Remyelination Reporter Reveals Prolonged Refinement of Spontaneously Regenerated Myelin

Loading...
Thumbnail Image
Penn collection
BBB Major Publications
Degree type
Discipline
Subject
regeneration
plasticity
internode
Nervous System
Neuroscience and Neurobiology
Neurosciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Powers, Berit E
Sellers, Drew L
Lovelett, Emilie A
Cheung, Willy
Aalami, Sheida A
Zapertov, Nikolai
Maris, Don O
Horner, Phillip J
Contributor
Abstract

Neurological diseases and trauma often cause demyelination, resulting in the disruption of axonal function and integrity. Endogenous remyelination promotes recovery, but the process is not well understood because no method exists to definitively distinguish regenerated from preexisting myelin. To date, remyelinated segments have been defined as anything abnormally short and thin, without empirical data to corroborate these morphological assumptions. To definitively identify regenerated myelin, we used a transgenic mouse with an inducible membrane-bound reporter and targeted Cre recombinase expression to a subset of glial progenitor cells after spinal cord injury, yielding remarkably clear visualization of spontaneously regenerated myelin in vivo. Early after injury, the mean length of sheaths regenerated by Schwann cells and oligodendrocytes (OLs) was significantly shorter than control, uninjured myelin, confirming past assumptions. However, OL-regenerated sheaths elongated progressively over 6 mo to approach control values. Moreover, OL-regenerated myelin thickness was not significantly different from control myelin at most time points after injury. Thus, many newly formed OL sheaths were neither thinner nor shorter than control myelin, vitiating accepted dogmas of what constitutes regenerated myelin. We conclude that remyelination, once thought to be static, is dynamic and elongates independently of axonal growth, in contrast to stretch-based mechanisms proposed in development. Further, without clear identification, past assessments have underestimated the extent and quality of regenerated myelin.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2013-03-05
Journal title
PNAS (Proceedings of the National Academy of Sciences)
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection