Departmental Papers (BE)

Document Type

Journal Article

Date of this Version

December 2007

Abstract

A major cause of implant failure in skeletal tissues is failure of osseointegration, often due to lack of adhesion of cells to the titanium (Ti) alloy interface. Since arginine- glycine-aspartic acid (RGD)-containing peptides have been shown to regulate osteoblast adhesion, we tested the hypothesis that, bound to a Ti surface, these peptides would promote osteoblasts differentiation, while at the same time inhibit apoptosis. RGDS and RGES (control) peptides were covalently linked to Ti discs using an APTS linker. While the grafting of both RGDS and RGES significantly increased Ti surface roughness, contact angle analysis showed that APTS significantly increased the surface hydrophobicity; when the peptides were tethered to Ti, this was reduced. To evaluate attachment, MC3T3-E1 osteoblast cells were grown on these discs. Significantly more cells attached to the Ti-grafted RGDS then the Ti-grafted RGES control. Furthermore, expression of the osteoblasts phenotype was significantly enhanced on the Ti-grafted RGDS surface. When cells attached to the Ti-grafted RGDS were challenged with staurosporine, an apoptogen, there was significant inhibition of apoptosis; in contrast, osteoblasts adherent to the Ti-grafted RGES were killed. It is concluded that RGD-containing peptides covalently bonded to Ti promotes osteoblasts attachment and survival with minimal changes to the surface of the alloy. Therefore, such modifications to Ti would have the potential to promote osseointegration in vivo.

Comments

Postprint version. Published in Journal of Biomedical Materials Research, Part A, Volume 83A, Issue 3, December 2006, pages 577-584.
Publisher URL: http://dx.doi.org/10.1002/jbm.a.31007

Keywords

titanium, RGD peptides, apoptosis, osteoblast, APTS

Share

COinS
 

Date Posted: 08 January 2008

This document has been peer reviewed.