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A theory of temporally asymmetric Hebb rules, which depress or potentiate synapses depending upon
whether the postsynaptic cell fires before or after the presynaptic one, is presented. Using the Fokker-
Planck formalism, we show that the equilibrium synaptic distribution induced by such rules is highly
sensitive to the manner in which bounds on the allowed range of synaptic values are imposed. In a
biologically plausible multiplicative model, the synapses in asynchronous networks reach a distribution
that is invariant to the firing rates of either the presynaptic or postsynaptic cells. When these cells are
temporally correlated, the synaptic strength varies smoothly with the degree and phase of their synchrony.
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Recent experimental evidence indicates that synaptic
modification in cortical neurons depends on the precise
temporal relation between presynaptic and postsynaptic fir-
ing [1,2]. Presynaptic spikes that precede postsynaptic fir-
ing lead to synaptic potentiation, while those that follow
postsynaptic firing elicit synaptic depression. The tem-
poral window for inducing these changes is on the order
of 10 msec. Several recent theoretical studies addressed
the potential implications of this temporally asymmetric
Hebbian (TAH) synaptic plasticity on learning [3–8]. The
present study is motivated by recent work by Abbott and
co-workers who applied TAH learning in a large popula-
tion of excitatory presynaptic cells asynchronously driving
a single postsynaptic cell [3]. Their simulations showed
that the distribution of synapses converged to a bimodal
distribution. The synapses either were almost zero or had
values close to their upper limit. Moreover, when the fir-
ing rate of the presynaptic cells was increased, the number
of strong synapses decreased so that there was very little
change in the output rate. Thus, the TAH rule seems to
provide a mechanism for keeping the mean output rate in-
variant. Since Hebb rules are presumed to underlie many
developmental and learning processes in neuronal systems,
it is important to understand the equilibrium properties of
networks with TAH plasticity and how they depend upon
the particular implementation of these rules.

In this Letter, we study the TAH rule using Fokker-
Planck theory [5,8]. Surprisingly, we find that the behavior
of the system depends crucially on how the boundaries on
the allowed range of synaptic efficacies are incorporated.
In particular, the salient features found in [3] are unique to
an additive learning rule in which the magnitude of the up-
date does not explicitly depend on the current value of the
synapse. A very different behavior is found with a multi-
plicative rule where the magnitude of the update decreases
as either the upper or lower bounds are approached.

TAH plasticity is described as a change to the synaptic
efficacy w between two cells. A pair of spikes in the input
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cell and the output cell, at times ti and to , respectively,
induces a change in w:

D6w � 6lf6�w�K�jto 2 tij� . (1)

The weight w is increased by D1w when to . ti and de-
creased by D2w when ti . to . The temporal dependence
of the update is defined by the filter K which for simplicity
is taken to be K�t� � exp�2t�t�. The coefficient l sets
the scale of the synaptic change at each update. The factors
f6�w� determine the relative magnitude of the changes in
the positive and negative directions.

We consider two particular examples of these update
rules. The first is an additive update rule where the mag-
nitude of the changes is independent of w, so that

f1 � 1; f2 � a . (2)

The parameter a . 0 denotes a possible asymmetry be-
tween increasing and decreasing the synaptic efficacy. If
the update results in a synaptic weight outside the bounds
0 , w , 1, the weight is clipped to the boundary values.
For the second example, which we will call the multiplica-
tive rule,

f1�w� � 1 2 w; f2�w� � aw . (3)

This results in a synaptic increase (decrease) whose mag-
nitude scales linearly with the distance to the upper (lower)
boundary, similar to the model in [8].

To evaluate the equilibrium properties of these rules,
the firing activity in the two cells needs to be specified.
We consider the case when the input and output activity
are stationary stochastic processes. The firing of the input
cell is characterized by an instantaneous rate function
ni�t� �

P
ti

d�t 2 ti�, where ti are the spike times of the
input cell with mean rate �ni� � rin. Similarly, the activity
of the output cell is given by no�t� �

P
to

d�t 2 to� with
mean rate rout. The correlation between these two spike
trains is described by the normalized time delayed cross-
correlation function C�t� � �ni�t0�no�t0 1 t���rinrout 2

1. Note that, for uncorrelated spike trains, C�t� � 0.
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In the limit of small step sizes (l ø 1), Eq. (1) can be
averaged in order to describe the behavior of w on times
of order 1�l as a continuous random walk, similar to the
approach in [5,8]. This random walk has a mean drift,

y �

ø
dw
dt

¿
� rinrout�� f1 2 f2�t 1 f1T1 2 f2T2� ,

(4)

where the weighted correlation times, T6, are

T6 �
Z `

0
dt K�t�C�6t� . (5)

The first term in Eq. (4) is the contribution from uncor-
related firing activity in the cells and is proportional to
t �

R`

0 dt K�t�. The other terms represent the contri-
bution from the synchrony between the two spike trains
and are proportional to T6. The expression for the diffu-
sion constant D�w� of this random walk is more complex
and will be presented elsewhere. Here we note that D
is small since it is proportional to the l. According to
Fokker-Planck theory, the equilibrium density P�w� can
be described as a Gibbs distribution with a plasticity po-
tential U�w� where in the limit of small l

U�w� � 2l log�P�w�� 	 22
Z w

0
dw0 y�w0��D�w0� .

(6)

Thus, P�w� will be concentrated near the global minima of
U�w�. Depending upon the implementation of the model,
the minimum can be located at an interior point where
the drift y�w� vanishes, or at the boundaries w � 0 and
w � 1. To evaluate whether the distribution of w contains
a peak at 0 , w , 1 or at the boundaries, the specific form
of the correlation function C�6t� needs to be considered.

We first consider the simple example where the spike
train 
ti� is a homogeneous Poisson process and the
output spike train is a shifted version of the input train,
i.e., to � ti 1 Dt where Dt is the temporal shift be-
tween the two spike trains. In this case, r � rin � rout,
C�t� � r21d�t 2 Dt�, and T6 � r21 exp�2jDtj�
t�u�6Dt�, where u�x� � 1 if x . 0 and 0 otherwise. For
the additive model in Eq. (2), this leads to a net drift:

y �

Ω
�1 2 a�tr2 1 re2Dt�t , Dt . 0 ,
�1 2 a�tr2 2 areDt�t , Dt , 0 .

(7)

Here y (as well as D) is independent of w and the po-
tential U�w� 	 22yw�D. In the limit of small l, the
equilibrium distribution will be a d function centered at 0
when y , 0 and at 1 if y . 0.

These results are confirmed by the simulations shown
in Figs. 1(a) and 2(a), where we have taken a � 1.05
and 0.95. For a � 1.05, the magnitude of the negative
change is slightly larger than the positive one. The mean
synapse is zero except when 0 , Dt , Dt0 with Dt0 	
50 msec. In this range, the positive correlation between
the input and output cells overcomes the negative bias in
the update rule to generate a positive drift so that w 	 1.
The transition at Dt0 is precisely the point where T1 �
�a 2 1�t; see Eq. (7). This behavior is highly sensitive to
whether a is larger or smaller than 1. For a � 0.95, the
mean synapse is at zero only in the range 2Dt0 , Dt , 0,
where the negative correlation is larger than the positive
bias. Otherwise w 	 1.

In contrast, for the multiplicative model the drift velocity
is given by
y �

Ω
�1 2 �1 1 a�w�tr2 1 r�1 2 w�e2Dt�t , Dt . 0 ,
�1 2 �1 1 a�w�tr2 2 awreDt�t , Dt , 0 .

(8)
Here the drift depends on w. It is positive for small w
and becomes negative for large values of w. In this case,
U has an approximately parabolic shape with a minimum
located at w � w0 where the drift velocity vanishes:

w0 �

Ω
1 2 a�1 1 a 1 �tr�21e2Dt�t�21, Dt . 0 ,

1 1 a�1 1 �tr�21eDt�t��21, Dt , 0 .

(9)

This leads to a distribution P�w� with a narrow peak
at w0, as shown in Fig. 2(b). For large values of Dt,
the input and output cells are essentially uncorrelated, in
which case w0 � 1��1 1 a� 	 0.5 for a 	 1. For
positive Dt & 50 msec, the positive correlation between
the two cells gives rise to a mean �w� . 0.5 as shown in
Fig. 1(b). Conversely, for small negative Dt, the reverse
correlation leads to a mean �w� , 0.5. Thus, through this
learning rule, the synapse smoothly encodes the temporal
phase relationship between the presynaptic and postsynap-
tic cells. A similar dependence is found when one varies
the degree of synchrony between the two cells rather than
its phase.
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FIG. 1. Simulation results showing the mean synaptic efficacy
�w� of a single synapse undergoing (a) additive and (b) mul-
tiplicative TAH plasticity. Dt is the time delay imposed on
the spike times of the postsynaptic cell relative to those of the
presynaptic ones. All simulations are with t � 10 msec and
l � 0.005.
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FIG. 2. Histogram showing the distribution of synaptic effica-
cies using the (a) additive and (b) multiplicative TAH rule with
t � 10 msec, a � 1.05, l � 0.005. The upper two histograms
in each graph show the behavior of a single synapse as described
in Fig. 1. The lowest histograms are the distribution of synaptic
efficacies in a network of N � 1000 excitatory cells with
Poisson activation times and mean input rate rin � 10 Hz.
These cells converge on a single integrate and fire cell with pa-
rameters tm � 20 msec, ts � 5 msec, Vs � 5, and gs � 0.01.

Let us now consider the situation where a large popu-
lation of N cells with modifiable excitatory synapses wi

drives a single postsynaptic cell. In the numerical simula-
tions below, the output neuron obeys dynamics commonly
known as “integrate and fire,” where the potential of the
cell is described by the equation tm

�V � 2V 2 Is. tm is
the passive time constant of the cell, and when the poten-
tial V reaches the threshold V � 1 it is reset to zero. Is�t�
is the synaptic current generated by the N excitatory cells.
Each spike in the presynaptic cells triggers a contribution
to the output cell’s conductance that decays with synaptic
time constant ts, yielding

Is�t� � gs

NX
i�1

wi�t�
X
ti,t

e�ti2t��ts �V 2 Vs� . (10)

Vs is the reversal potential for the excitatory synapses. The
synaptic efficacy wi�t� describes the increase in the output
cell’s conductance in units of gs, immediately after a spike
in the ith cell. The peak conductances, wi , are in turn
modified by the TAH dynamics described above.

Here we present a general theoretical analysis of the sys-
tem which is independent of the details of the output cell
dynamics. For each i in the limit of small l, Eqs. (4)–(6)
hold for the ith synapse, with correlation times Ti

6 and
T 0i

6 defined using the correlation Ci�t� between the ith cell
and the output. As before, we will assume that the in-
puts are described by independent homogeneous Poisson
processes, all with mean rate rin. However, the statistics
of firing in the output cell are described here by its mean
rate rout and 
Ci�t��N

i�1, determined by its response to the
incoming spikes rather than predetermined as in the previ-
ous example. We first describe the behavior of the additive
model. Because of causality and the Poisson nature of the
366
input spikes, Ti
2 � 0. For Ti

1, we make the following
plausible assumptions: (i) Since the output cell is driven
by a large number of asynchronous inputs, Ti

1 is positive
but small; (ii) its value increases roughly linearly with the
synaptic efficacy of the ith presynaptic cell, namely,

Ti
1 	 txwi , x . 0 , (11)

where (iii) x � x�rout� is expected to be a monotonically
decreasing function of the firing rate of the output cell. x

is larger at smaller rout when the output cell spends more
time near threshold and thus is more sensitive to the timing
of the incoming spikes. Equation (11) implies for each
synapse the drift yi ~ 1 2 a 1 xwi . Thus, if a 2 1
is positive and of order 1, the system will converge to a
state where all the wi are zero, or when a , 1, wi 	
1. An interesting situation occurs when 0 , a 2 1 ø
1 so that the weak negative bias can balance the weak
positive correlations. In this case, the diffusion constant
D is approximately constant, and the potential is given by

U�w� 	
4

1 1 a2

∑
�a 2 1�w 2

1
2

xw2

∏
, (12)

which has local minima at the boundaries, w � 0, 1.
This equation has to be solved self-consistently since
rout, which determines x , is itself dependent on U. Over
a wide range of input rates the self-consistent solution
is an unsaturated state, in which P�w� has significant
weight both near 0 and near 1, which in turn implies that
U�0� � U�1� up to order l. Hence by Eq. (12), this state
is characterized by an output rate r�

out such that

x�r�
out� � 2�a 2 1� . (13)

More precisely, as rin increases, rout increases slightly by
an amount of order l inducing a decrease in x of that
order. This leads to a small relative increase in U�1�,
which in turn reduces P�1� by an amount which roughly
compensates for the increase in rin, maintaining Eq. (13).
This behavior is confirmed by simulations whose results
are shown in Figs. 2(a) and 3(a). As rin increases from 10
to 40 Hz the output rate remains approximately constant
at 	22 Hz, and x 	 0.1 in agreement with Eq. (13). The
mean efficacy �w� decreases to compensate for the increase
in rin, as found in [3].

The multiplicative model results in a very different state.
In fact, since the correlations are weak for large N , the
equilibrium behavior is similar to the previous example
with only a single input and output cell with large Dt.
In particular, like Eq. (9), the potential U�w� has a single
minimum at the point of zero drift: w0 	 1��1 1 a�.
Thus, the distribution is highly concentrated near w0, as
seen in Fig. 2(b), and is largely independent of the mean
rates of both the input and output cells. As rin increases,
the output rate also increases and is similar in behavior to
a cell with fixed synapses, wi 	 w0. Note that, as rout
increases, x decreases but this results in only a small de-
crease in the mean synaptic efficacy. Finally, in contrast
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FIG. 3. The effect of increasing the input rate rin on the equi-
librium state of a network of N � 1000 excitatory synapses
driving an integrate and fire cell, undergoing (a) additive and
(b) multiplicative TAH dynamics. Shown are the output firing
rate rout, the mean synaptic efficacy �w�, and the correlation
strength x. The latter was determined by fixing one of the
synapses to 0.5 and numerically integrating Eq. (5) and using
Eq. (11).

to the additive model where the boundaries are local min-
ima of U and the point of zero drift is a maximum of U,
in the multiplicative model U�w� has a single minimum at
the point of zero drift. Hence, the equilibration time of the
additive model will in general be much slower than that of
the multiplicative model since synapses have to overcome
the potential barrier of the synaptic potential. Indeed, this
difference in equilibration times is seen in our numerical
simulations.

We have shown here that the multiplicative TAH
rule leads to a very different equilibrium distribution of
synapses compared with an additive rule. Most impor-
tantly, the multiplicative model is not sensitive to moderate
changes in the parameters of the plasticity rule and does
not suffer from slow convergence. Furthermore, experi-
mental results reveal a dependence of the magnitudes of
the synaptic changes on the amplitude of the initial synap-
tic efficacy, which supports a multiplicative TAH rule [2].
The observed mean fractional negative change remained
constant over a wide range of synaptic efficacies, and is
consistent with the assumption that the negative change is
proportional to w as described by a multiplicative f2�w�
in Eq. (3). The fractional positive changes monotonically
decreased with synaptic efficacy and vanished smoothly at
some maximum value, again in qualitative agreement with
the multiplicative model. Although the observed shape of
the w dependence deviates from the simple linear form of
f1�w� assumed here, the qualitative properties of the rule
are unaffected by this difference. In conclusion, networks
combining asynchronous inputs with the multiplicative
TAH rule should display an equilibrium synaptic distri-
bution that is largely insensitive to the firing rates of the
pre- and postsynaptic cells. On the other hand, a coherent
temporal modulation of the firing of the inputs to a target
cell leads to a synaptic distribution which encodes the
degree and phase of the synchrony between the cells in a
smooth manner. It should be noted that the experimentally
observed TAH changes set in with a time constant of
the order of minutes [1,2], which was not incorporated
explicitly in our model. This long time constant may have
important implications for dynamic and computational
properties of networks. However, this does not appear
to affect equilibrium properties, which are the focus of
this work.
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