criteria listed above, as will
above for any value af different from 1. It is interesting to & demonstrated in Sec. IV for two-phase systems. In fact, it
remark that the critical exponents predicted by theWwill be seen that the “new” second-order theory is some sort

second-ordéf?° theory are identical to those obtained by Of intérpolation between the earliégfold” ) second-order
Barthelemy’ in his “path-integral” approach to strongly theory! 'and the “yarlatlonal" linear comparison thedry
nonlinear composites, as well as to those predicted by thBréserving the relative advantages of both. _

theory of Bergma#,on which it is based. It should also be It iS interesting to note that very recently Pellegfirtias
noted that the original EMA theory of Bergmérin its full ~ Proposed an alternative improved version of the “second-
implementatiort>2! was checked to satisfy criteridi) nu- order” theory making use of a Gaussian approximation for
merically, while Barth&my's theory was fourdl to satisfy the probability distributions of the fields in the phases, fol-
this criterion exactly. However, unlike the second-order!®Wing similar developments in his earlier waPkor weakly
theory!®2° the EMA theories of Bergman and Bartéey nonlinear composites. This innovative approach also leads

both exhibit nonlinearity-dependent percolation thresholdsduite naturally to the use of the field fluctuations in the de-
and thus violate criterion(iv) above. It is interesting to termination of the relevant linear comparison composite. As

remark?” however, that, in two dimensions, both sets of criti- this method is quite recent, detailed comparisons will be left

cal exponents satisfy the duality relatidd t(m) for future work, but the method of Pellegrini appears to be
—mg(1/m). quite promising, also satisfying all the criteria above, with

It should also be remarked that there is a “mean-fieldthe Possible exception of criteriofw) which remains to be

theory” due to Wan, Lee, Hui, and Y (see also Refs. investigated” in the context of his theory.
16,17 that yields critical exponents that are consistént

fact identica) to the above bounds. This is due to the fAct Il. EFFECTIVE BEHAVIOR
that the theory of Wart al. gives predictions that are iden-
tical to the earlier “variational” theory;'® when used to- The nonlinear composite dielectric occupies a region in

gether with the EMA approximation for the relevant linear spacef), and its constitutive behavior is characterized by an
comparison composite. However, both of these theories leagnergy-density functiow, depending on the position vector
to predictions that arenly exact to first order in the contrast x and the electric field, such that the electric displacement
and therefore violate criteriofi). field D is given by

Concerning criteriorfii) for dilute systems, exact analyti-
cal estimates are unfortunatehot available for strongly D(x) = ‘7_W (X,E) )
nonlinear dielectrics. The underlying one-inclusion problem JE T
being fully nonlmegr, an gxa}ct analytical 'result 'S not ex- t is assumed that the composite dielectric is made upl of
pected, but numerical predictions are certainly feasible. Suc

= . S omogeneous phases, so that
estimations have been attempted in the mechanics literature,

but mostly in three dimensions. However, dilute results are N

availablé® for the special case of power-law solids with W(X,E)ZE oM ()W (E), 3
aligned rigid fibers—where a well-known analogy permits r=1

the direct conversion to two-dimensional electrostaticS,yhere the functions'” (r=1,...N), characterizing the

Ponte Casfaerla and Kailasam have shoffrisee Fig. 2 i gisyibution of the phases 1, are such tha#V =1 if x is in

that referencethat the predictions of the earlier “second- phaser and 0 otherwise. The phases are assumed here to be

order” theory (given in a different form are in excellent jsqiropic so that the energy functiond” depend only on the
agreement with the numerical simulations in this cé8e  aanitude of the electric fieli=|E|. In addition, the func-

values ofm between 1/10 and);LwhiIelothe corresponding  iong (M are taken to be convex in the electric figidand
predictions of the “variational” theory'° progressively di- such thaw(®(E)=0 andw(")(0)=0.
verge from the numerical estimates with increasing nonlin-
earity, consistent with their bounding statyblote that the
corresponding dilute predictions of Hui and Wardyeing
identical to the “variational” estimates, are also not very
accurate for large nonlinearijyAs already mentioned, there 1
are also results available for weakly nonlinear W(E):mXEmH, (4)
composites;'? as well as an exact result for tfeery spe-
cial) case of strongly nonlinear inclusions embedded in ssuch thatD=yE™, wherey is the nonlinear susceptibility,
linear matrix! and the nonlinearity exponentis taken to be between 0 and
In this paper, an improved version of the “second-order” <, with m=1 corresponding to linear behavior. As depicted
method®#is proposed that incorporates field fluctuations inin Fig. 1, the limits asm tends to 0 ande correspond to
the selection of the linear comparison composite, following“thresholds,” Dy and Eq, in the electric displacement and

A commonly used form for the phase energy functions is
the power-law(usually referretf to as “strongly nonlineary
form
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D constitutive behavior. In the following section, a variational
method allowing the use of known estimates for linear com-
posites to obtain corresponding estimates for nonlinear com-
posites is developed and compared with earlier homogeniza-
0, tion methods.

D, m=0 Ill. THE VARIATIONAL ESTIMATES

Following earlier work!®?° a “linear comparison com-
posite” is introduced with energy-density function; given
by
2 N

4 wr(x,E)=2, 6000w (E), ®)
r=1
0 EO E

where the phase energy functind is given by the second-
FIG. 1. Power-law dielectric with nonlinearity exponentang-  order Taylor approximation to the nonlinear phase energy
ing from 0 to. Here,m=1 corresponds to linear behavior, 0 to a fynctionw":
threshold in the electric displacement fi@g, and« to a threshold
in the electric fieldE,. ow)

W§|-')(E)=W(r)(E(r))+ °E (E(r))'(E—E('))
electric fields, respectively. In this connection, note tiat
tends toDy in the limit asm tends to 0. On the other hand, 1 (1) "
x~ U™ tends toE, in the limit asm tends tox, so thaty 1™ +5(E-EY) g5 (E-EY). 9
is the physically meaningful variable in this limit. For the
conductivity analog, the limits as tends to 0 ande physi- I this relation,E" is a uniform reference electric field and
cally correspontito the behaviors of a saturating conductor sg) is a symmetric, positive definite tensor of dielectric con-
and a varistor, respectively. stants, both of which are taken to be otherwise arbitrary at

It is knowrP13? that theeffectiveconstitutive behavior of this stage.
the composite dielectric may be expressed in terms of the Itis useful to note here that the phase energy fund®n
averages of the fieldD=(D) and E=(E), where angular Corresponds to a fictitious linear dielectric with “spontane-
brackets are used to denote volume averages Qvers ous” polarizationsP" = sw("/JE® — £’E™) in the phases,
such that its constitutive behavior is given by
—_ W —
D="—(E). (5) D=P"+{)E. (10)
JE
Ponte Casfata and co-worket$?° made use of expres-
sions(9) to estimate the local energy-density function®’

directly in expressiolii6) for the effective energy functiow.
Here, instead, “error” functiond/("), depending on the ref-

In this relation, the effective energy-density function of the

compositeW is most naturally described in terms of the
minimum energy principle

N erence field€(" and dielectric tensors)’, are introduced
W(E)= min(w(x,E))= min[ E c(r)<w(’)(E)>(’)}, (6) such that the phase energy functiomn$) may be approxi-
EekK Eek|r=1 mated as
whereK is the set of trial electric fields, defined by W(')(E)=W¥)(E)+V(’)(E(”,sg)), (12)
K={E|E=-Ve(x) in Q, and ¢=—E-x on 4Q}, for any value of the electric fielé.
(7) There are different ways to define the error functivtis.

. . P fe fi he f i
c(M=(#") is the volume fraction of phage and the symbol onte Casfaetld defined the functions

() is used to denote a volume average over phagen r N N 1, E(r Y, e(r
<eq>uivalent formulation in terms of the complementary VO(ES ),sg))—mm[w( (E ))_W(T)(E( N a2
energy-density functionu, such that E=gdu/dD is
available®*?For convenience, the details are summarized invherem has been assumed to be greater than 1 in expression
the Appendix. (4) for the energy functionsv(”). Then, it is obvious from

The main difficulty associated with the computation of theFig. 2, which shows a one-dimensional sketch of the function
effective energy functioW of the composite6) lies in the W —w{" (that we seek to minimizefor the special case
fact that the relevant fields are impossible to determine exm=4, thatV(") is negative and also that
actly in general. However, approximate methods have been
developed to address this problem for composites livitrar w(E)=w(E) +VOI(ED, ). (13

0
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Global Min

0 E® E0 E

; : FIG. 3. The “generalized secant” approximatig¢f5) for the
0 EW BN E linear comparison composite, with dielectric constaﬁ;ﬁi, versus
the “secant” and “tangent” approximations, with dielectric con-
FIG. 2. One-dimensional sketch of the functisf) —w{ and  stantse{” and (", respectively.
its stationary points for a power-law material with=4.

secant” approximation, which is different from the more

A generalization of the definitiofil2) is to take standard “secant” and “tangent” approximations that have
) A been used in the context of earlier theories.
VO(EM, e0))=staf w(EO)—w{(ED)], (14 Now, use of the various estimaté&l) for the phase en-
EM ergiesw(" in expression6) leads to the following approxi-

where “stat” corresponds to theptimizationoperation con- mations for the effective energy functioh:

sisting in taking derivatives of the terms inside the square N
brackets, setting the result equal to zero and solving for the  {{/(E)=W,(E; E® &)+ >, cOVOED &), (16)
variablesE("). Referring again to Fig. 2, it is observed that, r=1

i i i i (r) — ywin ~ . . . .
in this case with fm<ce, the functionw™’ —w7 " has other  \;hereiy. is the effective energy function associated with the

stationary points in addition to the global minimum dis- inear composite with local energy-density function given by
cussed in the context of definitiqd?2). Thus, it can be seen Egs.(8) and(9), such that

that the function additionally admits a local minimum, as
well as a local maximum, wite)=E. In the alternative Wr(E;E®, £{) = min(wr(x,E)). (17)
case, when &m=1, the functionw”—w{" (not shown in EeK

the figureg also has. three stationary points, but w_ith the Ieft--l-he approximation16) are valid for any choice of the ref-
most one now being a global maximum, the rightmost, %rence variableE® and e (s=1,... N), which suggests

l?g?'_ m(zra)xmum and the midde Ohe’ a local minimum atopti.mizingwith respect to them by evaluating the appropriate
EY=E". Itis important to emphasize here that, because Oftationary conditions with respect to these variables. De-
the multidimensional character of the problem, there are ilhending on the choice of the error functiow¥), it will be

fact several other possible stationary points, including saddlgaep that there are several possible different ways to select
points. It is not essential at this stage to catalog the differenfyoge reference variables. However, the important point is
possibilities; it is only important to realize that there areinat the expressioflL6) allows the computation of the effec-

possibilitiesother thanthe trivial choiceE)=E" and the (e energy function¥ for the nonlinear composite in terms

extremal pointdglobal maxima and minima of the effective energy functiollV; of a linear comparison
It is also useful here to spell out the stationarity conditions ) gy J P

. Ay s _— _ composite with dielectric tensom%s) and spontaneous polar-
Q) N o . - .
fo(rr)the variablesE™ in the definition(14) of the functions i, 4tionsp(®) gistributed with the same statistics as the origi-
V" which may be written in the form

nal nonlinear composite. In the next subsections, it will be
" shown how the general variational statem¢h®) can be
(EM=eNEO-EM). (15 used to recover earlier estimates, as well as to generate im-

JE proved estimates fow.

ow( oW
o (EMy—

Note that in generaE(") need not be aligned wite"). The
various possible conditions are depicted schematically in
Fig. 3 for a one-dimensional energy function with=4. If the stationary point leading to the extremum value of
They can be seen to correspond to various typebnetr  the functionw™ —w{" is used in definitior{14) for the func-
approximations to the constitutive relation for the nonlineartion V()| the estimatg16) can be showh'° to be a bound.
dielectric relatingD to E. Thus, it can be seen that the caseThe best bound is obtained by optimizing with respect to the
whereEM#E(™ andE(+0 corresponds to a “generalized variablesE® and £{ . However, it has been sho@# that

A. The variational bound
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the. optimal c_hoice of t.he te_nsoSS) is identically zero for W(E)=sta{\7VT(E; E(s)'ggS))}, (23)
typical material behaviors, including of the power-law type. £
Thus, for the case when<dm=<, alower bound is given ~ o ] ) ]
by®10 where W is still given by relation(17). The stationarity
condition with respect to the variabl&® in this expression
B - N then leads to the conditioffs™®
W(E)=max Wy(E; )+ >, cOV(0,e())t, (18
() EJ{ oEet?) 2, (©e00). (9 [ (E®) - e 1(E)¥—EM) =0, (24)
0

. _ _ _ ~ wheree{"=?w("/JEJE is the “tangent” approximation to
where W, is the effective energy associated with a lineartne nonlinear constitutive relation for phasérhis condition
comparison composite dielectric with phase energy functionga, pe satisfied by setting

given by
E®=EO, (25)

1 _
wi(E)= EEsS)E, (19 where the symboE® has been used to denote the phase
averages of the electric fiekE)(®. The estimatg23) can
and the function®/(") are given by expressiori42). On the  then be showif to reduce to
other hand, for the case whers@n<1, anupperbound is N
generated, which is similar in form to the right-hand side of . — ooy L ow(") ==
Eq. (18), except that thenax must be replaced by the cor- W(E)—Z, ¢V WH(EY)+ 5 —=—(EV)-(E-EV) |,
X N r=1
requndlngnln. . _ _ (26)
It is also noted here that the choiE&)=0 in expression o _ o _
(15) leads to the classical secant conditiésee Fig. 3, de- which is precisely the original version of the “second-order”
fining the “secant” dielectric tensors® by estimate:>?° However, the above choice for the variables
S

E(M has the disadvantaffethat the stationarity condition

() with respect to the variables® :
&‘;VE (E0) = gE®. 20 P oy
((E-EM)g(E—EM))"N=0, (27)
It follows from the assumed isotropy of the constituentcannot be satisfied in genefak., unless the electric field is
phases that these secant tensors are isotropic. constant in each phaseBecause of this, the alternative,

On the other hand, optimality with respect to the variablesyhysically motivated prescription
£ in expression(18) leads®?*to the following conditions:

EO=(E30 (1)

for the magnitude of the variabld<"). Note that these ex-

ef) =& (E") (28)

was made to close the system of equations defining the ef-
fective behavior of the nonlinear composite in terms of that

) ) ) bl wi . . of the linear comparison composite. Note that this “tangent”
pressions identify the variabl with the isotropic trace  .ongition (refer to Fig. 3 is fully consistent with expression

of the second momentE® E_>(r) of the electric field in the (15 iy the sense that it corresponds to taking the limit as
phases of the linear comparison composite, which in turn ca (_,E0 in that expression

be estimated from the effective dielectric tensor of the linea
comparison composite using a well known restltt then .
follows®®2* that the effective energy function for the nonlin- C. Improved second-order estimates

ear composite may be expressed as As already mentioned in the context of Fig. 2, in addition

to the trivial stationary pointi.e., E”=E®), and the sta-
tionary point leading to the minimurfor maximun), there
are other possible stationary points in the definiti@d) of
the functionsv(”, which will be exploited in this subsection.
Note that the final answer does not depend on the directiohus, use will be made of the “generalized secant” condition
of E(, which is indeterminate from the secant condition (15) depicted schematically in Fig. 3. Such a generalized
(20). condition can be seen to be somewhere intermediate between
the “secant” condition, defined by Eq20) and used in the
context of the “variational” bound18), and the “tangent”
condition defined by Eq(28) and used in the “second-
As already mentioned, another possible solution to relaerder” estimateg26).
tions (15) is the choiceE(M=E®, which makes the func- Then, generalizing the procedure followed in the context
tions V(") vanish identically. Then, holding the variablel) ~ of expression(18) for the bound, optimization with respect
fixed in expressior{16), and optimizing with respect to the to the variabIeSegs) in the general estimatél6) for W
variablesE®, leads to the estimat@vhich is not a bound  leads to

N
W(E)=D, cMw(EM), (22)
r=1

B. The second-order estimate
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N
W(E)= sta{ Wr(E;E®, el + >, ¢V E“),eg))] :
s =1
o f
(29)
where the variableE® still remain to be specified. In prin-

ciple, the optimization in this expression should be carried

out over all possible anisotropic tensaf§) (s=1, ... N).
However, noting that conditiofl5) suggestsrefer to Fig. 3

that the tensors{) are somewhat intermediate between the
secant and tangent dielectric tensor of the nonlinear phase

and recalling that the phases are isotropic, the proposal
made here to restrict attention to tenseﬁ;’é whose principal
axes are aligned with the reference fi&@d) in phaser, in
such a way that

)= n0en®+:0(1-nNen®), (30

where n("=(1/EM)EM is a unit vector aligned with the
reference electric field in phage This vector defines two
directions: a “parallel” one, which is aligned with"), and a
“perpendicular” one, orthogonal to it.

With the choice(30) for the dielectric tensorsg) in ex-

pression(29) for W, optimization with respect to the vari-
ablese (" ande{" leads to the conditions

(B[P —E")?=((g)—E[")»"
and (3D

(DB P=((E, ~EDO),

PHYSICAL REVIEW B 64 214205

In addition, the secant-type conditi¢t) then specializes
to

(EM)=€(EN-ED),

(34

where E() must be chosen to be a suitable saddle point of
the function w(”—w{"  for consistency with conditions
(33).

Finally, using the resul{31), together with the expression
{14) for the functionsv("), the general estimatel6) for W

can then be shown to reduce to

")
‘9:;"E (ED). (ED—E)| .

(39

N
W(E) - E c W(f)(E(r)) _
r=1

In summary, the estimat&35) for the effective energy
function of the nonlinear composite has been generated.
Similar to the earlier second-order estimitét depends on

the phase averages!") of the electric field in the linear
comparison composite defined by relatigag), (8), and(9),
subject to the self-consistent prescripti(@5) on the refer-
ence electric field€(. However, the prescriptiofB4) for
the comparison dielectric tensar§ is different from thead
hoc choice (28) made earlier, being somewhat intermediate
between the “secant” condition used in the context of the
“variational” bounds and the “tangent” condition used in
the context of the earlier “second-order” estimates. In addi-

tion, the estimaté35) depends directly on the variablg§”,

which can be seen to be a set of conditions on the seconghich are related to the second moments of the fluctuations,
moments of the electric field in the phases relative to theor covariance tensors of the electric field in the phases of the
reference electric field&". In these relations, use has beenlinear comparison composite, as specified by the prescrip-
made of the notationéH, E‘f), E| andE, , E(", E, forthe tions(33). Thus, the new estimates—as with the variational

“parallel” and “perpendicular” components of the variables Pounds—also incorporate a dependence on the second mo-

EM, EM, andE, respectively, relative to the unit vectof).
Motivated by the choice made for the variabie® in the
context of the earlier second-order estimai23), the same

ments of the electric field in the phases. Furthermore, as with
the earlier “second order” estimates, they are exact to sec-
ond order in the heterogeneity contrast. This can be easily

choice is proposed here for the new second-order estimat&€rified by noticing that the variablds™ andE® reduce to

(29), that is, the conditior(25), or EW=E!, so thatE{"
=E® andE{"=0. Then, defining the covariance tensor of
the electric field fluctuations in phaseby>®*°

CO=((E-EM)e(E-EM))®, (32)

and combining condition§25) for the E(" with the condi-
tions (31) for the E", leads to the result

EN=EV+\c[, EN=cD,
WhereCﬁ’) andC(f) are the parallel and perpendicular com-
ponents OCE) . Note that the roots leading to positive values

(33

the average electric field to zeroth order in the contrast, in
such a way that the new estimate becomes indistinguishable
to second-order in the contrast from the second-order esti-
mate (23), which is already known to be exact to second-
order in the heterogeneity contrafilote that the functions
V(") in expression(16) are of higher order in the contrast,
and therefore do not enter the calculatidfinally, it is noted

that completely analogous expressions may be developed
starting from the dual formulation for the complementary
energy function of the composite, as shown in the Appendix.
However, the resulting approximatiqA7) for the comple-

mentary energy functiob is not exactly dual to the approxi-
mation (35) for W, as will be seen in more detail in the

of Ef" and E" have been selected in these relations, forfollowing section.
consistency with the special case of homogeneous behavior, The improved second-order estimatéd5) require the

which should be reproduced exactly by the final eXpreSSior&omputation of the phase averagg%)

below for W. Note also that the vectdE(™ neednot be
aligned withE®".

and the covariance
tensorsC) of the electric field in the linear comparison
composite with spontaneous polarizations defined by the ex-
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pression(17) for \7VT. In this connection, it is useful to re- ©) && s
mark that, given an estimate fo¥;, E), andC{) may be Ti :47-rdetzf§|=1 PR Z7°¢ 7S, (39
easily computet?*®?4from the expressions Kok

o 5 where the second-order tensorserves to characterize the
1 d(Wi—f) " 2 IWg “shape” of the assumed “ellipsoidal” two-point correlation
@ TP and Cg —m (9_(%?7' (36) functions, such that the special cése | corresponds to sta-
tistical isotropy.
where f=wO(EM)—pPO.EN— LEN. HEO  (recall For Iater((r)t)aference, explicit ex(g)rt_assions are given next for
that PO = aw/9EO — 6DEMY 1N the first of these expres- the tensoiT "’ for the case whes'” is assumed to have the
& EY). P symmetrye®=¢{On@n+eP(1—nen), wheren is a unit
sions, the quantityWy—f) is expressed as a function of the yector. Then, for isotropic microstructures, the ten¥éP
P ande(’, and the derivative is taken with respec®,  exhibits the same symmetry as ta&) tensor, with “paral-
with sg) being held fixed. In the second/; is expressed in lel” and “perpendicular” components given by
terms of the reference electric fiel#" and the dielectric

tensorse’, and the derivative is taken with respectey) , 0 1 . 1
with the E held fixed. TN=——7— T == 40
ﬁ (k+ke®@ 1+ ke®
IV. APPLICATION TO TWO-PHASE SYSTEMS and

Effective medium estimates, as well as other types of es-
timates are available fow;, as defined by Eq(17), for TﬁO): 1 1— 1 aresin k-1
N-phase composites. However, for the special case of two- | (k—1)e(® Jk=1 k |’
phase composites, great simplificattbf® is possible. In (41)
fact, in this case, the effective energy function of the linear
comparison composité 7) with spontaneous polarizations is T~ 1 1— K arcsin k-1
determined solely in terms of the effective dielectric tensor - 2(1-k)e(® Jk=1 k |’

€, of a linear two-phase composite with phase dielectric ten-

sorse(! andef”, with the same microstructure as the origi- in 2 and 3 dimensions, respectively, whéree(*/=(?) is the

nal composite and zero polarizations. Thus, the resulifpr ~ anisotropy factor associated with the tensor.

may be written in the forff Thus, MGA estimates are obtained formally by setting
£ equal toel (or £{?)). This type of estimate is known to

Lo 11 _ be appropriate for random systems with “particulate” micro-
Wr(E)=T+P-E+ SE- g0E+ E[E+(A80)_1(AP)] structures, where phase(2) corresponds to the “matrix”

phase and 21) to the “inclusion” phase. These estimates are

(Fo— €0)[E+(Ago) "L(AP)], (37)  exact to first order in the volume fraction of the inclusions,

remaining fairly accurate up to moderate concentrations of
where Aso:ggl)_gg) and AP=P®—pP2) From expres- inclusions(but far from percolatiop In addition, the MGA

sion (37) for Wy, the phase averages”) and the corre- estimate is known to be a lowénppeh bound® for &, when
sponding phase covariance tensBf8 , which are needed in &5 <&§” (&> "), in the sense of quadratic forms. The
the above expressions to estimate the behavior of the nonlifEMA estimate is correspondingly generated by setiffy
ear composites, may be computed using relati@6s equal togy, which gives an implicit relation fore,. The

In particular, MGA and EMA estimates fcﬁvT may be EMA estimate is known to be more appropriate for systems
obtained by making use of the corresponding estimates fo#ith “granular” microstructures, at least in 2 dimensions.

%o. A sufficiently general for? for the MGA and EMA For examplle, a tW(ZJ-phas_e system with isotropic dielectric
constants:(Y) and(® distributed in a checkerboard pattern

estimates foi, is given by the expression (an example of a microstructure with phase interchangeabil-

5 ity) is knowrf* to be isotropic with effective conductivity
o= cMeM1+TO(£l)— )71 given _byE= \/8.(1)_8(2), in precise agreement with the corre-
r=1 sponding prediction of the self-consistent estimate in two
2 _1 dimensions and for equal proportions of the phases. More
< (O] 4 TO( &8 — £0)7-1 generally, the EMA having been shoffirto correspond ex-
521 CHIHTeg” — &) (39 actly to certain rather special types of hierarchical micro-

structures (there is also a recent generalizaﬁ%nof
where £ denotes the dielectric tensor of a uniform refer- checkerboard-type microstructures also attaining the EMA
ence material an@(® is an associated tensor depending onestimate. Of course, both the standard MGA and EMA esti-
the microstructure of the composite. More explicily?) has  mates for linear composites are known to be exact to second
components order in the contrast.
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A. Infinite contrast: The case of a conducting second phase

It has already been noted that the “new” second-order
estimateg35) for nonlinear composites are exact to second

PHYSICAL REVIEW B 64 214205

E Z—{—(E-ASOE) ,

* V1i—-p de |

order in the contrast and, therefore, very accurate at lowyhere use has been made of the notatidr,= ¢,
contrast. It remains to consider large-contrast situations. In- ¢(1/(1—p).

this sense, the special case where one phase is taken to be
conductor is the most extreme situation, since it correspon%
to infinite contrast. In this section, this case will be consid-
ered in detail, as it lends itself to almost fully analytical
treatment. As discussed in more detail later, the resultin

rhese expressions for the componentsEé?, together
ith the generalized secant conditid84) for the tensor
s(()l), and appropriate estimates for the effective dielectric

éensorzo of the linear comparison composite, can be used in

expressions for two-phase systems with a conducting phassxpression42) to generate corresponding estimates \fér
are found to also apply, with appropriate reinterpretations, tddere, use will be made of the following estimdtesf the
two-phase conductors with ideally conducting and insulatinglGA and EMA types:

second phases.

Thus, in this section, two-phase materials are considered,
where one of the phases, labeled phase 2, with volume frac-

tion c®=p, is a conductor ¥(?)—x), so thatw'® will be

taken to be infinite, unless the electric field in the phase is

exactly zero, in which case®=0. The other phase, labeled
1, with volume fractiorc®)=1—p, will be taken to be of the

power-law type(4). In this case, the linear comparison com-

BA= e o (T,

(44)
~ema_ L (1) P -1
£ —1_p80 +H(T)

In these relations, the microstructural tensof¥ andT are

posite is also taken to have a conducting phase 2, so that tliefined by the choicesgl) and gy, respectively, for the ref-
function V() vanishes identically. In addition, the estimate erence dielectric tensa“® in relation (39).

(37) for the effective energy functioWv; of the linear com-
parison composite simplifies further, and the resait)

=E/(1— p) is generated for the average electric field in theP
nonconducting phase, since the electric field in the conduct

(29) for the effective energy functiolV of this composite
material may be written in the form

O 1o — .
W(E)= sta!{ SE EoE+(1- p)[ PUEW). (EW-EW)

1
e

+wOEW) - %Eu). 8&1){;(1)“ , (42)

where it is recalled that P(E™)=gwD/oE(ED)
— eVEM),

An analogous procedure could be followed to generate a

corresponding estimate fat. However, the analysis is com-
licated by the fact that the average electric displacement in
hase 1 is not known explicitlysince the average electric

ing phase is identically zero. Using these results, the estimafdiSPlacement in phase 2 is not zerBecause of this, and for

conciseness, the details of the calculations, which involve the
general expressions given in the Appendix, will not be given
here. Only the results will be quoted below for one special
case, with the objective of estimating the possible size of the

duality gap(relative to the estimates arising frovi).

Results for specific classes of microstructures may now be
generated by specifying the geometric tendan the expres-
sion (39) for the T tensor. Fairly explicit results may be
generated for power-law composites with isotropic micro-
structures in 2 and 3 dimensions, taking advantage of the
explicit forms (40) and (41) for the tensorsT, respectively.
Here, for simplicity, only the two-dimensional case will be
considered in detail, leaving the qualitatively similar, but al-
gebraically more complicated three-dimensional case for fu-

Noting that the average electric field in the nonconductingure work. Thus, two-dimensional MGA and EMA estimates
phase is aligned with the applied macroscopic electric fieldor the effective nonlinear susceptibility are listed below.

E, the choiceel”=¢n@n+e, (I-n®n) is made for the
comparison dielectric tensor, where=(1/E)E is the unit

In these expressiong; is defined by the same relatiqs)
used to define the nonlinear susceptibiljtyof the matrix

vector aligned with the average electric field. As before, thigphase.

vector defines two directions: a “parallel” one, aligned with

Energy-density MGA estimates in two dimensidsse of

n, and a “perpendicular” one, orthogonal to it. Then, use ofthe 2-dimensional MGA estimate for the effective dielectric

this relation fore{") in expressior42) for W, and optimizing
with respect to the variables ande, leads to the following
expressions determining the “parallel” and “perpendicular”

components oE™):

112
: (43

. E
B 1=

Jd — -
—(E-A%E)

=
+
1-plde

tensorz, of the relevant linear comparison composite in the
simplified expressiori42) for W leads to the estimate:

= —_— p— + =
1-p =) ™

+(m+1)| 1— £
EW

X

X

2 (m+1)/2

(45
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B
EW

for the effective susceptibility of the power-law composite. hold in the limit asm tends tox, where a different nonana-
Here,EM=E/(1-p), andIAEH andE, are given by lytic prediction is generateths will be seen latg¢r Unfortu-
nately, there are no numerical results available in the limit as
P 1 E, p 1 m tends toce and comparisons are therefore not possible in
1+ /35K and == 21 (46)  this case at the present time.
Complementary-energy MGA estimates in two dimen-
which follow by specializing relation&3). In turn, k is de-  sions. Use of the two-dimensional MGA estimates in the
termined as a function ah andp from corresponding expression fof in this case leads to the es-

E(l

2 timate
Inl =+ 1_3 1+ \/Ekllél ~ A\ 2 /A 2](m+1)/2m
k k 2 X 1 \"1{[D D,
1-m= 2 7. (47 == i|l2] +|=
p p 1 x \1-p D D
In| | 1+ —k1/4 + 514
2 2 k m+1 5(1) 1/m 5(1) b” -m
which follows by solving for the anisotropy ratik + m D D _§ ’ (49)
=&fY/e(M) in the generalized secant conditi¢d4) associ-
ated with phase 1. where
It is easy to verify thak— 1 asm—1 in expressiori47). =) 34 N 3/
It then follows trivially that the above estima(é45) reduces D_ _ V2K (k—1) \/B ﬂ: V2k +k\/5
exactly to the linear MGA estimate in this limit, as expected. D A "D A '
It turns out that the limits as tends to 0 ande, correspond- (50)
ing to thresholds in the electric displacement and electric D, JkVp
fields, respectively, can be simplified further. Thus, it can be ?ZT'

verified thatk— o asm— 0, so that the effective threshold in

the electric displacement field reducestg=D,, whereD,  In these relationsk is determined as a function ofi andp

has been used to denote the electric displacement threshdidm the same relation47) above, andA=+2k3*+ (k

in the nonconducting phagsee Fig. 1 On the other hank  —1)\/p+/2pkY“ It can be checked again that this estimate

satisfies the expressida >~ k4= \/Z_/p_in the limit asm  for 3 s consistent with the standard MGA estimate in the

— 0, which can be solved fdras a function t@ to estimate  |imit of linear behavior, and also that it reproduces exactly

the effective threshold in the electric field via the expressionne apove energy-density estimates for the threshold fields in

Eo=(1—p)(1—k)(1+k) Y?E,, whereE, has been used to the limits asm tends to zero and infinity.

denote the threshold electric field in the nonconducting phase Energy-density EMA estimates in two dimensidsse of

in this limit (see Fig. 1 the corresponding two-dimensional EMA estimates in the
It is also possible in this case to work out the dilute eX-simplified expressions fotV leads to the same expression

pansion (45) for 'y, with E®=E/(1—p), but where now
X 1 mL+(m+1)2mY)]p, (48) ) P K
X E| 2
which is valid for general values of the nonlinearity, pro- @leL D 1\’
vided thatm is not too large(i.e., m<p~29). It is remarked 1- = | Vk+2+—
that this result is in perfect agreement with the corresponding 2 \/R
expression derived in Ref. Z@efer to Eq.(4.5 in that ref- (52
erencé for the “old” second order theory. Recalling that it p 1l
was shown in that reference that the above expression for the £ 5 W
dilute limit is a very good approximation to the numerical _
results of Lee and Me#fin the analogous mechanical case, EW p 1\
it follows that the “new” theory also does a good job in this 1=-3 Vk+2+ K

particular limit (for values ofm between 1/10 and)1How-
ever, it is emphasized that the dilute expan<i#®) does not  with k determined as a function of andp from the relation

InH(l—p)( Vi~ %) (%) +(1—p)%—pl / [(1-p)vVk—p]

1-m= — — . (52
EH EJ_
| +| ==
M =)
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n FIG. 5. MGA estimates for the effective nonlinear susceptibility

FIG. 4. MGA estimates for the effective nonlinear susceptibility x of an isotropic, two-dimensional, two-phase, power-law compos-
Y of an isotropic, two-dimensional, two-phase, power-law composite dielectric with 50% of a conducting second phase, plotted as a
ite dielectric with 50% of a conducting second phase, plotted as &/nction of the nonlinearityn (m>1). The “new” second-order are
function of the nonlinearityn (m<1). The “new” second-order are compared with the earlier “old” second-order estimates, as well as

compared with the earlier “old” second-order estimates, as well aghe ~ “variational” upper bounds. The energy(W) and
the “variational” upper bounds. The energy(W) and complementary-energft)) versions of the estimates are shown as

complementary-energfU) versions of the estimates are shown as dashed or continuous lines, respectively, for the “new” and “old”
continuous and dashed or dotted lines, respectively, for the “news€cond-order estimates.
and “old” second-order estimates.

In Fig. 4, the “new” energy (continuous ling and
Once again it can be verified thiat-1 asm—1 in expres- complementary-energydashed ling MGA estimates(45)
sion (52). It then follows that this nonlinear EMA estimate and (49) are compared with the “variational” MGA
reproduces exactly the linear EMA estimate. Alkgan be  estimate’!® as well as with the corresponding energpn-
shown to tend to a finite value, greater thafidt p<<1/2),in  tinuous ling and complementary-energgotted ling “old”
the limit asm—0. In this case"lf)O/DcJ reaches some given second-order estimaté%for values ofm<1. The variational

finite value, depending on the value @fin such a way that MGA estimate in this case is definmety the relation;(/)(
it equals 1 forp equal to zero and blows up gsapproaches = (1+p)(MY2(1-p)~™ and the corresponding old
1/2 (which is the percolation threshold in this cas8imi-  second-order estimates may be found in Ref. 20. It should be
larly, k tends to a finite value, less thar(fbr p<1/2), inthe  noted that the “variational” MGA estimate is in fact a bound
limit as m— o, yielding also finite values, less than 1, for for all other MGA estimates. This follows from the f&éf
Eo/Ey, except in the limit ap tends to 1/2, when it van- that the MGA estimate is an exact result for statistically iso-
ishes. tropic linear composites with extreme values of the
It should be noted here that the above MGA and EMAMilton-Torquatd”*® three-point parameters. The following
expressions are obviously also valid for nonlinear conductorgbservations may then be made in the context of this figure.
involving metal/superconductor mixtures. In addition, it canFirst, the two types of estimate@rising from the energy
be shown that the above two-dimensional expressions als¢ersus complementary-energy formulatipase slightly dif-
hold in the “opposite” infinite-contrast case involving metal/ ferent from each other, for the “new,” as well as the “old”
insulator mixtures, provided that the following replacementssecond-order estimates. This confirms the existence of a du-
are made’y/y should be changed tox(x) Y™ and m to ality gap, anticipated earlier; however, it appears that the gap

1/m. (This is a generalizatidf of a well-known duality re- 1S quite small, for both the “new” and “old” esEimat?s, in
sult in the linear casg. this case. Second, it can be seen that both the “new,” as well

as the “old” second-order estimates lie well below the varia-
tional bound for all values o less than 1. They also lie
well above the Wiené? lower bound, except in the limit as

Figures 4 and 5 present comparisons of the “new” MGA M tends to 0, where the “new” and “old” second-order es-
second-order estimates, given in the preceding subsection f§mates both tend to the Wiener bound.
two-dimensional, infinite-contrast, power-law composites, In Fig. 5, both the “new” energydashed lines as well as
with earlier bounds and estimates of various types for thishe complementary-enerdgontinuous linesestimates45)
special class of systems. Results are shown for the effectivdnd (49), respectively, are shown again, but this time for
nonlinear susceptibility, normalized by the nonlinear sus- values ofm>1. Here, the results are plotted for the quantity

ceptibility y of the power-law phase, as a function of the (X/})_llm,~WhiCh is the physically meaningful variable,
nonlinearity exponentn, for 50% volume fraction of the tending toEy/Ey, in the limit asm—oo, as mentioned ear-
conducting phasep=0.5). lier. It can be seen that the two types of “new” second-order

B. Discussion and comparisons
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FIG. 6. EMA estimates for the effective nonlinear susceptibility - FIG. 7. EMA estimates for the effective nonlinear susceptibility
'y of an isotropic, two-dimensional, two-phase, threshold-tyme ( X of an isotropic, two-dimensional, two-phase, threshold-tye (

=0) composite, plotted as a function of the concentrapi@f the =) composite, plotted as a function of the concentrapat thg
conducting phase. The “new” second-order are compared with thé:onductlng phase. The “new” second-order are compared with the

earlier “old” second-order estimates, as well as the “variational” earlier “old” second-order estimates, as well as the “variational”
upper bounds. Here, the energy-dengMy) and complementary- upper bounds_. Here, the_ener_gy-den:{W) :and i:omplementary-
energy(U) versions of the “new” second-order estimates are iden-zir;feeriﬁ(tl?oref;'énfﬁ;f ta;]rsolrdentlcal for the “new” theory, but very
tical. For the “old” estimates, only the energy-density) estimates Y-
are shown.

In Fig. 6 (m=0), all the EMA estimates for the effective

estimates are somewhat different, demonstrating the exighreshold electric displacemeit, are seen to blow up at
tence of a duality gap, but note that the gap is zero not ons0% volume fraction, which is the known value of the per-
for linear behavior (h=1), but also, much more interest- colation threshold for these two-dimensional microstruc-
ingly, in the limit asm—o. On the other hand, the “old” tures. However, it is interesting to note that the “new” esti-
second-order estimates are seen to diverge from each otherrmates remain well below the variational EMA upper bounds
this limit, which is clearly a deficiency in the earlier theory. (in the sense described in the above paragrégphall values
Also, while both versions of the “new” second-order esti- of p, while the “old” second-order estimates are seen to
mates satisfy the upper bound provided by the “variational’violate the bound at a volume fraction of about 47.5%. This
MGA estimate, only onéthe complementary energy, ) observation demonstrates that the “new” estimates are supe-
of the two “old” second-order estimates satisfies the varia-rior to the “old” second-order estimates, which violate a
tional upper bound, the other ofthe energy, oW) tending  rigorous bound. It is also observed that both the “new” and
to the higher Wiener upper bound in the limit as—~.  “old” estimates predict a vanishingly small effect-o(p)]
Thus, these results demonstrate that the “new” second-ordesf the conducting phase on the effective response for dilute
estimates are superior to the earlier versftold” ) of the  concentrations in this casen&0). This is in contrast with
estimates, especially in the limit of strongly nonlinear behavthe “variational” upper bound, which predicts a finite en-
ior with a threshold in the electric field. hancemenf~O(p)] in the effective susceptibility.

In Figs. 6 and 7, plots are shown for the “new” EMA In Fig. 7 (m==), all the EMA estimates for the effective

estimates for the effective nonlinear susceptibility of two-threshold electric fiel@, are seen to vanish at 50% volume
dimensional, infinite-contrast, power-law composites, as gaction. Here again, the “new” second-order EMA estimates
function of the concentration of the conducting phps&wo  (note that thew and U versions are identicalare seen to
cases are considere@) a threshold in the electric displace- satisfy the bound provided by the “variational” method for
ment (m=0) and (b) a threshold in the electric fieldn{  a|| values of the concentration of the conducting phase, while
=). Note that in these particular cases, the two versionghe “old” second-order estimates are seen to violate the
(W and U) of the “new” theory provide identical predic- pound: theU version of the “old” theory for concentrations
tions. The “old” second-ordép and “variational”9'14 EMA above approximate|y 43%, and the Corresponmgersion
estimates are included for comparison purposes. Here, thgr all values ofp up to percolation. Note also the hugely
“variational” EMA estimates are givehby the expression different behavior predicted by the two theories in the dilute
Y x=@—p)E=m72/(1—2p)M+ D2 \while the “old” limit. The “old” theory predicts widely inconsistent results,
second-order estimates are taken from the work of Pontehile the “new” theory yields a more reasonable, albeit
Castaeda and Kailasarff Again, it is noted that the “varia- nonanalyticprediction for small values of the concentration
tional” EMA estimate provides an upper bound for all other (i.e., an infinite, negative slope at=0). Recalling the ob-
self-consistent estimates. This follows from the fact the EMAservations at the end of the previous subsection on the cor-
estimate is known to be exact for linear composites with aespondences with metal/insulator mixtures, it is further re-
special class of hierarchical microstructuf@s. marked here that the results for the cases1 are plotted in
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Figs. 5 and 7 in such a way that they would correspondhe theory of Pellegrini, even if in principle it uses the same
directly as shown to the case of metal/insulator mixtures withinformation, namely, the averages and covariance tensors of
m<1. the field fluctuations in the phases of similarly chogbnt
not identical linear comparison composites.

One limitation of the theory, which is shared with the
alternative theory of Pellegrini, is that it exhibits a duality
gap (the energy and complementary energy formulations of

; ¢ the theories do not yield identical predictignslowever, our
straightforward to compute the relevant critical exponents fo'iheory has been shown to have vanishingly small duality

the “new” second-order estimates. The result is thats gaps. not only in the special case of linear behavior (

=(1+m)/2, so that the “new” second-order estimates— =1), but also in the limiting cases of threshold-type nonlin-
unlike the “old” second-order estimates—satisfy the bounds ! 9 yp

(1) (they are in fact identical to themprovided by the earities Mm—0 and). This suggests that it may indeed be
“variational” method?® (It is recalled®?’ also that both sets possible to find further improvements of the theory leading

of critical exponents satisfy certain duality relatidrfd  t© complete closure of the duality gap. N

Thus, for example, in Fig. 6, corresponding o=0, the Referring to the two-dimensional results, the critical ex-
critical exponent associated with the “old” methodss-1, ~ Ponents of the new EMA theory have been found to satisfy
which is in violation of the upper bound provided kg the duality relatiort> However, the two critical exponents (
=1/2[recall thatm<1, so the opposite sign applies for the andt) associated with the new EMA theory were also found
inequalities in Eq(1)]. On the other hand, the “new” esti- to have identical values. This is in disagreement with simu-
mates can be seen to exhibit the same critical exponent as thaion result8®>" for nonlinear random resistor networks
bound &=1/2). Similarly, from Fig. 7, it is deduced that the which suggest that the critical exponents may in fact be dif-
value oft predicted by the “old” theory(namely,t=0 in this ~ ferent in value. While this is probably the case for real sys-
case corresponding tm=0) is in violation of the corre- tems, it is perhaps not too surprising that the nonlinear ver-
sponding lower bound tE&1/2) in this case. Again the sion of the EMA theory that has been developed in this work
“new” theory is seen to yield the same exponent as theinherits the feature of equal critical exponents from the cor-
bound ¢=1/2). In this connection, it is important to empha- responding linear theory which it uses to generate an esti-
size that the reason for the improvement provided by the newnate for the relevant linear comparison composite. It stands
theory over the earlier second-order theory is directly relatedo reason that if a better estimate—one with perhaps different
to the additional dependence on the second moments of thitical exponents—were used to characterize the linear com-
fiel_d f_Iuctuatio_ns, as is_t_he case with the variati_onal boundsyarison composite, the resulting nonlinear estimate would
This is gspemally s_|gn|ﬂcant near the percolation thresholdyisq pe likely to exhibit more realistic exponents, which
where field fluctuations are known to become unboundedyoyid be expected to be different in value. In this connec-
The old theory, which does not incorporate dependence Of,, it should be emphasized that more definitive conclu-

the field fluctuations, is doomed to fail near the percolationsiOns may be extracted by full consideration of results of
threshold, even when it possesses severa_l Important adva&l]ality theory, including its implications for the relevant
tages relative to the variational theory, which, on the other

) scaling functions.
hand, does make use of the second-moments of the fields. Another issue that probably merits further investigation is

the behavior of these nonlinear systems in the dilute limit.
V. CONCLUDING REMARKS While the predictions of the theory in the dilute limit were
) ] found to be in good agreement with numerical results for the
An improved version of the second-order théd’ for  few cases for which numerical results are available, the pre-
strongly nonlinear composites has been proposed. As withictions of the theory were also found to be nonstandard in at
the earlier version of the theory, it produces MGA and EMA|east one special case involving a threshold-type nonlinearity,
estimates that are exact to second-order in the contrast. It h@gere the dependence of the effective threshold coefficients
also been found to satisfy all known bounds, including someyn the concentratiop of the dilute phase was found to be
recent bounds on the critical exponents associated with thﬁonanalytic This observation may have implications for ear-
EMA, which had been found to be violated by the previousjier EMA schemes which implicitly assume analytic depen-
version of the theory(Both versions of the theory produce gence orp. Could this shed some light, for example, on the

nonlinearity-independent percolation threshplds addi-  fact that some such schemes appear to give nonlinearity-
tion, the new version of the theory appears to give reasonablgependent percolation thresholds?

predictions, even for the extreme cases of threshold-type
nonlinearities. Thus, the new second-order theory appears to
satisfy most, if not all of the desirability criteria identified in
the introduction. There is an alternative improved version of
the second-order theory, recently proposed by Pelle§tini,  This research was supported by NSF Grant No. DMS-99-
that may also satisfy all these criteria, although this remaing1958. The article was completed while the author was vis-
to be checked, at least for threshold-type nonlinearitiesiting the L.M.S. at the Ecole Polytechnique. The author is
However, our theory may be a little easier to implement thargrateful to Dr. Y.-P. Pellegrini of the C.E.A. at Brugs-le-

C. Critical exponents

Following up on the above discussion for the effective
behavior near the percolation thresholg.€1/d), it is
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1
APPENDIX: DUAL FORMULATION + E(D_ D(r)) . (,-g)(D_ D(r))’ (A5)

There an exactly dual formulatidhwhich makes use of ) )
the local complementary energy-density functigsuch that  @nd where the functiong™”’ are now given by
E=4du/dD. The functionu is defined in terms ofv via the

Legendre transformation V(r)(D(r),Ugr)):§té}[U(Tr)(f)(r))—U(r)(f)(r))]- (A6)
D r
u(x,D)=sta{D-E—w(X,E)}, Al ~ N
(x.B) E { (B (A1) The result(A4) for U can be shown to further simplify to

where the “stat”(stationary operation means taking the de- N ou® _ o
rivative of the terms inside the curly brackets with respectto U(D)= >, ¢®|u(DM)— ——(D")). (DO —D")]|.
E, solving for E as a function ofD, and substituting the r=1 D

result back inside the brackets to obtain a functionDof (A7)

Note that the requisite smoothness hypotheses have begfere the variableB(" in Eq. (A5) have been identified with
made about the functiow, and that, because of the convex- the averageB") = (D) of the electric displacements in the

gyfhy?othesis(;)rt'lhth?/(”,t'_[her_e islno ambiguity in the above various phases of the linear comparison composite with
ennition—and the functiom IS also convex. spontaneous polarizations defined by E6). On the other

In terms of the complementary energy functignthe ef- LA .
. o . ; . - L)
fective constitutive relation for the nonlinear composite mayland: the second-moment variable$) are obtained from

then be alternatively written as appropriate traces of the covariance maﬁi%) of the elec-
tric displacement fluctuations in phases. The variabfgsin

_ 39U expression(A4) for U are chosen to be of the forma’

E="= (R2) — (1/ef MmO @M+ (1/60) (1 -mO@m), where m®

o . _ =(1/DM)D™M s a unit vector aligned with the average elec-
whereU is the effective complementary energy function for tric displacement field in phasedefining two directions in a

the composite, defined by natural way: a “parallel” one, and a “perpendicular” one.
N The comparison permittivity tensomg’) are determined, in
U(D)=min(u(x,D))=min >, cu(D))®. (A3) turn, by the secant-type condition
DeS Des =1
= D sy — 1 Sy - o0 B0 5o
In this relation,S={D, divD=0 in Q, Dn=Dn on dQ} oo (D)= =5 (DY) =0y (DV=D").  (A8)

denotes the set of trial electric displacement fields. Again,
under the above-mentioned hypotheses onviHg the two It is emphasized that because of the existence of a duality
formulations are exactly equivalent in the sense of Legendrgap, the constitutive relation resulting from these expressions
duality: U =W+ . are not (_axactly equivalent to the corresponding .expressions
Following the development in Sec. Ill, an analogous esti-derived in Sec. lll for the energy densny function of the
mate for the effective complementary energy function of the?0mposite. However, because of the restricted Legendre du-
nonlinear composite may also be generated such that gllty of the linear comparison problems involved, th.e follow-
ing relations can be shown to hold among the variables that
are used in these two formulatiorB{") = gw"/9E™, EM
=ou®/gD", DO =gw"/gED, EM=u®/9D"), and
(Ad) a=(e{’)~%. (But note thatD” and E"” do not corre-
5 spond exactly to the average electric displacement and elec-
where U+ is the effective complementary energy function tric field in phase of the nonlinear composite in the context
associated with a linear comparison composite with locabf the energy and complementary-energy formulations, re-

N
U(D) =sta{ U+(D; D<S>,ags))—r§1 cOVODO, oy,

ol

phase energy functions defined by spectively)
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