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Second-order theory for nonlinear dielectric composites incorporating field fluctuations
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This paper deals with the development of an improved second-order theory for estimating the effective
behavior of nonlinear composite dielectrics. The theory makes use of the field fluctuations in the phases of the
relevant ‘‘linear comparison composite’’ to generate improved Maxwell-Garnett~MGA! and effective-medium
~EMA! types of approximations for nonlinear media. Similar to the earlier version of the theory, the resulting
MGA and EMA predictions are exact to second-order in the contrast, but—unlike the earlier version—the
estimates satisfy all known bounds. In particular, the EMA estimates exhibit a nonlinearity-independent per-
colation threshold, and critical exponents that are consistent with recently developed bounds on these expo-
nents. In addition, the MGA and EMA estimates are shown to yield reasonable predictions for strongly
nonlinear composites with ‘‘threshold-type’’ nonlinearities, which are extreme cases where earlier methods
have been known to sometimes fail.

DOI: 10.1103/PhysRevB.64.214205 PACS number~s!: 77.84.Lf, 77.84.2s, 72.20.Ht, 05.40.2a
o
.
t i

b
an

ne
m
a
bl
sy
th
di
he
s o
pe

fo
ct
om
y

ti-

t-
er
rb
n
n

y-
i

ur-

ric-
di-

the
he
f
ost

od
-

use
sity
m-
is

ear
ith
nt
ic-
tly
-
-

ve
I. INTRODUCTION

In recent years, there have been numerous studies1–30con-
cerned with the computation of the effective behavior
nonlinear dielectric~or conductor! composites~see also Refs
31–33!. In part, this has been due to theoretical interes
such material systems—after all, nonlinear effects are to
expected at sufficiently high field intensities, and the st
dard Maxwell-Garnett approximation34 ~MGA! ~also known
as the Claussius-Mossotti approximation! and effective-
medium approximation35 ~EMA! apply only to linear sys-
tems. It should be emphasized that the extension to nonli
systems is nontrivial, as the governing equations beco
nonlinear and the linear methods on which the stand
MGA and EMA estimates are based are no longer applica
The interest in these nonlinear heterogeneous material
tems derives also, in part, due to their importance in
context of many different physical phenomena, including
electric breakdown, fuse burn out, and nonlinear optical p
nomena. Additional examples could be given in the realm
electric, magnetic and other physical and mechanical pro
ties of matter.

The aim of this work is to propose a general method
deriving accurate estimates for nonlinear composites dire
from corresponding estimates for suitably chosen linear c
posites. This is an approach that has been pioneered b
author and co-workers9,10 in the so-called ‘‘variational’’ lin-
ear comparison method. In particular, one of the goals is
provide robust generalizations of the MGA and EMA es
mates for nonlinear composites. As suggested recently
Barthelemy27 and Pellegrini,29 such generalizations must sa
isfy certain criteria:~i! They should be exact to second ord
in the contrast, and thus be in agreement with the pertu
tive small-contrast expansions of Blumenfeld and Bergma7

~ii ! They should be in good agreement with know
results3,11,12 in the dilute ~small concentration! limit. ~iii !
They should satisfy all known bounds.2,9,24 ~iv! For the par-
ticular case of the EMA estimates, a nonlinearit
independent percolation threshold should be predicted, w
0163-1829/2001/64~21!/214205~14!/$20.00 64 2142
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acceptable28 values for the associated critical exponents. F
thermore, in two dimensions, duality theory1,23 provides a
condition on the critical exponents, as well as more rest
tive conditions on the associated scaling functions. In ad
tion to these criteria, one should also add the following:~v!
The estimates should not degenerate for large values of
relevant nonlinearity parameter, and, in particular, for t
important special cases of ‘‘threshold-type’’ nonlinearity. O
all the above requirements, the last one is perhaps the m
strict.

To the knowledge of the author, the first general meth
to satisfy criterion~i! is the ‘‘second-order’’ method pro
posed by the author and co-workers.19,20 As will be seen in
more detail in the body of this paper, this method makes
of a second-order Taylor expansion for the energy-den
functions of the constituent phases, leading to a ‘‘linear co
parison composite’’ with spontaneous polarizations, which
then used to estimate the effective behavior of the nonlin
composite. While this method, when applied together w
the EMA approximation, leads to nonlinearity-independe
percolation thresholds, and initially appeared to give pred
tions consistent with all known bounds, it has been recen
discovered28 to violate the bounds provided by the ‘‘varia
tional’’ method9,10sufficiently close to the percolation thresh
old.

More specifically, using standard notation1,27 for power-
law composite conductors~dielectrics!, it has been recently
found28 that the critical exponentst ands, corresponding to
metal/insulator ~dielectric/insulator!, and metal/
superconductor~dielectric/conductor! mixtures, respectively,
must satisfy the bounds

t<~11m!/2 and s>~11m!/2, ~1!

where the power exponentm, characterizing the nonlinearity
of the material, has been assumed to be such thatm.1. Note
thatm corresponds to 1/a and 11k in the notations of Stra-
ley and Kenkel1 and Barthe´lémy,27 respectively, in such a
way that m51 corresponds to the linear case. The abo
©2001 The American Physical Society05-1
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P. PONTE CASTAÑEDA PHYSICAL REVIEW B 64 214205
bounds also apply for the case where 0<m,1, but the sense
of the inequalities in Eq.~1! must be inverted. The predic
tions of the second-order19,20 theory for the EMA estimates
for power-law composites leads to the valuest5m and s
51, which can be seen to violate the bounds descri
above for any value ofm different from 1. It is interesting to
remark that the critical exponents predicted by t
second-order19,20 theory are identical to those obtained b
Barthelemy27 in his ‘‘path-integral’’ approach to strongly
nonlinear composites, as well as to those predicted by
theory of Bergman,8 on which it is based. It should also b
noted that the original EMA theory of Bergman,8 in its full
implementation,13,21 was checked to satisfy criterion~i! nu-
merically, while Barthe´lémy’s theory was found27 to satisfy
this criterion exactly. However, unlike the second-ord
theory,19,20 the EMA theories of Bergman and Barthe´lémy
both exhibit nonlinearity-dependent percolation thresho
and thus violate criterion~iv! above. It is interesting to
remark,27 however, that, in two dimensions, both sets of cr
cal exponents satisfy the duality relation1,23 t(m)
5ms(1/m).

It should also be remarked that there is a ‘‘mean-fi
theory’’ due to Wan, Lee, Hui, and Yu14 ~see also Refs
16,17! that yields critical exponents that are consistent~in
fact identical! to the above bounds. This is due to the fac24

that the theory of Wanet al. gives predictions that are iden
tical to the earlier ‘‘variational’’ theory,9,10 when used to-
gether with the EMA approximation for the relevant line
comparison composite. However, both of these theories
to predictions that areonly exact to first order in the contras
and therefore violate criterion~i!.

Concerning criterion~ii ! for dilute systems, exact analyt
cal estimates are unfortunatelynot available for strongly
nonlinear dielectrics. The underlying one-inclusion proble
being fully nonlinear, an exact analytical result is not e
pected, but numerical predictions are certainly feasible. S
estimations have been attempted in the mechanics litera
but mostly in three dimensions. However, dilute results
available36 for the special case of power-law solids wi
aligned rigid fibers—where a well-known analogy perm
the direct conversion to two-dimensional electrostati
Ponte Castan˜eda and Kailasam have shown20 ~see Fig. 2 in
that reference! that the predictions of the earlier ‘‘second
order’’ theory ~given in a different form! are in excellent
agreement with the numerical simulations in this case~for
values ofm between 1/10 and 1!, while the corresponding
predictions of the ‘‘variational’’ theory9,10 progressively di-
verge from the numerical estimates with increasing non
earity, consistent with their bounding status.~Note that the
corresponding dilute predictions of Hui and Wang,15 being
identical to the ‘‘variational’’ estimates, are also not ve
accurate for large nonlinearity.! As already mentioned, ther
are also results available for weakly nonline
composites,3,12 as well as an exact result for the~very spe-
cial! case of strongly nonlinear inclusions embedded in
linear matrix.11

In this paper, an improved version of the ‘‘second-orde
method19,20 is proposed that incorporates field fluctuations
the selection of the linear comparison composite, follow
21420
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an analogous development in the context of the ‘‘variation
procedure.9,10 This improved version, which will be pre
sented in Sec. III, is found to be free of the limitations of t
earlier version of the method, and provides a general
robust method satisfying all the criteria listed above, as w
be demonstrated in Sec. IV for two-phase systems. In fac
will be seen that the ‘‘new’’ second-order theory is some s
of interpolation between the earlier~‘‘old’’ ! second-order
theory19 and the ‘‘variational’’ linear comparison theory9,
preserving the relative advantages of both.

It is interesting to note that very recently Pellegrini29 has
proposed an alternative improved version of the ‘‘seco
order’’ theory making use of a Gaussian approximation
the probability distributions of the fields in the phases, f
lowing similar developments in his earlier work26 for weakly
nonlinear composites. This innovative approach also le
quite naturally to the use of the field fluctuations in the d
termination of the relevant linear comparison composite.
this method is quite recent, detailed comparisons will be
for future work, but the method of Pellegrini appears to
quite promising, also satisfying all the criteria above, w
the possible exception of criterion~v! which remains to be
investigated30 in the context of his theory.

II. EFFECTIVE BEHAVIOR

The nonlinear composite dielectric occupies a region
spaceV, and its constitutive behavior is characterized by
energy-density functionw, depending on the position vecto
x and the electric fieldE, such that the electric displaceme
field D is given by

D~x!5
]w

]E
~x,E!. ~2!

It is assumed that the composite dielectric is made up oN
homogeneous phases, so that

w~x,E!5(
r 51

N

u (r )~x!w(r )~E!, ~3!

where the functionsu (r ) (r 51, . . . ,N), characterizing the
distribution of the phases inV, are such thatu (r )51 if x is in
phaser and 0 otherwise. The phases are assumed here t
isotropic so that the energy functionsw(r ) depend only on the
magnitude of the electric fieldE5uEu. In addition, the func-
tions w(r ) are taken to be convex in the electric fieldE and
such thatw(r )(E)>0 andw(r )(0)50.

A commonly used form for the phase energy functions
the power-law~usually referred31 to as ‘‘strongly nonlinear’’!
form

w~E!5
1

m11
xEm11, ~4!

such thatD5xEm, wherex is the nonlinear susceptibility
and the nonlinearity exponentm is taken to be between 0 an
`, with m51 corresponding to linear behavior. As depict
in Fig. 1, the limits asm tends to 0 and̀ correspond to
‘‘thresholds,’’ D0 and E0, in the electric displacement an
5-2
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SECOND-ORDER THEORY FOR NONLINEAR . . . PHYSICAL REVIEW B 64 214205
electric fields, respectively. In this connection, note thax
tends toD0 in the limit asm tends to 0. On the other hand
x21/m tends toE0 in the limit asm tends tò , so thatx21/m

is the physically meaningful variable in this limit. For th
conductivity analog, the limits asm tends to 0 and̀ physi-
cally correspond1 to the behaviors of a saturating conduct
and a varistor, respectively.

It is known31,32 that theeffectiveconstitutive behavior of
the composite dielectric may be expressed in terms of
averages of the fieldsD̄5^D& and Ē5^E&, where angular
brackets are used to denote volume averages overV, as

D̄5
]W̃

]Ē
~Ē!. ~5!

In this relation, the effective energy-density function of t
compositeW̃ is most naturally described in terms of th
minimum energy principle

W̃~Ē!5min
EPK

^w~x,E!&5min
EPK

H (
r 51

N

c(r )^w(r )~E!& (r )J , ~6!

whereK is the set of trial electric fields, defined by

K5$EuE52¹w~x! in V, and w52Ē•x on ]V%,
~7!

c(r )5^u (r )& is the volume fraction of phaser, and the symbol
^•& (r ) is used to denote a volume average over phaser. An
equivalent formulation in terms of the complementa
energy-density function u, such that E5]u/]D is
available.31,32For convenience, the details are summarized
the Appendix.

The main difficulty associated with the computation of t
effective energy functionW̃ of the composite~6! lies in the
fact that the relevant fields are impossible to determine
actly in general. However, approximate methods have b
developed to address this problem for composites withlinear

FIG. 1. Power-law dielectric with nonlinearity exponentm rang-
ing from 0 to`. Here,m51 corresponds to linear behavior, 0 to
threshold in the electric displacement fieldD0, and` to a threshold
in the electric fieldE0.
21420
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constitutive behavior. In the following section, a variation
method allowing the use of known estimates for linear co
posites to obtain corresponding estimates for nonlinear c
posites is developed and compared with earlier homogen
tion methods.

III. THE VARIATIONAL ESTIMATES

Following earlier work,19,20 a ‘‘linear comparison com-
posite’’ is introduced with energy-density functionwT given
by

wT~x,E!5(
r 51

N

u (r )~x!wT
(r )~E!, ~8!

where the phase energy functionwT
(r ) is given by the second

order Taylor approximation to the nonlinear phase ene
function w(r ):

wT
(r )~E!5w(r )~E(r )!1

]w(r )

]E
~E(r )!•~E2E(r )!

1
1

2
~E2E(r )!•«0

(r )~E2E(r )!. ~9!

In this relation,E(r ) is a uniform reference electric field an
«0

(r ) is a symmetric, positive definite tensor of dielectric co
stants, both of which are taken to be otherwise arbitrary
this stage.

It is useful to note here that the phase energy function~9!
corresponds to a fictitious linear dielectric with ‘‘spontan
ous’’ polarizationsP(r )5]w(r )/]E(r )2«0

(r )E(r ) in the phases,
such that its constitutive behavior is given by

D5P(r )1«0
(r )E. ~10!

Ponte Castan˜eda and co-workers19,20 made use of expres
sions~9! to estimate the local energy-density functionsw(r )

directly in expression~6! for the effective energy functionW̃.
Here, instead, ‘‘error’’ functionsV(r ), depending on the ref-
erence fieldsE(r ) and dielectric tensors«0

(r ) , are introduced
such that the phase energy functionsw(r ) may be approxi-
mated as

w(r )~E!5wT
(r )~E!1V(r )~E(r ),«0

(r )!, ~11!

for any value of the electric fieldE.
There are different ways to define the error functionsV(r ).

Ponte Castan˜eda9 defined the functions

V(r )~E(r ),«0
(r )!5min

Ê(r )

@w(r )~Ê(r )!2wT
(r )~Ê(r )!#, ~12!

wherem has been assumed to be greater than 1 in expres
~4! for the energy functionsw(r ). Then, it is obvious from
Fig. 2, which shows a one-dimensional sketch of the funct
w(r )2wT

(r ) ~that we seek to minimize! for the special case
m54, thatV(r ) is negative and also that

w(r )~E!>wT
(r )~E!1V(r )~E(r ),«0

(r )!. ~13!
5-3
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P. PONTE CASTAÑEDA PHYSICAL REVIEW B 64 214205
A generalization of the definition~12! is to take

V(r )~E(r ),«0
(r )!5stat

Ê(r )

@w(r )~Ê(r )!2wT
(r )~Ê(r )!#, ~14!

where ‘‘stat’’ corresponds to theoptimizationoperation con-
sisting in taking derivatives of the terms inside the squ
brackets, setting the result equal to zero and solving for
variablesÊ(r ). Referring again to Fig. 2, it is observed tha
in this case with 1<m,`, the functionw(r )2wT

(r ) has other
stationary points in addition to the global minimum di
cussed in the context of definition~12!. Thus, it can be seen
that the function additionally admits a local minimum,
well as a local maximum, withÊ(r )5E(r ). In the alternative
case, when 0,m<1, the functionw(r )2wT

(r ) ~not shown in
the figure! also has three stationary points, but with the le
most one now being a global maximum, the rightmost
local maximum, and the middle one, a local minimum
Ê(r )5E(r ). It is important to emphasize here that, because
the multidimensional character of the problem, there are
fact several other possible stationary points, including sad
points. It is not essential at this stage to catalog the differ
possibilities; it is only important to realize that there a
possibilitiesother thanthe trivial choiceÊ(r )5E(r ) and the
extremal points~global maxima and minima!.

It is also useful here to spell out the stationarity conditio
for the variablesÊ(r ) in the definition~14! of the functions
V(r ), which may be written in the form

]w(r )

]E
~Ê(r )!2

]w(r )

]E
~E(r )!5«0

(r )~Ê(r )2E(r )!. ~15!

Note that in generalÊ(r ) need not be aligned withE(r ). The
various possible conditions are depicted schematically
Fig. 3 for a one-dimensional energy function withm54.
They can be seen to correspond to various types oflinear
approximations to the constitutive relation for the nonline
dielectric relatingD to E. Thus, it can be seen that the ca
whereÊ(r )ÞE(r ) andE(r )Þ0 corresponds to a ‘‘generalize

FIG. 2. One-dimensional sketch of the functionw(r )2wT
(r ) and

its stationary points for a power-law material withm54.
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secant’’ approximation, which is different from the mo
standard ‘‘secant’’ and ‘‘tangent’’ approximations that ha
been used in the context of earlier theories.9,19

Now, use of the various estimates~11! for the phase en-
ergiesw(r ) in expression~6! leads to the following approxi-
mations for the effective energy functionW̃:

W̃~Ē!5W̃T~Ē;E(s),«0
(s)!1(

r 51

N

c(r )V(r )~E(r ),«0
(r )!, ~16!

whereW̃T is the effective energy function associated with t
linear composite with local energy-density function given
Eqs.~8! and ~9!, such that

W̃T~Ē;E(s),«0
(s)!5min

EPK
^wT~x,E!&. ~17!

The approximations~16! are valid for any choice of the ref
erence variablesE(s) and«0

(s) (s51, . . . ,N), which suggests
optimizingwith respect to them by evaluating the appropria
stationary conditions with respect to these variables. D
pending on the choice of the error functionsV(r ), it will be
seen that there are several possible different ways to se
these reference variables. However, the important poin
that the expression~16! allows the computation of the effec
tive energy functionW̃ for the nonlinear composite in term
of the effective energy functionW̃T of a linear comparison
composite with dielectric tensors«0

(s) and spontaneous polar
izationsP(s) distributed with the same statistics as the ori
nal nonlinear composite. In the next subsections, it will
shown how the general variational statement~16! can be
used to recover earlier estimates, as well as to generate
proved estimates forW̃.

A. The variational bound

If the stationary point leading to the extremum value
the functionw(r )2wT

(r ) is used in definition~14! for the func-
tion V(r ), the estimate~16! can be shown9,10 to be a bound.
The best bound is obtained by optimizing with respect to
variablesE(s) and«0

(s) . However, it has been shown9,37 that

FIG. 3. The ‘‘generalized secant’’ approximation~15! for the
linear comparison composite, with dielectric constant«0

(r ) , versus
the ‘‘secant’’ and ‘‘tangent’’ approximations, with dielectric con
stants«s

(r ) and«t
(r ) , respectively.
5-4



e

a
on

o
r-

n

le

-

ca
ea

-

tio
on

la

e

se

r’’
es

,

ef-
at

nt’’

as

on

.
on
ed
een

-

ext
t

SECOND-ORDER THEORY FOR NONLINEAR . . . PHYSICAL REVIEW B 64 214205
the optimal choice of the tensorsE(s) is identically zero for
typical material behaviors, including of the power-law typ
Thus, for the case when 1,m<`, a lower bound is given
by9,10

W̃~Ē!>max
«0

(s)
H W̃0~Ē;«0

(s)!1(
r 51

N

c(r )V(r )~0,«0
(r )!J , ~18!

where W̃0 is the effective energy associated with a line
comparison composite dielectric with phase energy functi
given by

w0
(r )~E!5

1

2
E•«0

(r )E, ~19!

and the functionsV(r ) are given by expressions~12!. On the
other hand, for the case when 0<m,1, anupperbound is
generated, which is similar in form to the right-hand side
Eq. ~18!, except that themax must be replaced by the co
respondingmin.

It is also noted here that the choiceE(r )50 in expression
~15! leads to the classical secant condition:~see Fig. 3!, de-
fining the ‘‘secant’’ dielectric tensors«s

(r ) by

]w(r )

]E
~Ê(r )!5«s

(r )Ê(r ). ~20!

It follows from the assumed isotropy of the constitue
phases that these secant tensors are isotropic.

On the other hand, optimality with respect to the variab
«0

(s) in expression~18! leads38,24 to the following conditions:

Ê(r )5A^E2& (r ) ~21!

for the magnitude of the variablesÊ(r ). Note that these ex
pressions identify the variablesÊ(r ) with the isotropic trace
of the second momentŝE^ E& (r ) of the electric field in the
phases of the linear comparison composite, which in turn
be estimated from the effective dielectric tensor of the lin
comparison composite using a well known result.39 It then
follows38,24 that the effective energy function for the nonlin
ear composite may be expressed as

W̃~Ē!5(
r 51

N

c(r )w(r )~Ê(r )!. ~22!

Note that the final answer does not depend on the direc
of Ê(r ), which is indeterminate from the secant conditi
~20!.

B. The second-order estimate

As already mentioned, another possible solution to re
tions ~15! is the choiceÊ(r )5E(r ), which makes the func-
tionsV(r ) vanish identically. Then, holding the variables«0

(s)

fixed in expression~16!, and optimizing with respect to th
variablesE(s), leads to the estimate~which is not a bound!:
21420
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W̃~Ē!5stat
E(s)

$W̃T~Ē;E(s),«0
(s)!%, ~23!

where W̃T is still given by relation~17!. The stationarity
condition with respect to the variablesE(s) in this expression
then leads to the conditions20,25

@«t
(s)~E(s)!2«0

(s)#~^E& (s)2E(s)!50, ~24!

where«t
(r )8]2w(r )/]E]E is the ‘‘tangent’’ approximation to

the nonlinear constitutive relation for phaser. This condition
can be satisfied by setting

E(s)5Ē(s), ~25!

where the symbolĒ(s) has been used to denote the pha
averages of the electric field̂E& (s). The estimate~23! can
then be shown32 to reduce to

W̃~Ē!5(
r 51

N

c(r )Fw(r )~Ē(r )!1
1

2

]w(r )

]E
~Ē(r )!•~Ē2Ē(r )!G ,

~26!

which is precisely the original version of the ‘‘second-orde
estimate.19,20 However, the above choice for the variabl
Ê(r ) has the disadvantage25 that the stationarity condition
with respect to the variables«0

(s) :

^~E2E(r )! ^ ~E2E(r )!& (r )50, ~27!

cannot be satisfied in general~i.e., unless the electric field is
constant in each phase!. Because of this, the alternative
physically motivated prescription

«0
(r )5«t

(r )~Ē(r )! ~28!

was made to close the system of equations defining the
fective behavior of the nonlinear composite in terms of th
of the linear comparison composite. Note that this ‘‘tange
condition~refer to Fig. 3! is fully consistent with expression
~15! in the sense that it corresponds to taking the limit
Ê(r )→E(r ) in that expression.

C. Improved second-order estimates

As already mentioned in the context of Fig. 2, in additi
to the trivial stationary point~i.e., Ê(r )5E(r )), and the sta-
tionary point leading to the minimum~or maximum!, there
are other possible stationary points in the definition~14! of
the functionsV(r ), which will be exploited in this subsection
Thus, use will be made of the ‘‘generalized secant’’ conditi
~15! depicted schematically in Fig. 3. Such a generaliz
condition can be seen to be somewhere intermediate betw
the ‘‘secant’’ condition, defined by Eq.~20! and used in the
context of the ‘‘variational’’ bound~18!, and the ‘‘tangent’’
condition defined by Eq.~28! and used in the ‘‘second
order’’ estimates~26!.

Then, generalizing the procedure followed in the cont
of expression~18! for the bound, optimization with respec
to the variables«0

(s) in the general estimate~16! for W̃
leads to
5-5
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W̃~Ē!5stat
«0

(s)
H W̃T~Ē;E(s),«0

(s)!1(
r 51

N

c(r )V(r )~E(r ),«0
(r )!J ,

~29!

where the variablesE(s) still remain to be specified. In prin
ciple, the optimization in this expression should be carr
out over all possible anisotropic tensors«0

(s) (s51, . . . ,N).
However, noting that condition~15! suggests~refer to Fig. 3!
that the tensors«0

(r ) are somewhat intermediate between t
secant and tangent dielectric tensor of the nonlinear pha
and recalling that the phases are isotropic, the proposa
made here to restrict attention to tensors«0

(r ) whose principal
axes are aligned with the reference fieldE(r ) in phaser, in
such a way that

«0
(r )5« i

(r )n(r )
^ n(r )1«'

(r )~ I2n(r )
^ n(r )!, ~30!

where n(r )5(1/E(r ))E(r ) is a unit vector aligned with the
reference electric field in phaser. This vector defines two
directions: a ‘‘parallel’’ one, which is aligned withn(r ), and a
‘‘perpendicular’’ one, orthogonal to it.

With the choice~30! for the dielectric tensors«0
(r ) in ex-

pression~29! for W̃, optimization with respect to the vari
ables« i

(r ) and«'
(r ) leads to the conditions

~Êi
(r )2Ei

(r )!25^~Ei2Ei
(r )!2& (r )

and ~31!

~Ê'
(r )2E'

(r )!25^~E'2E'
(r )!2& (r ),

which can be seen to be a set of conditions on the sec
moments of the electric field in the phases relative to
reference electric fieldsE(r ). In these relations, use has be
made of the notationsÊi , Ei

(r ) , Ei andÊ' , E'
(r ) , E' for the

‘‘parallel’’ and ‘‘perpendicular’’ components of the variable
Ê(r ), E(r ), andE, respectively, relative to the unit vectorn(r ).

Motivated by the choice made for the variablesE(r ) in the
context of the earlier second-order estimates~23!, the same
choice is proposed here for the new second-order estim
~29!, that is, the condition~25!, or E(r )5Ē(r ), so thatEi

(r )

5Ē(r ) and E'
(r )50. Then, defining the covariance tensor

the electric field fluctuations in phaser by39,40

CE
(r )8^~E2Ē(r )! ^ ~E2Ē(r )!& (r ), ~32!

and combining conditions~25! for the E(r ) with the condi-
tions ~31! for the Ê(r ), leads to the result

Êi
(r )5Ē(r )1ACi

(r ), Ê'
(r )5AC'

(r ), ~33!

whereCi
(r ) andC'

(r ) are the parallel and perpendicular com
ponents ofCE

(r ) . Note that the roots leading to positive valu

of Êi
(r ) and Ê'

(r ) have been selected in these relations,
consistency with the special case of homogeneous beha
which should be reproduced exactly by the final express
below for W̃. Note also that the vectorÊ(r ) need not be
aligned withĒ(r ).
21420
d

es,
is

nd
e

tes

r
or,
n

In addition, the secant-type condition~15! then specializes
to

]w(r )

]E
~Ê(r )!2

]w(r )

]E
~Ē(r )!5«0

(r )~Ê(r )2Ē(r )!, ~34!

where Ê(r ) must be chosen to be a suitable saddle point
the function w(r )2wT

(r ) , for consistency with conditions
~33!.

Finally, using the result~31!, together with the expressio
~14! for the functionsV(r ), the general estimate~16! for W̃
can then be shown to reduce to

W̃~Ē!5(
r 51

N

c(r )Fw(r )~Ê(r )!2
]w(r )

]E
~Ē(r )!•~Ê(r )2Ē(r )!G .

~35!

In summary, the estimate~35! for the effective energy
function of the nonlinear composite has been genera
Similar to the earlier second-order estimate,19 it depends on
the phase averagesĒ(r ) of the electric field in the linear
comparison composite defined by relations~17!, ~8!, and~9!,
subject to the self-consistent prescription~25! on the refer-
ence electric fieldsE(r ). However, the prescription~34! for
the comparison dielectric tensors«0

(r ) is different from thead
hoc choice ~28! made earlier, being somewhat intermedia
between the ‘‘secant’’ condition used in the context of t
‘‘variational’’ bounds and the ‘‘tangent’’ condition used i
the context of the earlier ‘‘second-order’’ estimates. In ad
tion, the estimate~35! depends directly on the variablesÊ(r ),
which are related to the second moments of the fluctuatio
or covariance tensors of the electric field in the phases of
linear comparison composite, as specified by the presc
tions ~33!. Thus, the new estimates—as with the variation
bounds—also incorporate a dependence on the second
ments of the electric field in the phases. Furthermore, as w
the earlier ‘‘second order’’ estimates, they are exact to s
ond order in the heterogeneity contrast. This can be ea
verified by noticing that the variablesĒ(r ) andÊ(r ) reduce to
the average electric fieldĒ to zeroth order in the contrast, i
such a way that the new estimate becomes indistinguish
to second-order in the contrast from the second-order e
mate ~23!, which is already known to be exact to secon
order in the heterogeneity contrast.@Note that the functions
V(r ) in expression~16! are of higher order in the contras
and therefore do not enter the calculation.# Finally, it is noted
that completely analogous expressions may be develo
starting from the dual formulation for the complementa
energy function of the composite, as shown in the Append
However, the resulting approximation~A7! for the comple-
mentary energy functionŨ is not exactly dual to the approxi
mation ~35! for W̃, as will be seen in more detail in th
following section.

The improved second-order estimates~35! require the
computation of the phase averagesĒ(r ) and the covariance
tensorsCE

(r ) of the electric field in the linear compariso
composite with spontaneous polarizations defined by the
5-6



-

-

e

e

w

a
is
so
en
i-

nl

f

r-
on

e

-

for
e

ng

o-

re
s,
of

e

ms
s.
tric
rn
bil-

-
wo
ore

ro-

MA
ti-
ond

SECOND-ORDER THEORY FOR NONLINEAR . . . PHYSICAL REVIEW B 64 214205
pression~17! for W̃T . In this connection, it is useful to re
mark that, given an estimate forW̃T , Ē(r ), andCE

(r ) may be
easily computed39,40,24from the expressions

Ē(r )5
1

c(r )

]~W̃T2 f̄ !

]P(r ) and CE
(r )5

2

c(r )

]W̃T

]«0
(r ) , ~36!

where f (r )5w(r )(E(r ))2P(r )
•E(r )2 1

2 E(r )
•«0

(r )E(r ) ~recall
thatP(r )5]w(r )/]E(r )2«0

(r )E(r )). In the first of these expres

sions, the quantity (W̃T2 f̄ ) is expressed as a function of th
P(r ) and«0

(r ) , and the derivative is taken with respect toP(r ),

with «0
(r ) being held fixed. In the second,W̃T is expressed in

terms of the reference electric fieldsE(r ) and the dielectric
tensors«0

(r ) , and the derivative is taken with respect to«0
(r ) ,

with the E(r ) held fixed.

IV. APPLICATION TO TWO-PHASE SYSTEMS

Effective medium estimates, as well as other types of
timates are available forW̃T , as defined by Eq.~17!, for
N-phase composites. However, for the special case of t
phase composites, great simplification41,20 is possible. In
fact, in this case, the effective energy function of the line
comparison composite~17! with spontaneous polarizations
determined solely in terms of the effective dielectric ten
«̃0 of a linear two-phase composite with phase dielectric t
sors«0

(1) and«0
(2) , with the same microstructure as the orig

nal composite and zero polarizations. Thus, the result forW̃T
may be written in the form20

W̃T~Ē!5 f̄ 1P̄•Ē1
1

2
Ē•«̄0Ē1

1

2
@Ē1~D«0!21~DP!#

•~ «̃02«̄0!@Ē1~D«0!21~DP!#, ~37!

where D«05«0
(1)2«0

(2) and DP5P(1)2P(2). From expres-

sion ~37! for W̃T , the phase averagesĒ(r ) and the corre-
sponding phase covariance tensorsCE

(r ) , which are needed in
the above expressions to estimate the behavior of the no
ear composites, may be computed using relations~36!.

In particular, MGA and EMA estimates forW̃T may be
obtained by making use of the corresponding estimates
«̃0. A sufficiently general form42 for the MGA and EMA
estimates for«̃0 is given by the expression

«̃05(
r 51

2

c(r )«0
(r )@ I1T(0)~«0

(r )2«(0)!#21

3H (
s51

2

c(s)@ I1T(0)~«0
(s)2«(0)!#21J 21

, ~38!

where«(0) denotes the dielectric tensor of a uniform refe
ence material andT(0) is an associated tensor depending
the microstructure of the composite. More explicitly,T(0) has
components
21420
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Ti j
(0)5

1

4pdetZEuju51

j ij j

jk«kl
(0)j l

uZ21ju23dS~j!, ~39!

where the second-order tensorZ serves to characterize th
‘‘shape’’ of the assumed ‘‘ellipsoidal’’ two-point correlation
functions, such that the special caseZ5I corresponds to sta
tistical isotropy.

For later reference, explicit expressions are given next
the tensorT(0) for the case when«(0) is assumed to have th
symmetry«(0)5« i

(0)n^ n1«'
(0)(I2n^ n), wheren is a unit

vector. Then, for isotropic microstructures, the tensorT(0)

exhibits the same symmetry as the«(0) tensor, with ‘‘paral-
lel’’ and ‘‘perpendicular’’ components given by

Ti
(0)5

1

~k1Ak!«'
(0)

, T'
(0)5

1

~11Ak!«'
(0)

, ~40!

and

Ti
(0)5

1

~k21!«'
(0) F12

1

Ak21
arcsinAk21

k G ,

~41!

T'
(0)5

1

2~12k!«'
(0) F12

k

Ak21
arcsinAk21

k G ,

in 2 and 3 dimensions, respectively, wherek5« i
(0)/«'

(0) is the
anisotropy factor associated with the tensor«(0).

Thus, MGA estimates are obtained formally by setti
«(0) equal to«0

(1) ~or «0
(2)). This type of estimate is known to

be appropriate for random systems with ‘‘particulate’’ micr
structures, where phase 1~2! corresponds to the ‘‘matrix’’
phase and 2~1! to the ‘‘inclusion’’ phase. These estimates a
exact to first order in the volume fraction of the inclusion
remaining fairly accurate up to moderate concentrations
inclusions~but far from percolation!. In addition, the MGA
estimate is known to be a lower~upper! bound43 for «̃0 when
«0

(1),«0
(2) («0

(1).«0
(2)), in the sense of quadratic forms. Th

EMA estimate is correspondingly generated by setting«(0)

equal to «̃0, which gives an implicit relation for«̃0. The
EMA estimate is known to be more appropriate for syste
with ‘‘granular’’ microstructures, at least in 2 dimension
For example, a two-phase system with isotropic dielec
constants« (1) and« (2) distributed in a checkerboard patte
~an example of a microstructure with phase interchangea
ity! is known44 to be isotropic with effective conductivity
given by «̃5A« (1)« (2), in precise agreement with the corre
sponding prediction of the self-consistent estimate in t
dimensions and for equal proportions of the phases. M
generally, the EMA having been shown45 to correspond ex-
actly to certain rather special types of hierarchical mic
structures ~there is also a recent generalization46 of
checkerboard-type microstructures also attaining the E
estimate!. Of course, both the standard MGA and EMA es
mates for linear composites are known to be exact to sec
order in the contrast.
5-7
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P. PONTE CASTAÑEDA PHYSICAL REVIEW B 64 214205
A. Infinite contrast: The case of a conducting second phase

It has already been noted that the ‘‘new’’ second-ord
estimates~35! for nonlinear composites are exact to seco
order in the contrast and, therefore, very accurate at
contrast. It remains to consider large-contrast situations
this sense, the special case where one phase is taken to
conductor is the most extreme situation, since it correspo
to infinite contrast. In this section, this case will be cons
ered in detail, as it lends itself to almost fully analytic
treatment. As discussed in more detail later, the resul
expressions for two-phase systems with a conducting ph
are found to also apply, with appropriate reinterpretations
two-phase conductors with ideally conducting and insulat
second phases.

Thus, in this section, two-phase materials are conside
where one of the phases, labeled phase 2, with volume f
tion c(2)5p, is a conductor (x (2)→`), so thatw(2) will be
taken to be infinite, unless the electric field in the phase
exactly zero, in which casew(2)50. The other phase, labele
1, with volume fractionc(1)512p, will be taken to be of the
power-law type~4!. In this case, the linear comparison com
posite is also taken to have a conducting phase 2, so tha
function V(2) vanishes identically. In addition, the estima
~37! for the effective energy functionW̃T of the linear com-
parison composite simplifies further, and the resultĒ(1)

5Ē/(12p) is generated for the average electric field in t
nonconducting phase, since the electric field in the cond
ing phase is identically zero. Using these results, the estim
~29! for the effective energy functionW̃ of this composite
material may be written in the form

W̃~Ē!5stat
«0

(1)
H 1

2
Ē•«̃0Ē1~12p!FP(1)~Ē(1)!•~Ē(1)2Ê(1)!

1w(1)~Ê(1)!2
1

2
Ê(1)

•«0
(1)Ê(1)G J , ~42!

where it is recalled that P(1)(Ē(1))5]w(1)/]E(Ē(1))
2«0

(1)Ē(1).
Noting that the average electric field in the nonconduct

phase is aligned with the applied macroscopic electric fi
Ē, the choice«0

(1)5« in^ n1«'(I2n^ n) is made for the

comparison dielectric tensor, wheren5(1/Ē)Ē is the unit
vector aligned with the average electric field. As before, t
vector defines two directions: a ‘‘parallel’’ one, aligned wi
n, and a ‘‘perpendicular’’ one, orthogonal to it. Then, use
this relation for«0

(1) in expression~42! for W̃, and optimizing
with respect to the variables« i and«' leads to the following
expressions determining the ‘‘parallel’’ and ‘‘perpendicula
components ofÊ(1):

Êi5
Ē

~12p!
1

1

A12p
F ]

]« i
~Ē•D«̃0Ē!G1/2

, ~43!
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Ê'5
1

A12p
F ]

]«'

~Ē•D«̃0Ē!G1/2

,

where use has been made of the notationD«̃05«̃0

2«0
(1)/(12p).

These expressions for the components ofÊ(1), together
with the generalized secant condition~34! for the tensor
«0

(1) , and appropriate estimates for the effective dielec

tensor«̃0 of the linear comparison composite, can be used
expression~42! to generate corresponding estimates forW̃.
Here, use will be made of the following estimates42 of the
MGA and EMA types:

«̃0
MGA5«0

(1)1
p

12p
~T(1)!21,

~44!

«̃0
EMA5

1

12p
«0

(1)1
p

12p
~ T̃!21.

In these relations, the microstructural tensorsT(1) and T̃ are
defined by the choices«0

(1) and «̃0, respectively, for the ref-
erence dielectric tensor«(0) in relation ~39!.

An analogous procedure could be followed to generat
corresponding estimate forŨ. However, the analysis is com
plicated by the fact that the average electric displacemen
phase 1 is not known explicitly~since the average electri
displacement in phase 2 is not zero!. Because of this, and fo
conciseness, the details of the calculations, which involve
general expressions given in the Appendix, will not be giv
here. Only the results will be quoted below for one spec
case, with the objective of estimating the possible size of
duality gap~relative to the estimates arising fromW̃).

Results for specific classes of microstructures may now
generated by specifying the geometric tensorZ in the expres-
sion ~39! for the T tensor. Fairly explicit results may b
generated for power-law composites with isotropic mic
structures in 2 and 3 dimensions, taking advantage of
explicit forms ~40! and ~41! for the tensorsT, respectively.
Here, for simplicity, only the two-dimensional case will b
considered in detail, leaving the qualitatively similar, but
gebraically more complicated three-dimensional case for
ture work. Thus, two-dimensional MGA and EMA estimat
for the effective nonlinear susceptibilityx̃ are listed below.
In these expressions,x̃ is defined by the same relation~4!
used to define the nonlinear susceptibilityx of the matrix
phase.

Energy-density MGA estimates in two dimensions.Use of
the 2-dimensional MGA estimate for the effective dielect
tensor«̃0 of the relevant linear comparison composite in t
simplified expression~42! for W̃ leads to the estimate:

x̃

x
5S 1

12pD mH F S Êi

Ē(1)D 2

1S Ê'

Ē(1)D 2G (m11)/2

1~m11!S 12
Êi

Ē(1)D J ~45!
5-8
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SECOND-ORDER THEORY FOR NONLINEAR . . . PHYSICAL REVIEW B 64 214205
for the effective susceptibility of the power-law composi
Here,Ē(1)5Ē/(12p), andÊi and Ê' are given by

Êi

Ē(1)
5S 11Ap

2
k1/4D and

Ê'

Ē(1)
5Ap

2

1

k1/4
, ~46!

which follow by specializing relations~43!. In turn, k is de-
termined as a function ofm andp from

12m5

lnF1

k
1S 12

1

kD S 11Ap

2
k1/4D G2

lnF S 11Ap

2
k1/4D 2

1SAp

2

1

k1/4D 2G , ~47!

which follows by solving for the anisotropy ratiok
5« i

(1)/«'
(1) in the generalized secant condition~34! associ-

ated with phase 1.
It is easy to verify thatk→1 asm→1 in expression~47!.

It then follows trivially that the above estimate~45! reduces
exactly to the linear MGA estimate in this limit, as expecte
It turns out that the limits asm tends to 0 and̀ , correspond-
ing to thresholds in the electric displacement and elec
fields, respectively, can be simplified further. Thus, it can
verified thatk→` asm→0, so that the effective threshold i
the electric displacement field reduces toD̃05D0, whereD0
has been used to denote the electric displacement thres
in the nonconducting phase~see Fig. 1!. On the other hand,k
satisfies the expressionk23/42k1/45A2/p in the limit asm
→`, which can be solved fork as a function top to estimate
the effective threshold in the electric field via the express
Ẽ05(12p)(12k)(11k)21/2E0 , whereE0 has been used to
denote the threshold electric field in the nonconducting ph
in this limit ~see Fig. 1!.

It is also possible in this case to work out the dilute e
pansion

x̃

x
511m@11~m11!/~2m1/2!#p, ~48!

which is valid for general values of the nonlinearity, pr
vided thatm is not too large~i.e., m!p22/3). It is remarked
that this result is in perfect agreement with the correspond
expression derived in Ref. 20@refer to Eq.~4.5! in that ref-
erence# for the ‘‘old’’ second order theory. Recalling that
was shown in that reference that the above expression fo
dilute limit is a very good approximation to the numeric
results of Lee and Mear36 in the analogous mechanical cas
it follows that the ‘‘new’’ theory also does a good job in th
particular limit ~for values ofm between 1/10 and 1!. How-
ever, it is emphasized that the dilute expansion~48! does not
.
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hold in the limit asm tends to`, where a different nonana
lytic prediction is generated~as will be seen later!. Unfortu-
nately, there are no numerical results available in the limit
m tends to` and comparisons are therefore not possible
this case at the present time.

Complementary-energy MGA estimates in two dim
sions. Use of the two-dimensional MGA estimates in th
corresponding expression forŨ in this case leads to the es
timate

x̃

x
5S 1

12pD mH F S D̂ i

D̄
D 2

1S D̂'

D̄
D 2G (m11)/2m

1
m11

m S D̄ (1)

D̄
D 1/mS D̄ (1)

D̄
2

D̂ i

D̄
D J 2m

, ~49!

where

D̄ (1)

D̄
5

A2k3/41~k21!Ap

D
,

D̂ i

D̄
5

A2k3/41kAp

D
,

~50!
D̂'

D̄
5

AkAp

D
.

In these relations,k is determined as a function ofm andp
from the same relation~47! above, andD5A2k3/41(k
21)Ap1A2pk1/4. It can be checked again that this estima
for x̃ is consistent with the standard MGA estimate in t
limit of linear behavior, and also that it reproduces exac
the above energy-density estimates for the threshold field
the limits asm tends to zero and infinity.

Energy-density EMA estimates in two dimensions.Use of
the corresponding two-dimensional EMA estimates in
simplified expressions forW̃ leads to the same expressio
~45! for x̃, with Ē(1)5Ē/(12p), but where now

Êi

Ē(1)
511!

p

2
Ak

12
p

2 S Ak121
1

Ak
D ,

~51!

Ê'

Ē(1)
5!

p

2

1

Ak

12
p

2 S Ak121
1

Ak
D ,

with k determined as a function ofm andp from the relation
12m5

lnF F ~12p!S Ak2
1

Ak
D S Êi

Ē(1)D 1~12p!
1

Ak
2pG Y @~12p!Ak2p#G 2

lnF S Êi

Ē(1)D 2

1S Ê'

Ē(1)D 2G . ~52!

214205-9
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P. PONTE CASTAÑEDA PHYSICAL REVIEW B 64 214205
Once again it can be verified thatk→1 asm→1 in expres-
sion ~52!. It then follows that this nonlinear EMA estimat
reproduces exactly the linear EMA estimate. Also,k can be
shown to tend to a finite value, greater than 1~for p,1/2), in
the limit asm→0. In this case,D̃0 /D0 reaches some give
finite value, depending on the value ofp, in such a way that
it equals 1 forp equal to zero and blows up asp approaches
1/2 ~which is the percolation threshold in this case!. Simi-
larly, k tends to a finite value, less than 1~for p,1/2), in the
limit as m→`, yielding also finite values, less than 1, fo
Ẽ0 /E0, except in the limit asp tends to 1/2, when it van
ishes.

It should be noted here that the above MGA and EM
expressions are obviously also valid for nonlinear conduc
involving metal/superconductor mixtures. In addition, it c
be shown that the above two-dimensional expressions
hold in the ‘‘opposite’’ infinite-contrast case involving meta
insulator mixtures, provided that the following replaceme
are made:x̃/x should be changed to (x̃/x)21/m and m to
1/m. ~This is a generalization23 of a well-known duality re-
sult in the linear case.!

B. Discussion and comparisons

Figures 4 and 5 present comparisons of the ‘‘new’’ MG
second-order estimates, given in the preceding subsectio
two-dimensional, infinite-contrast, power-law composit
with earlier bounds and estimates of various types for
special class of systems. Results are shown for the effec
nonlinear susceptibilityx̃, normalized by the nonlinear sus
ceptibility x of the power-law phase, as a function of th
nonlinearity exponentm, for 50% volume fraction of the
conducting phase (p50.5).

FIG. 4. MGA estimates for the effective nonlinear susceptibil

x̃ of an isotropic, two-dimensional, two-phase, power-law comp
ite dielectric with 50% of a conducting second phase, plotted a
function of the nonlinearitym (m,1). The ‘‘new’’ second-order are
compared with the earlier ‘‘old’’ second-order estimates, as wel
the ‘‘variational’’ upper bounds. The energy~W! and
complementary-energy~U! versions of the estimates are shown
continuous and dashed or dotted lines, respectively, for the ‘‘ne
and ‘‘old’’ second-order estimates.
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In Fig. 4, the ‘‘new’’ energy ~continuous line! and
complementary-energy~dashed line! MGA estimates~45!
and ~49! are compared with the ‘‘variational’’ MGA
estimate,9,10 as well as with the corresponding energy~con-
tinuous line! and complementary-energy~dotted line! ‘‘old’’
second-order estimates,20 for values ofm,1. The variational
MGA estimate in this case is defined9 by the relationx̃/x
5(11p)(m11)/2(12p)2m, and the corresponding old
second-order estimates may be found in Ref. 20. It should
noted that the ‘‘variational’’ MGA estimate is in fact a boun
for all other MGA estimates. This follows from the fact9,25

that the MGA estimate is an exact result for statistically is
tropic linear composites with extreme values of t
Milton-Torquato47,48 three-point parameters. The followin
observations may then be made in the context of this figu
First, the two types of estimates~arising from the energy
versus complementary-energy formulations! are slightly dif-
ferent from each other, for the ‘‘new,’’ as well as the ‘‘old
second-order estimates. This confirms the existence of a
ality gap, anticipated earlier; however, it appears that the
is quite small, for both the ‘‘new’’ and ‘‘old’’ estimates, in
this case. Second, it can be seen that both the ‘‘new,’’ as w
as the ‘‘old’’ second-order estimates lie well below the var
tional bound for all values ofm less than 1. They also lie
well above the Wiener49 lower bound, except in the limit as
m tends to 0, where the ‘‘new’’ and ‘‘old’’ second-order es
timates both tend to the Wiener bound.

In Fig. 5, both the ‘‘new’’ energy~dashed lines!, as well as
the complementary-energy~continuous lines! estimates~45!
and ~49!, respectively, are shown again, but this time f
values ofm.1. Here, the results are plotted for the quant
(x/x̃)21/m, which is the physically meaningful variable
tending toẼ0 /E0, in the limit asm→`, as mentioned ear
lier. It can be seen that the two types of ‘‘new’’ second-ord

-
a

s

’’

FIG. 5. MGA estimates for the effective nonlinear susceptibil

x̃ of an isotropic, two-dimensional, two-phase, power-law comp
ite dielectric with 50% of a conducting second phase, plotted a
function of the nonlinearitym (m.1). The ‘‘new’’ second-order are
compared with the earlier ‘‘old’’ second-order estimates, as wel
the ‘‘variational’’ upper bounds. The energy~W! and
complementary-energy~U! versions of the estimates are shown
dashed or continuous lines, respectively, for the ‘‘new’’ and ‘‘old
second-order estimates.
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estimates are somewhat different, demonstrating the e
tence of a duality gap, but note that the gap is zero not o
for linear behavior (m51), but also, much more interes
ingly, in the limit asm→`. On the other hand, the ‘‘old’’
second-order estimates are seen to diverge from each oth
this limit, which is clearly a deficiency in the earlier theor
Also, while both versions of the ‘‘new’’ second-order es
mates satisfy the upper bound provided by the ‘‘variation
MGA estimate, only one~the complementary energy, orU)
of the two ‘‘old’’ second-order estimates satisfies the var
tional upper bound, the other one~the energy, orW) tending
to the higher Wiener upper bound in the limit asm→`.
Thus, these results demonstrate that the ‘‘new’’ second-o
estimates are superior to the earlier version~‘‘old’’ ! of the
estimates, especially in the limit of strongly nonlinear beh
ior with a threshold in the electric field.

In Figs. 6 and 7, plots are shown for the ‘‘new’’ EMA
estimates for the effective nonlinear susceptibility of tw
dimensional, infinite-contrast, power-law composites, a
function of the concentration of the conducting phasep. Two
cases are considered:~a! a threshold in the electric displace
ment (m50) and ~b! a threshold in the electric field (m
5`). Note that in these particular cases, the two versi
(W and U) of the ‘‘new’’ theory provide identical predic-
tions. The ‘‘old’’ second-order20 and ‘‘variational’’9,14 EMA
estimates are included for comparison purposes. Here,
‘‘variational’’ EMA estimates are given9 by the expression
x̃/x5(12p)(12m)/2/(122p)(m11)/2, while the ‘‘old’’
second-order estimates are taken from the work of Po
Castan˜eda and Kailasam.20 Again, it is noted that the ‘‘varia-
tional’’ EMA estimate provides an upper bound for all oth
self-consistent estimates. This follows from the fact the EM
estimate is known to be exact for linear composites wit
special class of hierarchical microstructures.45

FIG. 6. EMA estimates for the effective nonlinear susceptibil

x̃ of an isotropic, two-dimensional, two-phase, threshold-typem
50) composite, plotted as a function of the concentrationp of the
conducting phase. The ‘‘new’’ second-order are compared with
earlier ‘‘old’’ second-order estimates, as well as the ‘‘variationa
upper bounds. Here, the energy-density~W! and complementary-
energy~U! versions of the ‘‘new’’ second-order estimates are ide
tical. For the ‘‘old’’ estimates, only the energy-density~W! estimates
are shown.
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In Fig. 6 (m50), all the EMA estimates for the effectiv

threshold electric displacementD̃0 are seen to blow up a
50% volume fraction, which is the known value of the pe
colation threshold for these two-dimensional microstru
tures. However, it is interesting to note that the ‘‘new’’ es
mates remain well below the variational EMA upper boun
~in the sense described in the above paragraph! for all values
of p, while the ‘‘old’’ second-order estimates are seen
violate the bound at a volume fraction of about 47.5%. T
observation demonstrates that the ‘‘new’’ estimates are su
rior to the ‘‘old’’ second-order estimates, which violate
rigorous bound. It is also observed that both the ‘‘new’’ a
‘‘old’’ estimates predict a vanishingly small effect@;o(p)#
of the conducting phase on the effective response for di
concentrations in this case (m50). This is in contrast with
the ‘‘variational’’ upper bound, which predicts a finite en
hancement@;O(p)# in the effective susceptibility.

In Fig. 7 (m5`), all the EMA estimates for the effective
threshold electric fieldẼ0 are seen to vanish at 50% volum
fraction. Here again, the ‘‘new’’ second-order EMA estimat
~note that theW and U versions are identical! are seen to
satisfy the bound provided by the ‘‘variational’’ method fo
all values of the concentration of the conducting phase, w
the ‘‘old’’ second-order estimates are seen to violate
bound: theU version of the ‘‘old’’ theory for concentrations
above approximately 43%, and the correspondingW version
for all values ofp up to percolation. Note also the huge
different behavior predicted by the two theories in the dilu
limit. The ‘‘old’’ theory predicts widely inconsistent results
while the ‘‘new’’ theory yields a more reasonable, albe
nonanalyticprediction for small values of the concentratio
~i.e., an infinite, negative slope atp50). Recalling the ob-
servations at the end of the previous subsection on the
respondences with metal/insulator mixtures, it is further
marked here that the results for the casesm.1 are plotted in

e

-

FIG. 7. EMA estimates for the effective nonlinear susceptibil

x̃ of an isotropic, two-dimensional, two-phase, threshold-typem
5`) composite, plotted as a function of the concentrationp of the
conducting phase. The ‘‘new’’ second-order are compared with
earlier ‘‘old’’ second-order estimates, as well as the ‘‘variationa
upper bounds. Here, the energy-density~W! and complementary-
energy~U! estimates are identical for the ‘‘new’’ theory, but ver
different for the ‘‘old’’ theory.
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Figs. 5 and 7 in such a way that they would correspo
directly as shown to the case of metal/insulator mixtures w
m,1.

C. Critical exponents

Following up on the above discussion for the effecti
behavior near the percolation threshold (pc51/d), it is
straightforward to compute the relevant critical exponents
the ‘‘new’’ second-order estimates. The result is thatt5s
5(11m)/2, so that the ‘‘new’’ second-order estimates
unlike the ‘‘old’’ second-order estimates—satisfy the boun
~1! ~they are in fact identical to them! provided by the
‘‘variational’’ method.28 ~It is recalled14,27 also that both sets
of critical exponents satisfy certain duality relations.1,23!
Thus, for example, in Fig. 6, corresponding tom50, the
critical exponent associated with the ‘‘old’’ method iss51,
which is in violation of the upper bound provided bys
51/2 @recall thatm,1, so the opposite sign applies for th
inequalities in Eq.~1!#. On the other hand, the ‘‘new’’ esti
mates can be seen to exhibit the same critical exponent a
bound (s51/2). Similarly, from Fig. 7, it is deduced that th
value oft predicted by the ‘‘old’’ theory~namely,t50 in this
case corresponding tom50) is in violation of the corre-
sponding lower bound (t51/2) in this case. Again the
‘‘new’’ theory is seen to yield the same exponent as
bound (t51/2). In this connection, it is important to emph
size that the reason for the improvement provided by the n
theory over the earlier second-order theory is directly rela
to the additional dependence on the second moments o
field fluctuations, as is the case with the variational boun
This is especially significant near the percolation thresh
where field fluctuations are known to become unbound
The old theory, which does not incorporate dependence
the field fluctuations, is doomed to fail near the percolat
threshold, even when it possesses several important ad
tages relative to the variational theory, which, on the ot
hand, does make use of the second-moments of the fiel

V. CONCLUDING REMARKS

An improved version of the second-order theory19,20 for
strongly nonlinear composites has been proposed. As
the earlier version of the theory, it produces MGA and EM
estimates that are exact to second-order in the contrast. I
also been found to satisfy all known bounds, including so
recent bounds on the critical exponents associated with
EMA, which had been found to be violated by the previo
version of the theory.~Both versions of the theory produc
nonlinearity-independent percolation thresholds!. In addi-
tion, the new version of the theory appears to give reason
predictions, even for the extreme cases of threshold-t
nonlinearities. Thus, the new second-order theory appea
satisfy most, if not all of the desirability criteria identified i
the introduction. There is an alternative improved version
the second-order theory, recently proposed by Pellegrin29

that may also satisfy all these criteria, although this rema
to be checked, at least for threshold-type nonlinearit
However, our theory may be a little easier to implement th
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the theory of Pellegrini, even if in principle it uses the sam
information, namely, the averages and covariance tensor
the field fluctuations in the phases of similarly chosen~but
not identical! linear comparison composites.

One limitation of the theory, which is shared with th
alternative theory of Pellegrini, is that it exhibits a duali
gap ~the energy and complementary energy formulations
the theories do not yield identical predictions!. However, our
theory has been shown to have vanishingly small dua
gaps, not only in the special case of linear behaviorm
51), but also in the limiting cases of threshold-type nonl
earities (m→0 and`). This suggests that it may indeed b
possible to find further improvements of the theory lead
to complete closure of the duality gap.

Referring to the two-dimensional results, the critical e
ponents of the new EMA theory have been found to sati
the duality relation.23 However, the two critical exponents (s
andt) associated with the new EMA theory were also fou
to have identical values. This is in disagreement with sim
lation results50,51 for nonlinear random resistor network
which suggest that the critical exponents may in fact be
ferent in value. While this is probably the case for real s
tems, it is perhaps not too surprising that the nonlinear v
sion of the EMA theory that has been developed in this w
inherits the feature of equal critical exponents from the c
responding linear theory which it uses to generate an e
mate for the relevant linear comparison composite. It sta
to reason that if a better estimate—one with perhaps diffe
critical exponents—were used to characterize the linear c
parison composite, the resulting nonlinear estimate wo
also be likely to exhibit more realistic exponents, whi
would be expected to be different in value. In this conne
tion, it should be emphasized that more definitive conc
sions may be extracted by full consideration of results
duality theory, including its implications for the relevan
scaling functions.

Another issue that probably merits further investigation
the behavior of these nonlinear systems in the dilute lim
While the predictions of the theory in the dilute limit wer
found to be in good agreement with numerical results for
few cases for which numerical results are available, the p
dictions of the theory were also found to be nonstandard i
least one special case involving a threshold-type nonlinea
where the dependence of the effective threshold coefficie
on the concentrationp of the dilute phase was found to b
nonanalytic. This observation may have implications for ea
lier EMA schemes which implicitly assume analytic depe
dence onp. Could this shed some light, for example, on t
fact that some such schemes appear to give nonlinea
dependent percolation thresholds?
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APPENDIX: DUAL FORMULATION

There an exactly dual formulation31 which makes use of
the local complementary energy-density functionu, such that
E5]u/]D. The functionu is defined in terms ofw via the
Legendre transformation

u~x,D!5stat
E

$D•E2w~x,E!%, ~A1!

where the ‘‘stat’’~stationary! operation means taking the de
rivative of the terms inside the curly brackets with respec
E, solving for E as a function ofD, and substituting the
result back inside the brackets to obtain a function ofD.
Note that the requisite smoothness hypotheses have
made about the functionw, and that, because of the conve
ity hypothesis on thew(r ), there is no ambiguity in the abov
definition—and the functionu is also convex.

In terms of the complementary energy functionu, the ef-
fective constitutive relation for the nonlinear composite m
then be alternatively written as

Ē5
]̃U

]D̄
, ~A2!

whereŨ is the effective complementary energy function f
the composite, defined by

Ũ~D̄!5min
DPS

^u~x,D!&5min
DPS

(
r 51

N

c(r )^u(r )~D!& (r ). ~A3!

In this relation,S5$D, divD50 in V, Dn5D̄n on ]V%
denotes the set of trial electric displacement fields. Aga
under the above-mentioned hypotheses on thew(r ), the two
formulations are exactly equivalent in the sense of Legen
duality: Ũ5W̃* .

Following the development in Sec. III, an analogous e
mate for the effective complementary energy function of
nonlinear composite may also be generated such that

Ũ~D̄!5stat
s0

(s)
H ŨT~D̄;D(s),s0

(s)!2(
r 51

N

c(r )V(r )~D(r ),s0
(r )!J ,

~A4!

where ŨT is the effective complementary energy functio
associated with a linear comparison composite with lo
phase energy functions defined by
ev
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uT
(r )~D!5u(r )~D(r )!1

]u(r )

]D
~D(r )!•~D2D(r )!

1
1

2
~D2D(r )!•s0

(r )~D2D(r )!, ~A5!

and where the functionsV(r ) are now given by

V(r )~D(r ),s0
(r )!5stat

D̂(r )

@uT
(r )~D̂(r )!2u(r )~D̂(r )!#. ~A6!

The result~A4! for Ũ can be shown to further simplify to

Ũ~D̄!5(
r 51

N

c(r )Fu(r )~D̂(r )!2
]u(r )

]D
~D̄(r )!•~D̂(r )2D̄(r )!G .

~A7!

Here the variablesD(r ) in Eq. ~A5! have been identified with
the averagesD̄(r )5^D& (r ) of the electric displacements in th
various phases of the linear comparison composite w
spontaneous polarizations defined by Eq.~A5!. On the other
hand, the second-moment variablesD̂(r ) are obtained from
appropriate traces of the covariance matrixCD

(r ) of the elec-
tric displacement fluctuations in phases. The variabless0

(s) in

expression~A4! for Ũ are chosen to be of the forms0
(r )

5(1/« i
(r ))m(r )

^ m(r )1(1/«'
(r ))(I2m(r )

^ m(r )), where m(r )

5(1/D̄ (r ))D̄(r ) is a unit vector aligned with the average ele
tric displacement field in phaser, defining two directions in a
natural way: a ‘‘parallel’’ one, and a ‘‘perpendicular’’ one
The comparison permittivity tensorss0

(r ) are determined, in
turn, by the secant-type condition

]u(r )

]D
~D̂(r )!2

]u(r )

]D
~D̄(r )!5s0

(r )~D̂(r )2D̄(r )!. ~A8!

It is emphasized that because of the existence of a du
gap, the constitutive relation resulting from these express
are not exactly equivalent to the corresponding express
derived in Sec. III for the energy density function of th
composite. However, because of the restricted Legendre
ality of the linear comparison problems involved, the follow
ing relations can be shown to hold among the variables
are used in these two formulations:D̄(r )5]w(r )/]Ē(r ), Ē(r )

5]u(r )/]D̄(r ), D̂(r )5]w(r )/]Ê(r ), Ê(r )5]u(r )/]D̂(r ), and
s0

(r )5(«0
(r ))21. ~But note thatD̄(r ) and Ē(r ) do not corre-

spond exactly to the average electric displacement and e
tric field in phaser of the nonlinear composite in the conte
of the energy and complementary-energy formulations,
spectively.!
ry
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