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ABSTRACT Current viral docking models have relied upon the assumption that bond formation and breakage are
independent of viral and docking surface geometry, as well as the forces exerted on the bonds. This assumption, known as the
equivalent site hypothesis (ESH), is examined in detail using a newly developed simulation technique—Brownian adhesive
dynamics (BRAD). The simulation couples the thermal motion of viral particles with adhesive dynamics models to characterize
the effect of bonding on viral motion. We use the binding of HIV-like particles to CD4 expressing cells as a model system to
illustrate the utility of BRAD. Comparison of the transition rates between bound states predicted by ESH and the rates resulting
from BRAD simulations show dramatic differences; at values of the equilibrium crosslinking constant, KxRT, where ESH
suggests all virus adhesion proteins will be bound (KxRT ¼ 106), BRAD predicts not all virus adhesion proteins will be bound. At
values of the equilibrium crosslinking constant used in typical ESH calculations of virus docking (KxRT ¼ 1) we find BRAD
simulations predict no binding. The mean bond density from BRAD models is often much lower than that predicted by ESH for
equivalent parameter values. BRAD suggests that the viruses are much less well bound than ESH predicts. The differences
suggest that binding models for viruses need to be reexamined closely. BRAD is a simulation technique that will be useful for
quantifying the receptor-mediated binding of a wide variety of viruses to cells.

INTRODUCTION

HIV infection remains a significant problem in the world. In

2001, 40 million people were infected with the virus, and 3

million died from complications related to the infection

(Ezzell, 2002). Recent developments in antiviral therapies

have yielded significant advances in decreasing the serum

viral load in patients. These drugs are capable of slowing

production of the virus to a point where the immune system

can clear virus from the blood. However, it has recently been

learned that not only can the virus surreptitiously hide in CD4

cells and the blood, but it can also remain dormant on the

surface of follicular dendritic cells (FDCs) and within

macrophages (Finzi and Siliciano, 1998). The virus also uses

anatomical compartments such as the central nervous system

and the male urogenital tract to avoid antiviral therapies

(Pierson et al., 2000). These additional cell types and

anatomical compartments serve as reservoirs for the virus.

The reservoirs explain the appearance of the rapid rise in blood-

borne virus immediately after patients—who previously

had immeasurable virus in the blood—are removed from

antiviral therapy. This partitioning of the virus into different

compartments complicates determining the additional length

of drug treatment necessary after a patient has no measurable

virus in the blood.

A mechanistic understanding of virus binding would be

useful for explaining disease progression—for example, the

binding of virus to cells in different compartments. It could

also help in determining optimal doses of antiviral

drugs—maximizing the inhibition of the virus and minimiz-

ing the side effects. A mechanistic model of virus binding

would also provide insight into viral production methods by

determining the maximum shear rate between virus and cell

that would allow for virus binding. This information could

then be used in bioreactors that utilize viruses. A maximum

stirring rate could be selected that promoted transport of

material in the reactor, while not inhibiting—or completely

stopping—the infection process.

There are four simple steps in the viral lifecycle, here

illustrated with HIV. First, the virus attaches to a host cell.

HIV uses the viral glycoprotein gp120 on its envelope to

attach to the CD4 protein on cells. Second, the viral genetic

material is inserted into the host cell—in the case of HIV this

is done through fusion and uncoating at the cell surface.

Third, the viral genetic material takes over the operation of

the host cell, forcing the host cell to manufacture new virus.

Fourth, the cell lyses, releasing newly created virus that

repeat the cycle. HIV can also be released from the cell

during viral manufacture by budding from the cell’s surface

(Levine, 1992). When HIV attaches to an FDC, the virus

remains dormant on the surface of the cell and endocytosis

does not occur (Hlavacek et al., 1999b). Many of the

theoretical models have centered on the later viral lifecycles.

Reaction models have simulated the third and fourth stages

of the viral lifecycle for phage viruses (Endy et al., 2000;

You et al., 2002). Given the severity of HIV/AIDS, and the

multiple cell lines that HIV can infect, accurate quantitative

models of the host specificity and binding of HIV would be
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useful for understanding the host tropism of different strains

of the viruses. Accurate models of viral docking will provide

insight into how viruses partition into different cell types,

how infection propagates, and how to prevent transmission

of viruses.

Currently there is one dominant model of viral docking.

Mass balances are written for the population of virus bound

by i receptors. These balances include rate terms that account

for a virus forming or breaking bonds. Thus, the model

consists of a set of n differential equations, where n
corresponds to the maximum number of bonds. There is

also an algebraic constraint within the model based upon the

fact that the sum of potential binding sites and bound sites on

the surface of the cell must sum to the total number of

binding sites on the surface of the cell (Perelson, 1981;

Wickham et al., 1990; Hlavacek et al., 1999b). By making

the approximation that the number of available cellular

binding sites is equal to the total number of binding sites, the

model is converted to a set of linear ordinary differential

equations. In the linear form the model becomes a continu-

ous-time Markov chain. Thus, expected times for dissocia-

tion can be calculated. Implicit in this model is the assumption

that all binding sites have the same rate of bond formation

and breakage. This assumption is known as the equivalent

site hypothesis (ESH). Recently, Hlavacek and co-workers

(1999a) recognized that binding of some viral attachment

proteins might occlude the binding of further free viral

attachment proteins and used probability arguments to

estimate the size of the effect. However, we postulate that

the geometry of the virus, the distribution and length of viral

attachment proteins and cell receptors, and the random forces

placed on molecules due to Brownian motion of the virus—

effects not incorporated in the ESH model—will cause

further differences in the rates of bond formation and

breakage, which are likely different for each receptor viral

attachment protein pair. Hence we suspect the ESH is not

strictly valid for virus binding, and a more rigorously detailed

method is necessary to accurately simulate viral docking.

Adhesive dynamics simulations are another method of

modeling biological attachment. Previously, adhesive dy-

namic simulations were used to simulate receptor-mediated

cell adhesion (Hammer and Apte, 1992; Tees et al., 2001;

King and Hammer, 2001). The method employs a combina-

tion of deterministic equations of motion for the cell itself and

probabilistic bond formation and breakage. The probability

of a bond forming is a function of the position of the bonding

molecules. Generally, the larger the deviation between the

tips of adhesion molecules, the less likely a bond is to form.

Once a bond is formed it generates forces on the adhering

particle. These forces are calculated bymodeling the bonds as

Hookean springs. The bonding forces are then summed

vectorially with other forces on the particle. These forces may

be the result of surrounding fluid flow, interfacial forces (i.e.,

electrostatic forces), or other body forces acting on the

particles. Adhesive dynamic simulations have had substantial

success in prediction and replication of experimental results

for adhesion of cells and beads on surfaces. More background

on adhesive dynamic simulations and their application to

leukocyte adhesion can be found in work by Hammer and co-

workers (Hammer and Apte, 1992; Tees et al., 2001; King

and Hammer, 2001). The adhesive dynamics method is

extendable to any sized particle that undergoes adhesion.

Here, we apply it to viral adhesion to cell surfaces.

Viruses are nanosized particles, whose dominant source of

motion is derived from the thermally driven collisions of the

surrounding solution—i.e., the Peclet number, which com-

pares convection to diffusion, is often small. Methods for

simulating Brownian motion are well developed. Combining

Brownian motion simulations with concepts from adhesive

dynamics leads to a novel technique to simulate viral at-

tachment to surfaces. We call this new technique Brownian

adhesive dynamics (BRAD). The method is completely

general, capable of simulating multiple ligand/receptor pairs

between the virus and cell, extendable to any geometry, and

to any virus/cell system. In the first step of the algorithm,

a cell surface and virus particle are created. Viral attachment

proteins and cellular attachment proteins are distributed on

their respective surfaces. It is assumed that protein diffusion

within the membrane can be neglected. This assumption will

be relaxed in future work. The virus then undergoes motion

due to thermal collisions. At each step of the virus’ motion,

each attachment protein pair is evaluated for potential bond

formation or breakage. The simulation terminates when the

virus moves outside the volume of interest, or the maximum

number of simulation steps are taken. For the purpose of this

article, the value of BRAD has been demonstrated using

kinetic rate data from the gp120/CD4 system. Future work

will examine the role of system parameters, such as receptor-

ligand binding kinetics, on virus binding.

In this article, the BRAD method will be presented in

detail. First a discussion of the techniques used to model

Brownian motion will be described, followed by a review of

the adhesive dynamics models. A set of model parameters

will then be presented. We report the steady-state bond

number, the fraction of viruses that bind, the rates of bond

formation and breakage, and the effect of altering model

parameters, such as receptor density, on virus binding.Where

appropriate, we compare the model to ESH. The net effect is

that BRAD can be used to calculate the docking of viruses to

cell surfaces, and we gain insight into the mechanism of virus

docking not possible with previous models.

MODELS

To better understand the comparisons between ESH viral docking models

and BRAD, a brief overview of the ESH model is warranted. For more

background refer to Perelson (1981), Wickham and co-workers (1990), and

Hlavacek and co-workers (1999b). As stated in the Introduction, the ESH

model is the result of a mass balance performed on each bonded species,

generating a system of first-order differential equations with one algebraic

constraint,
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dB1=dt ¼ �krB1 � ðn� 1ÞkxRB1 1 2k�xB2

dBi=dt ¼ ðn� i1 1ÞkxRBi�1 � ik�xBi � ðn� iÞkxRBi

1 ði1 1Þk�xBi11 i ¼ 2; . . . ; n� 1

dBn=dt ¼ kxRBn�1 � nk�xBn

RT ¼ R1 +
n

i¼1

iBi; (1)

where Bi is the surface density of viruses bound with i bonds, R is the surface

density of unbound receptor molecule, RT is the total surface density of

receptor molecule, kx is the single site rate constant for the formation of

a bond between the virus and the surface, k�x is the single site rate constant

for breakage of a bond between the virus and the surface, kr is the effective
rate constant for detachment of a virus bound by a single receptor, and n is

the number of viral bonding molecules on the surface of the virus. If the

approximation of R ¼ RT is made (appropriate in the limit of low virus

coverage) the model becomes linear, and a continuous-time Markov chain.

The rate of going from a virus with i bonds to i 1 1 bonds is given by

(n�i)kxR. The rate of going from a virus with i bonds to i� 1 bonds is given

by ik�x. Implicit in this model is the assumption that all binding sites have

the same intrinsic rate of bond formation and breakage. A schematic diagram

of ESH showing the progression from one bonding state to another is shown

in Fig. 1. This form of the model does not include the reattachment rate for

viruses that become unbound from the cell, as typically included in ESH

models (Hlavacek et al., 2002). However, neglecting the reattachment rate

does not affect the results from the ESH model because the rate of bond

formation is many times larger than the rate of bond breakage. The rates of

bond formation and breakage are often determined by fitting the model to

patient viral load data (Hlavacek et al., 2000).

Brownian adhesive dynamics

BRAD is a method to calculate the trajectory of a virus by solving the

equations of motion. The three forces incorporated into the momentum

balance are Brownian, deterministic, and bonding. Brownian forces are the

random forces caused by collisions between the particle and the solution

molecules. Deterministic forces are caused by electrostatic repulsion, and

hydrodynamic flow. The bonding forces result from the extension or

compression of receptor-ligand pairs.

Far-field motion

When the virus particle is solely under the influence of the Brownian forces

(there are no adhesive forces), a Brownian motion algorithm developed by

Torquato and Kim is used to generate the random walk (1989). Torquato and

Kim showed that given a fixed distance to travel, r, a particle experiencing

only forces due to thermal motion, will take a random time, dt, to travel the

given distance. The cumulative distribution for dt is given by

PðdtÞ ¼ 11 2 +
N

m¼1

ð�1Þmexpð�Dm
2
p

2
dt=r

2Þ; (2)

where D is the particle diffusivity, which can be calculated using the Stokes-

Einstein relation (Torquato and Kim, 1989). To generate a path taken by

such a particle a point is chosen at random on the sphere defined by radius r

with the particle initially at the origin. Then P(dt) is chosen from a uniform

distribution. Eq. 2 can then be solved for dt. To save computation time, the

summation in Eq. 2 is truncated at the first term without introducing

significant error. This algorithm acts as an adaptive timestep algorithm, and

speeds up the calculation by moving the particle a great distance in a single

cycle of the algorithm.

Near-field motion

When the viral particle is close to the cell surface, and binding is possible,

Brownian motion is calculated using the method of Allen and Tildesley

(1987). For a particle experiencing both deterministic and random forces,

these differential equations describe the position and velocity of the particle,

dr=dt ¼ v

dv=dt ¼ �bv1A1Kðr; tÞ; (3)

where r is the vector of positions, v is the vector of velocities, b is the inverse

of the viscous relaxation time, A is the vector of accelerations caused by the

random forces resulting from thermal motion, and K is the vector of

accelerations resulting from deterministic forces caused by bonds or fields

acting on the virus (Chandrasekhar, 1943). Electron micrographs of HIV

indicate that the virus is spherical (Levine, 1992). Thus, the inverse of the

viscous relaxation time can be written as

b ¼ 3pmd=m; (4)

where m is the viscosity, d is the diameter of the virus, and m is the mass of

the virus. Viruses with different shapes may be simulated with the proper

formulation of the drag.

These differential equations can be integrated using an integrating factor.

The trajectories can then be generated by evaluating the solutions of the

differential equations at specified timesteps dt,

rðt1 dtÞ ¼ rðtÞ1 c1dtvðtÞ1 c2dt
2
K1 @r

G

vðt1 dtÞ ¼ c0vðtÞ1 c1dtK1 @v
G

c0 ¼ expð�bdtÞ
c1 ¼ ð1� c0Þ=ðbdtÞ
c2 ¼ ð1� c1Þ=ðbdtÞ; (5)

where @rG is a random position vector and @vG is a random velocity vector.

The elements of these two random vectors must be chosen in a position

velocity pairwise fashion from a bivariate Gaussian distribution. The

distribution has a zeromean, and variance and correlation coefficient given by

s
2

r ¼ dt
2 kbT

m
ðbdtÞ�1ð2� ðbdtÞ�1ð3� 4expð�bdtÞ

1 expð�2bdtÞÞ

s
2

v ¼
kbT

m
ð1� expð�2bdtÞÞ

crvsrsv ¼ dt
kbT

m
ðbdtÞ�1ð1� expð�bdtÞÞ2: (6)

FIGURE 1 Diagram of bond transitions and their associated rates using

the ESH model. RT is the total surface density of receptor molecule, kx is the

single site rate constant for the formation of a bond between the virus and the

surface, k�x is the single site rate constant for breakage of a bond between

the virus and the surface, kr is the rate of a singly bound virus dissociating

from the cell, and n is the number of viral bonding molecules on the surface

of the virus.
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Note that it is assumed that dt is chosen small enough so that the

deterministic forces can be approximately constant throughout the timestep.

For a detailed derivation of these equations and the distributions from which

@rG and @vG are sampled, see Allen and Tildesley (1987) as well as

Chandrasekhar (1943).

In addition to random forces, particles also experience random torques

(Berg, 1993). Thus, an additional set of model equations can be written to

characterize the angular position and rates of rotation as

du=dt ¼ v

dv=dt ¼ �brotv1Arot 1Krotðr; tÞ
brot ¼ pmd

3
=I; (7)

where u is the vector of angular positions, v is the vector of angular

velocities, Arot is the vector of angular accelerations resulting from random

torques to the particle, Krot is the vector of angular accelerations resulting

from deterministic torques, brot is the inverse of the rotational viscous

relaxation time, and I is the rotational inertia of the virus. The expressions in

Eq. 7 can be solved in exactly the same manner as those in Eq. 3, producing

equations analogous to Eq. 5 for calculating the angle and angular rotation of

the virus. The variances and correlation coefficients for the rotational motion

are given by the expressions in Eq. 6 with I substituted for m and brot

substituted for b.

To model bonding of the virus with the surface, we used the model

developed by Dembo et al. (1988). The rate of bond formation and breakage

is given as

kf ¼ k
o

f expð�ðstsðxm � lÞ2Þ=ð2kbTÞÞ
kr ¼ k

o

r expðððs � stsÞðxm � lÞ2Þ=ð2kbTÞÞ; (8)

where kf is the rate of bond formation, kf
o is the standard rate of bond

formation, kr is the rate of bond breakage, kr
o is the standard rate of bond

breakage, s is the spring constant of the bond, sts is the transition state

spring constant, xm is the length of the bond, l is the equilibrium length of

the bond, kb is the Boltzmann constant, and T is the temperature. To

determine if a bond is formed, first the end-to-end separation distance of the

receptor and viral attachment protein is calculated. Then a uniformly

distributed random variable is generated. If that number is less than the

cumulative probability given by

PðdtÞ ¼ 1� expð�kfdtÞ; (9)

a bond is formed. To determine if a bond is broken, the length of the bond is

calculated, and a uniformly distributed random variable is generated. Then if

that number is less than the cumulative probability given by

PðdtÞ ¼ 1� expð�krdtÞ; (10)

the bond is broken. It is assumed that all bonding events only occur at the

end of each timestep (King and Hammer, 2001; Tees et al., 2001). At the

beginning of a timestep, each unbound molecular pair is examined to see if

a bond is formed. Also, each bound molecular pair is examined to see if the

bond breaks. Forces on the particle resulting from the bonds are calculated

by using Hooke’s law and are assumed constant throughout the timestep.

These forces are then vectorially added into the sum of forces that result in

the deterministic acceleration, K, found in Eq. 5.

The virus is prevented from moving through the cell surface

by a nonspecific electrosteric force, which is phenomenologically given as

Frep ¼ 1.5 3 10�27 s�1.95 N, with the separation distance between the virus

and surface, s, given in meters. Similar phenomenological forms have been

proposed previously for cell contact phenomena (Bell et al., 1984) and

also implemented in adhesive dynamics (King and Hammer, 2001).

The diffusivity of proteins within a membrane is of order 10�10 cm2 per s

(Bell, 1978). A bond length is ;10�8 m. Thus the timescale over which

diffusion of proteins within the membrane would be significant would be

given by

l
2

D
� ð10�8

mÞ2

10
�14

m
2
=s

� 0:01 s: (11)

After the initial bond has formed, the simulations will show that steady state

between the virus and the cell has occurred well before 0.01 s has elapsed.

Thus it is valid to simplify the model by not including protein diffusion

throughout the membranes. Therefore, the diffusivity of both gp120 and

CD4 within the viral and cellular membranes, respectively, is set equal to

zero in these simulations. This fixes the positions of the proteins within their

membranes. Immobilizing receptors neglects their lateral motion due to

forces acting on molecules, which would drag them through the

membrane—this will be corrected in a future version of BRAD. For the

purpose of this study, the cell surface is approximated as a plane. This is

a reasonable approximation because the diameter of the cell is orders-of-

magnitude larger than the diameter of the virus.

A flowchart describing the overall structure of BRAD simulations is

shown in Fig. 2. First a virus particle and cell surface is created. This is done

by uniformly distributing viral attachment proteins on the surface of the

virus, and uniformly distributing receptors on the cell surface. For both the

virus and cell surfaces the positions of the proteins are determined by

sampling a uniform random distribution. The positions of the proteins are

fixed on both the viral and cell surfaces after being generated. At the

beginning of each timestep, each bonding molecule pair is examined to

determine if a bond is formed or broken. If a bond exists or if the virus is

experiencing a deterministic force, such as electrostatic repulsion, the forces

from all sources are vectorially summed, and the net displacement in

position and velocity is calculated. If the virus is unbound and only under the

influence of thermal forces, the maximum distance that the particle can move

before it encounters a bonding molecule or a region of deterministic forces

is calculated. Then the algorithm, Quickdiff (short for Quick Diffusion

FIGURE 2 Flowchart describing the overall structure of BRAD simu-

lations.
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Algorithm), based on the work of Torquato and Kim, is used to update the

positions and velocities of the virus. At the end of each timestep, the virus is

examined to see if it has moved out of the volume of interest. For the purpose

of this article the volume is a cube;35 viral diameters along each edge, with

the cell surface positioned at the base of the cube. If the virus has moved

outside of the volume of interest a new virus and cell surface are generated.

Otherwise, bonding pairs are evaluated and the process repeats until

a prescribed number of timesteps have been taken.

Fig. 3 is a plot of the diffusivity of an unbound virus as a function of the

fraction of simulation steps in which the far-field simulation method

(Quickdiff) was used. The solid horizontal line is the theoretical diffusivity

of the particle calculated by the Stokes-Einstein relationship. The plot shows

that the simulated diffusivity agrees with the theoretical diffusivity when up

to 90% of the simulation steps are calculated via Quickdiff. Only when all of

the steps are calculated via Quickdiff does the simulated diffusivity differ

somewhat from theory, though the error is ,5%. Therefore, we conclude

that the algorithm accurately reproduces the proper Brownian motion of the

virus, even when a far-field method is used to calculate the virus motion.

A typical trajectory for the virus center in the vicinity of the cell surface is

shown in Fig. 4. Fig. 4 a is a diagram of the coordinate system used for the

simulations. In Fig. 4 b the position of the particle in the xy plane in shown.

The virus starts with its center at the origin. Note the section of the random

walk that appears as a long straight line. The line is the result of a dilated

timestep cycle of the algorithm (far-field motion). Fig. 4 c is a plot of the z

position as a function of time. The dotted horizontal line in Fig. 4 c

represents the z position of the center of the virus where the surface of the

virus would contact the cell surface. Fig. 4 d is a plot of bond number as

a function of time. Clearly, as bonding increases, the thermally driven

motion of the virus becomes less pronounced, and the separation between

virus and surface approaches the equilibrium bond length.

Model parameters

In this article, we will use a model virus similar to HIV to illustrate the value

of BRAD. Kinetic rates of CD4/gp120 binding will be used. A difference

between HIV structure and the model virus used here is that gp120 is

trimerized on an actual HIV particle, which will lead to steric effects and

mechanistic details not yet incorporated in the model. Yet, the model is

illustrative of the basic principles of virus binding.

A mature HIV is 80–100 nm in diameter, with 8-nm projections of

exposed gp41 and gp120 on its surface (Murphy et al., 1995). The

simulation results presented in this article use a viral diameter of 90 nm. The

length of gp120 and CD4 is ;5 nm and 6.3 nm, respectively (Kwong et al.,

1998). In the simulation the lengths of CD4/gp120, including the portion of

exposed gp41 and the unstressed bond, are set at 6.3 nm, 8 nm, and 14.3 nm,

respectively. Values of 72–100 groups of gp120 on the surface of the virus

have been reported (Murphy et al., 1995; Hlavacek et al., 1999b; Kuznetsov

et al., 2003). Simulations presented in this article used a value of 72 groups

of gp120 on the surface of its protein envelope. Using scaling arguments and

comparison with values from prior adhesive dynamics work, the values of s

and sts were set at 1.2 3 10�2 and 3.5 3 10�3 N/m (Chang and Hammer,

2000). Using experimental data from Dimitrov and co-workers, a physio-

logical surface density of CD4 is estimated at 6.3 3 1011 molecules per

square centimeter (Dimitrov et al., 1992).

To determine kf
o and kr

o for individual bonds we used the kinetic data from

Dimitrov and co-workers. Macroscopic kinetic bond formation, ka, was

measured to be (1.5 6 0.42) 3 105 M�1 s�1, and macroscopic bond

dissociation, kd, is given as 3.3 3 10�4 s�1 at 37�C. In the Dimitrov

experiment, gp120 is expressed on the surface of infected cells, then

solubilized CD4 is introduced and the binding of CD4 to the gp120 is

observed using flow cytometry. The information given by ka and kd provides
three-dimensional rate information, i.e., including the rate of transport in the

bulk solution. However, the rates required by the ESH model and BRAD are

two-dimensional, excluding the effect of transport in the bulk solution. It is

then necessary to use some method of conversion to transform the

experimentally observed rates of Dimitrov into rates of appropriate

dimension for the models.

A method presented by Bell can be used to estimate individual bonding

rates from the volumetric rate data (Bell, 1978). First the diffusion-limited

rate of formation, d1, and dissolution, d�, of the encounter complex are

calculated as

d1 ¼ 4pDsCD4RAB

d� ¼ 3DsCD4=R
2

AB; (12)

where DsCD4 is the diffusivity of soluble CD4 and RAB is the encounter

distance for the gp120 and CD4 system. Thus, using the Stokes-Einstein

relation, the diffusion coefficient of solubilized CD4 � 8.5 3 10�11 m2 per

s and the diffusion coefficient of gp120 will be much smaller than that of the

solubilized CD4 because it is fixed to the cell surface in the Dimitrov

experiment. The value for the encounter distance was taken as 0.75 nm, the

same distance that Bell proposes for the hapten-antibody system. The

individual bond formation and breakage rates are then found, solving the

following system of equations:

FIGURE 3 Diffusion coefficient calculated from simu-

lation results, n, as a function of the fraction of the

trajectory simulated using the far-field approximation. The

solid line depicts the theoretical diffusion coefficient

calculated using the Stokes-Einstein relation. The error

bars depict the 95% confidence interval. The point

represented by a : shows the small error introduced by

truncating the summation of Eq. 5 at the first term.
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ka ¼ d1 k
obs

f =ðd� 1 k
obs

f Þ
kd ¼ d�k

obs

r =ðd� 1 k
obs

f Þ; (13)

where kf
obs and kr

obs are the intrinsic rates of bond formation and breakage.

Using this method, kf
obs � 1.4 3 105/s and kr

obs � 3 3 10�4/s. It is

interesting to note that Myszka et al. (2000) report the free energy of binding

between gp120 and CD4 as –11.8 6 0.3 kcal/mol. This translates to a kf/kr
value of 2.0 3 108 which is within an order of magnitude of that estimated

by Dimitrov of 4.6 3 109. With large negative values of free energy and

large equilibrium constants, bond formation is heavily favored over bond

breakage at equilibrium. The intrinsic rates of bond formation and breakage

in the Dembo bonding model, kf
o and kr

o, are set equal to kf
obs and kr

obs,

respectively, for the BRAD simulations.

To make comparisons between BRAD simulations and ESH models the

value of kx and k�x must be determined. The two-dimensional rates of the

ESH model are found by converting the three-dimensional rates observed in

the Dimitrov experiment into two-dimensional rates using the method of

Bell (1978). The ESH rates are found using Eq. 13; however, d� and d1 are

given by Eq. 14 as

dm1 ¼ 2p½DmðCD4Þ1Dmðgp120Þ�

d
m

� ¼ 2½DmðCD4Þ1Dmðgp120Þ�R�2

AB; (14)

where Dm(CD4) and Dm(gp120) are the membrane diffusivities of CD4 and

gp120, respectively. The value of the membrane diffusivities are both taken

as 10�10cm2/s. The ESH model values are then 8.6 3 10�14 m2 per s and

4.7 3 10�4 s for kx and k�x, respectively. These rates were used to make

comparisons to BRAD simulation results with the ESH model. These values

of kx and k�x result in a large value for the equilibrium crosslinking constant,

(kxRT/k�x¼ KxRT¼ 106 where Kx is the dimensional crosslinking constant).

Hlavacek and co-workers used patient viral load data to set the value of kx
and k�x for the FDC/HIV system, which employs different binding proteins.

They found the equilibrium crosslinking constant needed to match viral load

data was of order one (Hlavacek et al., 1999b). Hlavacek and co-workers

examined a range of values for n from 10 to 100. To make a fair comparison

between ESH and BRAD, the maximum number of observed bonds in all

BRAD simulations in this article, 21, was taken as the value of n.

Because the value of KxRT is larger than is typically used in viral

simulations, such as used by Hlavacek and co-workers, we examined other

methods for determining KxRT. An alternative, perhaps superior method for

determining KxRT comes from the models of crosslinking of multivalent

antigens by cell surface immunoglobulins in immune cells (Crothers and

Metzger, 1972; Dembo and Goldstein, 1978; Goldstein and Wofsy, 1994).

The most lucid of the treatments in that of Goldstein and Wofsy (the other

methods yield approximately the same result). In Goldstein and Wofsy, the

relationship between Kx and K is given, Kx ¼ K/d, where d is the antigen-

antigen separation distance. Given the number of viral attachment proteins –

72 – and the area of the virus (based on a 90 nm radius), we estimate d ¼ 4

3 10�6 cm. Based on the direct 3D measurement of K ¼ 4.55 3 108 M�1

¼ 8 3 10�13 cm3 by Dimitrov (given in our article), Kx¼ 2.1 3 10�7 cm2,

and KxRT¼ 1.3 3 105 (based on RT¼ 6.3 3 1011 mol/cm2). Thus, KxRT is

still quite large. Calculations performed with this high value of KxRT, using

the ESH model, in which kx ¼ 9.7 3 10�11 cm2 per s, and k�x ¼ 4.7 3

10�4 s give no detectable difference in the steady-state binding of the virus

with the cell (since KxRT is so large) and very little difference in the

dynamics of approach to steady state. Thus, regardless of what precise model

is used to calculate KxRT, our basic conclusions regarding the differences

between the BRAD and ESH models will be the same.

FIGURE 4 Typical trajectory resulting from BRAD simulation. Frame a is a diagram of the coordinate system used in BRAD simulations. In b the path of

the particle in the xy plane is displayed. The particle begins at the origin. The straight line segments in the path are a result of the algorithm taking an adaptive

timestep cycle. In c, the z position as a function of time is plotted. The dotted horizontal line indicates the point where the surface of the virus touches the surface

of the cell. The dashed line is the center position for the virus when the surface of the virus is one unstressed bond length from the surface of the cell. A diamond

indicates the time and z position where bonding begins. In d the number of bonds as a function of time are plotted. Note that the virus need not touch the surface

to form a bond.
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The viscous relaxation time, m/3pmd, is the time constant for the decay

of the acceleration transient caused by collisions between the solution

molecules and the particle. As long as the timestep of the difference

equations is larger than the viscous relaxation time, it can be assumed that

the particle has no inertia. Thus, in BRAD simulations, when the particle is

under the influence of deterministic forces there is an upper bound to the

timestep, resulting from the desire to have several bonding events per

timestep as well as keeping the deterministic forces constant throughout the

step, and a lower bound, set by the viscous relaxation time. For HIV particles

a 1-ns timestep satisfies both constraints.

RESULTS

Fig. 5 contains six snapshots of viral positions and bonds

during an encounter with the cell surface from BRAD

FIGURE 5 Snapshots of viral position and bonds for a transiently adhering virus. Bonds depicted as black lines indicate that the bond was formed in that

frame. Bonds depicted as gray lines indicate that the bond had formed before that frame and existed through the frame. Bonds depicted as black lines with an x

at the endpoints indicate that the bond was broken in that frame. In this sequence the virus forms bonds with the cell but breaks those bonds and diffuses from

the surface. Times for a–f are 0, 22, 2696, 3450, 3458, and 3521 ns, respectively. The bond formation lengths for a–c are 14.4, 16.4, and 15.1 nm, respectively.

The bond breakage lengths for d–f are 19.4, 19.9, and 19.3 nm, respectively. Frame g depicts the position of the virus center in the z direction (normal to the cell

surface) at the six times depicted in a–f. Frame h is a plot of the angle between the reference vector and the xy plane for each of the times depicted in frames a–f.

Frames i and j are plots of bond number and the magnitude of the displacement of the virus center on the xy plane, respectively.

Simulations of Viral Binding 3365

Biophysical Journal 86(6) 3359–3372



FIGURE 6 Snapshots of viral

position and bonds for a transiently

adhering virus. Bonds depicted as

black lines indicate that the bond

was formed in that frame. Bonds

depicted as gray lines indicate that

the bond had formed before that

frame and existed through the

frame. In this sequence the virus

forms a permanent set of bonds

with the cell. Times for frames a–l

are 0, 789, 1044, 1765, 2544,

3808, 6865, 23,520, 34,341,

40,333, 41,593, and 3,437,903

ns, respectively. The bond forma-

tion lengths for a–l are 16.0, 14.7,

14.1, 14.9, 14.4, 15.1, 14.2, 15.7,

14.9, 17.0, 16.0, and 18.3 nm,

respectively. Frame m depicts the

position of the virus center in the z

direction (normal to the cell sur-

face) at the 11 times depicted in

a–k. Frame n is a plot of the an-

gle between the reference vector

and the xy plane for each of the

times depicted in a–k. Frames o

and p are plots of bond number

and the magnitude of the displace-

ment of the virus center on the xy
plane, respectively.
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simulations in which the virus binds then unbinds from the

cell. This simulation employs the physiological cellular

receptor density (6.3 3 1011 mol/cm2). Black lines indicate

that the bond was formed in that frame. Black lines with an

x at the endpoints indicate that the bond will break

immediately following that frame. Gray lines indicate that

the bond previously existed. The black line within the sphere

is a reference vector to indicate the angular position of the

virus. Fig. 5 shows that the virus shuffles back and forth on

the surface of the cell while rotating. In this realization, the

virus docks and undocks from a cell in a short time. A second

simulation performed under the exact same conditions shows

a virus that docks irreversibly (Fig. 6). Fig. 5, g–j, and Fig. 6,
m–p, illustrate how the virus-cell separation, virus angle,

bond number, and displacement in the xy plane change with
time for each of the two trajectories.

Fig. 7 is a plot of the bond number as a function of time for

five viruses simulated by BRAD, and the predicted mean

bond number from the ESH model (smooth black line). The
dotted lines denote the range in bond numbers that have at

least 5% of the total virus surface density according to the

ESH model. Fig. 7 a shows the trajectories of several viruses
simulated with BRAD and the ESH model up to the time

steady state is reached for the simulated viruses. The time

shown to reach a steady-state bond number is actually less

than the time required in vivo, since the simulations start

with the viruses in molecular contact and the ESH cal-

culations are performed with an initial condition of B1 ¼ 1,

Bi ¼ 0 for i 6¼ 1. Two differences between ESH and BRAD

predictions are illustrated in this figure. First, BRAD shows

a wider diversity in bond number along the path to steady

state than does the ESH model. Second, BRAD predicts a

variety of steady-state bond numbers, whereas at sufficiently

long times, ESHwould predict one steady-state bond number,

owing to the high value of KxRT.

Fig. 8 is a plot of the distribution of steady-state bond

number for both BRAD and ESH models using a physiolog-

ical cellular receptor density. Ninety viruses were simulated

to produce the results shown. Of these 90 viruses, 74 formed

permanent bonds with the cell instead of diffusing away from

FIGURE 7 Bond number as a function of time for the

ESH model, and five examples from BRAD simulations.

The ESH model trajectory is shown with a smooth solid

black line. The dotted lines denote the minimum and

maximum bond numbers that have at least a 5% of the

total surface density in the ESH model. (a) The ESH

model predicts a monotonically increasing transition in

mean bond number from one bond to the steady-state

value of 21. Frame b shows the complete transition to

steady state for the ESH model, as well as the collapse of

the bond number distribution at steady state. The BRAD

trajectories show periods of rapid bond formation

followed by periods of inactivity, as well as points at

which bonds break. Each BRAD trajectory is different

not only in the path to steady state but in steady-state

bond number as well. For all trajectories, t¼ 0 at the time

when the first bond was formed. Thus, the plot does not

show any effect of diffusing in the bulk solution.
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the surface; the other 16 interacted transiently with the sur-

face, but did not form permanent connections. ESH predicts

that all viruses that form one bond with the cell will form per-

manent bonds with the cell. Furthermore, ESH predicts

that all viruses will have the same steady-state number

of bonds—n, specifically 21—owing to the large value of

KxRT. BRAD shows a distribution of steady-state bond num-

ber with amean of 12.2 bonds. At steady state, the virus is less

well bound, on average, than predicted by ESH.

For KxRT ¼ 106, ESH predicts that all available molecules

will bind. Although ESH normally produces a distribution of

bond numbers at steady state (i.e., when KxRT ¼ 1), the

overwhelming driving force for binding causes viruses to be

fully bound. The value of n is arbitrarily set. One can reason

that n should be the maximum number of molecules to

possibly bind, which is;21. Thus, BRAD predicts the virus

is much less well bound at steady state for equal parameters.

A series of BRAD simulations were run with KxRT ¼ 1—a

value used by Hlavacek and co-workers to match viral

binding data. The intrinsic forward and reverse rates, kf
o and

kr
o, were both set to 0.1 s. None of the simulated viruses

formed a bond with the cell with KxRT ¼ 1.

Fig. 9 illustrates the sensitivity of the steady-state bond

distribution to the cellular receptor surface density. BRAD

shows that decreasing the cellular receptor density shifts the

steady-state bond distribution to lower bond numbers. ESH

would predict the same level of binding for all values of RT;

since KxRT � 1, the virus would be fully bound. Fig. 10

shows in BRAD simulations both the mean steady-state bond

number and the fraction of viruses that bind to a steady-state

number of bonds before diffusing away from the cell drop as

the surface density of cellular receptor is decreased. The ESH

model predicts that all viruses will form permanent bonds

with the surface if just one bond forms for all surface

densities examined. The physiological surface density is the

highest surface density shown. Halving the surface density

(from 6.3 3 1011 mol/cm2 to 3.2 3 1011 mol/cm2) has no

measurable effect on the fraction of viruses bound in these

FIGURE 8 Distribution of steady-state bond

number using physiological model parameters for

both the ESH model and BRAD simulations. The

ESH model result is depicted with the hashed bar.

All 90 ESH viruses bind to the same steady-state

bond number of 21. Sixteen of the ninety BRAD

viruses diffused away from the surface before

reaching a steady-state bond number with the cell.

The remaining 74 BRAD viruses formed a distri-

bution of steady-state bond numbers with the cell.

FIGURE 9 Distributions of steady-state bond number

for five cellular receptor site densities, calculated with 90

viruses at each density. Decreasing the cellular receptor

site density shifts the bond distributions to lower mean

numbers.
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simulations. Yet the mean bond number decreases from 12.2

to 8.6. Decreasing the surface density further decreases both

the fraction bound and the mean steady-state bond number.

The slope of the change in bond density as a function of

receptor density increases as the receptor density approaches

zero. However, it is not strictly correct to compare the

fraction bound between the BRAD simulations and the ESH

model. To make a more accurate comparison, it would be

necessary to include the rebinding rate in the ESH model, as

well as use the probabilistic method of Northrup and co-

workers (1984) to extract infinite virus trajectory probabil-

ities from the finite trajectories given by the BRAD

simulations.

As a further illustration of the differences between models,

we compare the rates of bond breakage. To calculate rates of

bond breakage from simulation, the inverse of the time

between a bond forming or breaking was taken as the rate.

Fig. 11 is a plot of the individual rates of bond breakage for

each bond number. There are significant differences between

the ESH model and BRAD simulations. First, the rate of

bond breakage in the ESH model has no dependence on

cellular receptor surface density. In contrast, BRAD

simulations reveal a difference in rates for different cellular

receptor surface densities. Second, while the ESH model

shows an increase in bond breakage rate with increasing

bond number (owing to the increased valency of bonds to

fail), BRAD simulations show a decrease in bond breakage

rate with increasing bond number (owing to the fact that the

virus is under stress, and the bonds between the virus and

surface share the stress, reducing the rate of failure of any

one bond).

Effect of s and sts fraction of binding
viruses and average bond number

The BRAD algorithm allows us to calculate the effect of

spring constants and mechanical properties of virus binding.

Fig. 12 shows the effect of varying the bond spring constant,

s, and the transition state spring constant, sts, on the fraction

of viruses that will bind to the cell before diffusing out of the

volume of interest. Two different magnitudes of spring

constants are examined: sts ¼ 3.5 3 10�3N/m and s ¼
1.2 3 10�2N/m, and a weaker spring set with sts ¼ 3.5 3

10�4N/m and s ¼ 1.2 3 10�3N/m. Combinations of these

FIGURE 10 Effect of cellular receptor surface density

on the mean number of bonds at steady state and the

fraction of viruses that permanently bind the cell surface.

In each case 90 viruses were simulated using BRAD.

Decreasing the physiological cellular receptor surface

density by a factor of 2 leaves the fraction of viruses

bound unchanged, but decreases the mean bond number.

If the density is further reduced a significant decrease in

the fraction bound and in the mean bond number is

observed. The error bars depict the 90% confidence

interval.

FIGURE 11 Individual rates of bond breakage. The

ESH result is represented by the solid black line. The

ESH model has no dependence on surface site density for

its bond breakage rate. The BRAD simulation results are

represented by symbols. Results from calculations using

five different cellular receptor surface densities are

plotted: physiological, physiological divided by 2,

physiological divided by 4, physiological divided by 8,

and physiological divided by 16, represented by a ¤, :,

3 ,J, andd, respectively. The 90% confidence interval

is depicted only for the physiological receptor density to

preserve clarity.
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values were also assessed. Changing the ratio of the spring

constants has no effect upon the fraction of viruses that bind

to steady state. Decreasing both the bond and transition state

spring constants, but keeping their ratio constant, increases

the fraction of viruses that bind to steady state. However, the

decrease in spring constants must be an order of magnitude

before a statistically appreciable effect appears. Fig. 13

depicts the effect of altering the spring constants on the

average number of bonds at steady state. When the bonds are

an order-of-magnitude more compliant, almost twice the

number of steady-state bonds is formed at steady state. The

increase in fraction bound and the mean bond number for the

weaker spring constants is because weaker bonds are capable

of acting over larger displacements from the relaxed bond

length. Bond number decreases if either the bond or

transition state spring constant is increased while the other

remains fixed.With the less compliant bonds, a decrease in the

transition state spring constant of 50% produced a statistically

significant change in bond number—resulting in a 13%

increase. Thus, the fraction bound and mean bond number

predictions are not sensitive to the spring constant ratio for

less compliant bonds.

CONCLUSION

BRAD simulations are a powerful new tool to determine

interactions between viruses and cells. They are capable of

providing information on the rate of bond formation and

breakage, the fraction of virus/cell collisions that result in

permanent binding, the maximum number of bonds between

a virus and a cell, and the spatial-temporal organization of

bonds in the virus/cell interface. BRAD simulations make

several improvements over the traditional ESH model of

viral docking. The ESH model assumes all reaction rates are

equal. The BRAD model reasons that the rates of reaction

will be mechanically controlled by the length of molecules,

and the corresponding forces on them. These improvements

include the ability to account for the geometry of the virus

and cell as well as the positions of the adhesive molecules, to

account for the distance-dependent reaction and breakage of

FIGURE 12 The effect of spring constants on the

fraction of viruses bound. The fraction bound was

determined from simulations using sets of 90 viruses.

Results depicted with a ¤, n, :, and 3 use a sts of 3.5

3 10�3 N/m, sts of 3.5 3 10�4 N/m, s of 1.2 3 10�2

N/m, and s of 1.2 3 10�3 N/m, respectively. Only half

of the 90% confidence interval for each point is shown to

preserve clarity.

FIGURE 13 The effect of spring constants on the

average number of bonds at steady state. The average for

each instance was determined from a set of 90 viruses.

Results depicted with a ¤, n, :, and 3 use a sts of

3.5 3 10�3 N/m, sts of 3.5 3 10�4 N/m, s of 1.2 3

10�2 N/m, and s of 1.2 3 10�3 N/m, respectively. The

error bars are for the 90% confidence interval.
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adhesion molecules, to include the effects of virus thermal

motion on bond failure, and to include the effect of

molecular mechanics in viral adhesion. These insights may

ultimately be very important in calculating the organization

of viral attachment protein/receptor complexes in the virus/

cell interface during viral docking and fusion.

Comparison of the results of the models for steady-state

binding illuminates several differences. At KxRT ¼;106, all

potential binding proteins are predicted to be bound at steady

state in ESH. The maximum number of bonds is set by the

modeler when choosing a value for the total bond density,

based on a reasonable view of the available number of

molecules. However, BRAD simulations do not require the

artificial selection of the maximum number of bonds that can

form. The number of bonds that can form is automatically

determined by the algorithm. As such, the simulations show

that there is a different steady-state bond number for each

receptor density examined. The steady-state number of

bonds increases as the receptor density increases, and the

steady-state binding is always less than predicted by the ESH

model. Thus, it may be that viruses are more weakly bound

than previously thought. This is because macroscopic forces

are placed on the virus and imparted to the molecules,

decreasing bond survival. All of these predictions were made

using a value of KxRT ¼ 106. Although this is a much larger

value than traditionally used in ESH models, it is in

agreement with both thermodynamic and experimentally

observed kinetic data for the gp120/CD4 system. When

BRAD simulations were run using a traditional value of

KxRT¼ 1, no viruses bound to the cell surface. Thus, another

way to compare the models is that much larger values of

KxRT are needed in BRAD to achieve the same degree of

binding as seen in ESH models; this also suggests binding is

weaker than thought.

The rates of molecular interaction predicted by BRAD

simulations were compared to rates predicted by ESH. There

are significant differences between the simulation rates and

the ESH rates. In BRAD, bond breakage rates have

a dependence on the surface density of cellular receptor,

whereas in the ESH model the rates are independent of

surface density. This is because in the BRAD model,

multiple bonds share the mechanical load imparted by the

virus, making failure much less likely.

The clear value of BRAD is that it provides details of the

mechanics of binding and the spatial-temporal organization

of receptors in the virus/cell interface. Such detail would be

useful in understanding the extent of binding that would

precede the fusion of the virus, understanding the relation-

ship between two different bond receptor pairs, and

simultaneously exploring the effect of receptor lateral

mobility on the organization of receptors in the membrane.

This latter effect is easily incorporated by adding a force-

dependent lateral motion of the receptor using the known

drag of the protein through the lipid (Saffman and Delbruck,

1975; Bussell et al., 1994). Also, many virus proteins such as

gp120 exist as trimeric complexes. This trimeric organiza-

tion can be built into the model. Further, mechanical details

of the molecule itself can be added to the model (to

understand how viral molecules act as micro machines).

Therefore, future work with BRAD will add physical-

chemical effect of CD4/gp120 binding, applicable to HIV

docking, to develop as accurate a simulation as possible. We

suspect such a simulation will be useful for assessing the

potency and mechanism of action of pharmaceuticals

designed to interfere with viral adhesion and entry.
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