NetTrails: A Declarative Platform for Maintaining and
Querying Provenance in Distributed Systems

Wenchao Zhou

Andreas Haeberlen*
*University of Pennsylvania, Philadelphia, PA

Qiong Fei*
Zachary lves*

Shengzhi Sun* Tao Tao*

Boon Thau Loo* Micah Sherre
°Georgetown University, Washington, DC

{wenchaoz, giongfei, shengzhi, taot, ahae, zives, boonloo}@cis.upenn.edu,
msherr@cs.georgetown.edu

ABSTRACT

We demonstrate NetTrails, a declarative platform for maintaining
and interactively querying network provenance in a distributed sys-
tem. Network provenance describes the history and derivations of
network state that result from the execution of a distributed proto-
col. It has broad applicability in the management, diagnosis, and
security analysis of networks. Our demonstration shows the use
of NetTrails for maintaining and querying network provenance in
a variety of distributed settings, ranging from declarative networks
to unmodified legacy distributed systems. We conclude our demon-
stration with a discussion of our ongoing research on enhancing the
query language and security guarantees.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed Sys-
tems—Distributed Applications; E.1 [Data Structures]:
Distributed Data Structures; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Graphical User Interfaces

General Terms

Design, Management

1. INTRODUCTION

Distributed systems are increasingly being deployed at Internet scale
for a variety of applications. With functionalities as diverse as
content-distribution networks, data analytics, p2p search, and net-
work monitoring, these complex and often multifaceted distributed
systems impose significant challenges, particularly in the areas of
diagnostics and forensics. We show how a variety of network tasks
(for example, identifying misbehaving users and enforcing trust
policies) can be achieved by maintaining and analyzing network
provenance [10], which captures the history and derivations of net-
work state that result from the execution of a distributed protocol.
We demonstrate NetTrails, a declarative platform for incrementally
maintaining, interactively navigating, and querying network prove-
nance in a distributed system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’11, June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Execution | Exploration and Querying NetTrails

|

|

| R

RapidNet - .

| -

} B e <J|— EXSPAN - Query Engine

I A

| ¢ ! + I

Declarative Networks } 1
1" EXSPAN - j | Provenance |, |

; Visualizer Visualizer
|

Legacy
Applications

|
r Maintenance Engine
|
|
| ' t t

|
i ’ Log Store
|

Proxy

i
|
1
|
|
|
|
|
|
|
RapidNet '
|
|
|
|
|
|
|
|

Figure 1: Architectural overview of NetTrails.

Figure 1 shows an overview of the NetTrails system on a single
node. On the left side of the figure is the application whose net-
work provenance is being tracked by NetTrails. The application
can either be a declarative network or an unmodified legacy appli-
cation (“black box™) that utilizes a proxy to extract state changes
from intercepted application messages.

NetTrails integrates features from the RapidNet [4, 7] declarative
networking engine, the ExXSPAN [10] network provenance engine,
and an interactive provenance and network topology visualizer for
exploring and issuing customized provenance queries on network
state. The goals of this demonstration are: (1) to demonstrate the
query processing and optimization techniques used in a declarative
networking engine to support network provenance in a distributed
environment, (2) to show concrete use cases of the system based on
traditional declarative networking protocols [3] as well as an un-
modified legacy application, the popular Quagga network routing
suite [6], and finally, (3) to highlight our ongoing research work on
extending the system to enable new network analysis capabilities.

2. SYSTEM OVERVIEW

We provide an overview of NetTrails by describing the system’s
major components and the mechanisms by which they interact.

2.1 RapidNet Declarative Networking Engine

NetTrails utilizes a declarative networking engine to implement
declarative protocols, and it provides distributed querying capa-
bilities to maintain and query provenance information in a dis-
tributed fashion. Declarative networks are specified using Network
Datalog (NDlog), a distributed recursive query language used for
querying network graphs. NDlog queries are executed using a dis-
tributed query processor and are continuously maintained as dis-
tributed views over existing network state. Previous work [3] has
demonstrated that a variety of distributed systems, such as path-
vector routing, distance-vector routing, and the Chord distributed
hash table, can be specified and implemented in NDlog in orders of
magnitude less lines of code than imperative implementations.

The specific engine that we have adopted is RapidNet [4], a
declarative networking engine that is integrated with the new
ns-3 [5] network simulator. NDIog programs are compiled into ns-3
code (in C++) using the RapidNet compiler and executed natively.
The compiled code can either run as an ns-3 application in simula-
tion mode, or as an actual implementation that can run directly on
a network. The system has been used to deploy distributed systems
on PlanetLab and on the ORBIT wireless testbed. RapidNet fur-
ther includes a network visualization tool. RapidNet is open source
software and is available for download [7].

2.2 ExSPAN Network Provenance Engine

ExSPAN [10] consists of two components. The maintenance en-
gine takes as input either NDlog programs or input/output depen-
dencies captured from legacy applications, and then incrementally
computes and maintains network provenance information as dis-
tributed relational tables. Second, the distributed query engine
executes user-customizable provenance queries that are evaluated
across multiple nodes. During the protocol execution, ExSPAN [10]
(Section 2.2) incrementally maintains provenance information us-
ing RapidNet [4] as its distributed query engine. Our architecture
offers a unified framework, as both maintenance and querying func-
tionalities are specified as NDlog programs.

Provenance model: In ExSPAN [10], the provenance graph is
internally maintained as relational tables, which are distributed and
partitioned across all the nodes in the network. Network prove-
nance is modeled as an acyclic graph G(V,E). The vertex set V
consists of tuple vertices and rule execution vertices. Each tuple
vertex in the graph is either a base tuple or a computation result,
and each rule execution vertex represents an instance of a rule ex-
ecution based on a set of input tuples. The edge set E represents
dataflows between tuples vertices and rule execution vertices.

Provenance maintenance: Since all data dependencies are ex-
plicitly captured in derivation rules written in NDlog, the prove-
nance information that belongs to a declarative network can be
captured easily. In previous work [10], we have presented an auto-
matic rule rewriting algorithm that takes as input a NDlog program
and outputs a modified program that contains additional rules for
capturing the program’s provenance information. These additional
rules define network provenance in terms of views over base and
derived tuples. As the network protocol executes and updates net-
work state, views are incrementally recomputed.

In the case of a legacy application, capturing provenance infor-
mation requires some additional work — particularly if the source
code of the legacy application is unavailable. In such cases, we
utilize NDlog’s concept of “maybe” rules, which describe possi-
ble causal relationships between messages entering and leaving the
legacy application. In contrast to ordinary derivation rules, the out-
put tuple of a “maybe” rule is not necessarily always derived (de-
pending on internal decisions in the legacy application). To illus-
trate this, we consider a legacy router used in Internet routing. The
following “maybe” rule captures the likely causal relationship be-
tween incoming and outgoing route advertisements:
brl outputRoute (AS,R2,Prefix,Route2) ?-

inputRoute (AS,R1,Prefix,Routel),
f_isExtend(Route2,Routel,AS)=1.

Rule br1 is an example of a “maybe” rule (syntactically recog-
nized via the ?- symbol), capturing possible dependencies between
an inputRoute tuple that arrives at a router and an outputRoute
that is subsequently generated by the router. This matching can
be achieved by exploiting knowledge about iterdomain routing: a
router that applies the standard interdomain routing protocol pre-
fixes its address to incoming route advertisements before export-

ing the selected routes to its neighbors. The f_isExtend (R1,R2,N)
function leverages this by checking whether routes rR1 and r2 differ
only by the addition of the node identifier . If so, the “maybe” rule
infers a causal relationship.

Provenance querying: Once generated, network provenance can
be queried by issuing distributed queries. Since provenance in-
formation is distributed across nodes, query execution performs a
traversal of the provenance graph in a distributed fashion. ExXSPAN
allows users to customize the provenance queries. For instance,
users can query for a tuple’s lineage, the set of all nodes that have
been involved in the derivation of a given the tuples, and/or the
total number of alternative derivations. To reduce querying over-
head, ExSPAN adopts a set of optimization techniques [10], which
include caching previously queried results, leveraging alternative
tree traversal orders, and performing threshold-based pruning.

2.3 Interactive Visualization

Although NetTrails is designed to execute in a distributed envi-
ronment, some state needs be centralized to facilitate the visual-
ization of provenance queries and results. In particular, per-node
provenance information and other system state (such as the network
topology and bandwidth utilization) can be periodically captured as
system snapshots at each node, and then propagated to a central Log
Store that resides at the visualization node. These logs are subse-
quently used for interactive visualization, query, and replay during
our demonstration.

The generated logs are replayed using the RapidNet visualizer
(to show the actual network topology, and position of nodes and
links as the topology changes) and a provenance visualizer, which
is based on hypertrees [1]. The provenance visualizer provides two
useful features: the provenance graph is presented on a hyperbolic
plane, enabling users to focus on small segments of the graph; ad-
ditionally, users can navigate the provenance graph by changing fo-
cus with smooth transitions by clicking on or dragging the screen.

Figure 2 shows a series of screenshots of the visualizer while it
is used to interactively navigate the tree structure. This example is
based on the MINCOST protocol, which computes pair-wise min-
imal path costs in a network. Figure 2(a) shows the root of the
provenance tree at a particular point in time; Figure 2(b) shows all
the pair-wise minimal path costs; and Figure 2(c) shows a close-up
view of a particular tuple, as well as its attribute values and location
(shown in the black rectangle).

Note that the topology and the provenance visualizer are inter-
actively navigated in tandem: during the replay, users can interac-
tively pause the network at a given time, and then view the prove-
nance information of any node. Similarly, by navigating the hyper-
tree provenance to explore dependencies among nodes, users can
traverse and view the network state and the rules executing at an-
other node. At any point in time, the users can customize the tree
by issuing a provenance query that is then evaluated by ExSPAN,
potentially across several nodes.

3. DEMONSTRATION PLAN

NetTrails visualizes the topologies and statistics of the distributed
system (in the RapidNet visualizer) and its corresponding prove-
nance information (in the provenance visualizer) based on the exe-
cution traces and provenance snapshots taken during the system ex-
ecution. To illustrate this, Figure 3 shows an example execution of
the current version of our demonstration where we show the prove-
nance of the system state (captured as tuples) for a running MIN-
CoST program. One may further issue customized queries against
the provenance and visually show their progressive steps.

bestpathCost

(a)

bestPathCost

time=105

(b)

b ke
e

pathc pathc:

pathc- pathc

r3@192. 13@192.
@192

pathc: 3@102.1

@192
@192
el

Figure 2: An example of interactive exploration in the provenance visualizer. Users start from the system-wide snapshot of the
provenance at time T (screenshot a), select the table that they are interested in (screenshot b), and finally locate the provenance of a
particular tuple instance (screenshot ¢). Focus changes are connected by smooth transitions, enabling progressive exploration.

We plan to further extend and continue the development of Net-
Trails, and demonstrate the following two use cases:

Declarative networks: Our first use case focuses on distributed
systems implemented using the declarative networking framework,
including the MINCOST protocol, the path-vector protocol, and dy-
namic source routing (DSR). This use case demonstrates the appli-
cability of NetTrails in a variety of declarative networks running
in different environments (e.g. static vs mobile network). In each
configuration, we show that NetTrails correctly captures and main-
tains provenance, as network state is incrementally recomputed as
the underlying network topology changes.

Legacy applications: Our second use case explores the integra-
tion of NetTrails with legacy applications. We use the Quagga rout-
ing suite [6] to set up a number of BGP (Border Gateway Protocol)
instances in multiple ASes. BGP is the standard interdomain rout-
ing protocol used by all Internet ISPs to exchange routing informa-
tion with one another. To emulate an actual network environment,
we instantiate all Quagga BGP daemons on a single machine and
use the proxy to intercept BGP messages. The Quagga instances
form a topology of ASes that consists of several large and small
ISPs connected by a mix of customer/provider/peer relationships.
Using actual BGP traces from RouteViews [8], we show that Net-
Trails can capture derivation histories and origins of routing entries.

We demonstrate that, with the provenance information captured
in NetTrails, users can perform various analytical and diagnostic
tasks simply by navigating in the provenance visualizer. Exam-
ples include tracing back from root causes, monitoring cascading
effects that result from network topology updates, and determin-
ing the parties that have participated in the derivation of a tuple.
One may even monitor how system state updates lead to changes in
provenance, to understand the effects of these updates.

Figure 3: A screenshot of the NetTrails demonstration.

Users can also access the provenance information by issuing cus-
tom queries directly to ExXSPAN. We demonstrate different types
of provenance queries, such as querying the set of contributing
base tuples, participating nodes, or the total number of derivations.
We also visually demonstrate that optimization techniques, such as
caching and threshold-based pruning, effectively reduce the net-
work traffic.

Finally, we use our demonstration as a basis for discussing some
of our ongoing work: (1) exploring distributed variants of graph-
based provenance query languages such as ProQL [2] for formulat-
ing queries and transformations over network provenance data, and
(2) enhancing the current system to securely utilize network prove-
nance information in untrusted environments and enable efficient
explanation of the causes and effects of network state [9].

4. ACKNOWLEDGMENTS

This work was supported by NSF grants [1S-0477972, 11S-0713267,
CNS-0721541, 1IS-0812270, CCF-0820208, CNS-0845552,
CNS-1040672, CNS-1054229, AFOSR MURI grant
FA9550-08-1-0352, DARPA award N66001-11-C-4020, and NPS
award N00244-11-1-0008.

S.
(1]

REFERENCES

Hyperbolic Tree Java Library.
http://sourceforge.net/projects/hypertree/.

G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data
provenance. In SIGMOD, 2010.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative Networking. In CACM, 2009.

S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea,
and B. T. Loo. Declarative toolkit for rapid network protocol
simulation and experimentation. In SIGCOMM-demo, 2009.
Network Simulator 3. http://www.nsnam.org/.

Quagga Routing Suite. http://www.quagga.net/.
RapidNet. http://netdb.cis.upenn.edu/rapidnet/.
RouteViews project. http://www.routeviews.org/.

W. Zhou, A. Haeberlen, B. T. Loo, and M. Sherr. Tracking
Adversarial Behavior in Distributed Systems with Secure
Network Provenance. Technical Report MS-CIS-10-28,
University of Pennsylvania, 2010.

W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao.
Efficient querying and maintenance of network provenance
at internet-scale. In SIGMOD, 2010.

(2]
(3]

(4]

(3]
(6]
(7]
(8]
(9]

(10]

http://sourceforge.net/projects/hypertree/
http://www.nsnam.org/
http://www.quagga.net/
http://netdb.cis.upenn.edu/rapidnet/
http://www.routeviews.org/

	Introduction
	System Overview
	RapidNet Declarative Networking Engine
	ExSPAN Network Provenance Engine
	Interactive Visualization

	Demonstration Plan
	Acknowledgments
	References

